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Abstract

Plausible identification of conditional average treatment effects (CATEs) can rely on

controlling for a large number of variables to account for confounding factors. In these

high-dimensional settings, estimation of the CATE requires estimating first-stage models

whose consistency relies on correctly specifying their parametric forms. While doubly-

robust estimators of the CATE exist, inference procedures based on the second-stage CATE

estimator are not doubly-robust. Using the popular augmented inverse propensity weight-

ing signal, we propose an estimator for the CATE whose resulting Wald-type confidence

intervals are doubly-robust. We assume a logistic model for the propensity score and a

linear model for the outcome regression, and estimate the parameters of these models us-

ing an ℓ1 (Lasso) penalty to address the high-dimensional covariates. Inference based on

this estimator remains valid even if one of the logistic propensity score or linear outcome

regression models are misspecified.

Keywords: High-Dimensional, Doubly-Robust Inference, Nonparametric

JEL Codes: C01, C12, C14

1 Introduction

Consider a potential outcomes framework (Rubin, 1974, 1978) where an observed outcome

𝑌 ∈ R and treatment 𝐷 ∈ {0, 1} are related to two latent potential outcomes 𝑌1 , 𝑌0 ∈ R via

𝑌 = 𝐷𝑌1 + (1 − 𝐷)𝑌0. To account for unobserved confounding factors a common strategy is to
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assume the researcher has access to a vector of covariates, 𝑍 = (𝑍′
1
, 𝑋′)′ ∈ 𝒵1×𝒳 ⊆ R𝑑𝑧−𝑑𝑥 ×R𝑑𝑥 ,

such that the potential outcomes are independent of the treatment decision after conditioning

on the observed covariates, (𝑌1 , 𝑌0) ⊥ 𝐷 |𝑍. In this setting, we are interested in estimation of

and inference on the conditional average treatment effect (CATE):

E[𝑌1 − 𝑌0 | 𝑋 = 𝑥]. (1.1)

Estimation of the CATE generally requires first fitting propensity score and/or outcome re-

gression models. When the number of control variables 𝑍 is large (𝑑𝑧 ≫ 𝑛), these first-stage

models must be estimated using regularized methods which converge slowly and typically rely

on the correctness of parametric specifications for consistency.1

Fortunately, if both models are correctly specified, one can obtain a consistent estimator and

valid inference procedure for the CATE by using the popular augmented inverse propensity

weighted (aIPW) signal (Semenova and Chernozhukov, 2021; Fan et al., 2022). This is because

the aIPW signal obeys an orthogonality condition at, crucially, the true nuisance model values

that limits the first-stage estimation error passed on to the second-stage estimator. Moreover,

estimators based on the aIPW signal are doubly-robust; consistency of the resulting second-

stage estimators requires correct specification of only one of the first-stage propensity score

or outcome regression models. However inference based on these estimators is not doubly-

robust. The orthogonality of the aIPW signal fails under misspecification and the resulting

testing procedures and confidence intervals are rendered invalid.

This paper proposes a doubly-robust estimator and inference procedure for the conditional

average treatment effect when the number of control variables, 𝑑𝑧 , is potentially much larger

than the sample size, 𝑛. The dimensionality of the conditioning variable, 𝑑𝑥 , remains fixed

in our analysis. Our approach is based on Tan (2020) wherein doubly-robust inference is

developed for the average treatment effect. We take a series approach to estimating the CATE,

using a quasi-projection of the aIPW signal onto a growing set of basis functions. By assuming

a logistic form for the propensity score model and a linear form for the outcome regression

model, we construct novel ℓ1-regularized first-stage estimating equations to recover a partial

orthogonality of the aIPW signal at the limiting values of the first-stage estimators. So long

as the limiting values of the first stage estimators have sparse representations this restricted

orthogonality is enough to achieve doubly-robust pointwise and uniform inference; pointwise

and uniform confidence intervals centered at the second-stage estimator are valid even if one

of the logistic or linear functional forms is misspecified.

To achieve this restricted orthogonality at all points in the support of the conditioning variable,

we employ distinct first-stage estimating equations for each basis term used in the second-stage

series approximation. This results in the number of first-stage estimators growing with the

number of basis terms. These estimators converge uniformly to limiting values under standard

conditions in high-dimensional analysis. Improving on prior work in doubly-robust infer-

ence, our ℓ1 regularized first-stage estimation incorporates a data-dependent penalty parameter

1Recent works by Bauer and Kohler (2019); Schmidt-Hieber (2020) provide some limited nonparametric results

in high-dimensional settings using deep neural networks.
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based on the work of Chetverikov and Sørensen (2021). This allows practical implementation of

our proposed estimation procedure with minimal knowledge of the underlying data generating

process.

The use of multiple pairs of nuisance parameter estimates leaves us with multiple limiting

values for the aIPW signals. So long as one of the nuisance models is correctly specified these

limiting values share a conditional mean function. However, the various limiting values may all

have different error terms describing their deviations from the conditional mean. This limits our

ability to straightforwardly apply existing nonparametric results for series estimators (Newey,

1997; Belloni et al., 2015). Under modified conditions, we analyze the asymptotic properties of

our second-stage series estimator to re-derive pointwise and uniform inference results. These

modified conditions are in general slightly stronger than those of Belloni et al. (2015), though

in certain special cases collapse exactly to the conditions of Belloni et al. (2015).

Prior Literature. Chernozhukov et al. (2018) analyze the general problem of estimating fi-

nite dimensional target parameters in the presence of potentially high-dimensional nuisance

functions. Using score functions that are Neyman-orthogonal with respect to nuisance param-

eters they show that it is possible to obtain target parameter estimates that are

√
𝑛-consistent

and asymptotically normal so long as the nuisance parameters are consistent at rate 𝑛−1/4
, a

condition satisfied by many machine learning-based estimators. Semenova and Chernozhukov

(2021) use series estimation results from Belloni et al. (2015) and consider series estimation of

functional target parameters after high-dimensional nuisance estimation. Fan et al. (2022) and

Zimmert and Lechner (2019) provide a similar analysis using a second-stage kernel estimator.

The inference results of these papers are dependent on the orthogonality of their second stage

estimators to first stage estimation error, making it difficult to directly extend these analyses

when the first stage estimators are not consistent and the orthogonality cannot be applied.

In the same setting as this paper, Tan (2020); Bradic et al. (2019) consider estimation of the

average treatment effect. After assuming a logistic form for the propensity score and a linear

form for the outcome regression, both papers propose ℓ1-regularized first-stage estimators that

allow for partial control of the derivative of the aIPW signal away from true nuisance values

and thus allow for doubly-robust inference. Bradic et al. (2019) differs from Tan (2020) in their

use of cross-fitting, which allows them to achieve a “sparsity double robust” estimate of the

ATE; so long as one nuisance model is sufficiently sparse the other may be more dense. Both

Smucler et al. (2019) and Chernozhukov et al. (2022) extend the analysis of Tan (2020) and

show doubly-robust inference for a larger class of finite dimensional target parameters. In the

main paper, we do not consider the cross fitting approach of Bradic et al. (2019). However,

in Appendix B cross-fitting is considered along with an extension of the method proposed

in this paper to develop doubly-robust inference procedures for conditional versions of the

parameters considered in Chernozhukov et al. (2022).

For function valued parameters of interest, Wu et al. (2021) provides doubly-robust inference

procedures for covariate-specific treatment effects with discrete conditioning variables; their

results depend on exact representation assumptions that are unlikely to hold with continuous
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covariates. Moreover, no uniform inference procedures are described. Dukes and Vanstee-

landt (2020) also propose an inference procedure for a class of parameters that includes mean

treatment effect under an assumption of constant in 𝑍 conditional average treatment effects;

their inference procedure is valid when the outcome regression model is misspecified. Kennedy

et al. (2017) and Colangelo and Lee (2023) consider the average counterfactual outcome, E[𝑌(𝑡)],
when the treatment 𝑡 ∈ supp(𝑇) is continuous. While, this does constitute an functional target

parameter when looking over the support of 𝑇, this type of parameter fundamentally differs

from the CATE. Intuitively, this is because the population being considered when estimating

E[𝑌(𝑡)]does not change when for different values of 𝑡 while the population under consideration

when estimatingE[𝑌(1)−𝑌(0) | 𝑋 = 𝑥]does when varying the conditioning 𝑥. Thus, though the

inference procedures of Kennedy et al. (2017) and Colangelo and Lee (2023) are doubly-robust,

their approach is not applicable for the CATE. However, the approach developed in this paper

may be useful in considering doubly-robust inference for parameters such as E[𝑌(𝑡) | 𝑋 = 𝑥]
even when the treatment 𝑡 ∈ supp(𝑇) is continuous as described in Appendix B.

These papers pioneered the approach that we will employ below, which is to directly use

the first order conditions of the first stage estimators to control second stage estimation error.

However, it is not a priori clear how to extend this approach to control the estimation error

passed onto an infinite dimensional target parameter like the CATE. As discussed above, our

analysis requires re-deriving pointwise and uniform inference results for nonparametric series

estimators under modified conditions.

Chetverikov and Sørensen (2021) propose a data-driven “bootstrap after cross-validation” ap-

proach to penalty parameter selection that is modified for and implemented in our setting. This

work is related to other work on the lasso (Tibshirani, 1996; Bickel et al., 2009; Belloni and Cher-

nozhukov, 2013; Chetverikov et al., 2021) and ℓ1-regularized M-estimation in high-dimensional

settings (van der Greer, 2016; Tan, 2017).

Paper Structure. This paper proceeds as follows. Section 2 defines the problem and in-

troduces our methods for estimation and inference. Section 3 provides intuition for how the

first-stage estimation procedure allows for doubly-robust estimation and inference on the CATE

as well as formally establishes the necessary first-stage convergence. Section 4 presents the main

results: valid pointwise and uniform inference for the second-stage series estimator if either

the first-stage logistic propensity score model or linear outcome regression model is correctly

specified. Section 5 ties up a technical detail. Section 6 applies our proposed estimator to ex-

amine the effect of maternal smoking on infant birth weight while Section 7 provides evidence

from simulation study. Section 8 concludes. Proofs of main results are deferred to Appendix A.

Notation. For any measure 𝐹 and any function 𝑓 , define the 𝐿2
norm, ∥ 𝑓 ∥𝐹,2 = (E𝐹[ 𝑓 2])1/2

and

the 𝐿∞ norm ∥ 𝑓 ∥𝐹,∞ = ess sup𝐹 | 𝑓 |. For any vector inR𝑝 let ∥·∥𝑝 for 𝑝 ∈ [1,∞]denote the ℓ𝑝 norm,

∥𝑎∥𝑝 = (∑𝑝

𝑙=1
𝑎
𝑝

𝑙
)1/𝑝 and ∥𝑎∥∞ = max1≤𝑙≤∞ |𝑎𝑙 |. If the subscript is unspecified, we are using the

ℓ2 norm. For two vectors 𝑎, 𝑏 ∈ R𝑝 , let 𝑎 ◦ 𝑏 = (𝑎𝑖𝑏𝑖)𝑝𝑖=1
denote the Hadamard (element-wise)

product. We adopt the convention that for 𝑎 ∈ R𝑝 and 𝑐 ∈ R, 𝑎+ 𝑐 = (𝑎𝑖 + 𝑐)𝑝𝑖=1
. For a matrix 𝐴 ∈

R𝑚×𝑛
let ∥𝐴∥ = max∥𝑣∥ℓ

2
≤1

∥𝐴𝑣∥ℓ2 denote the operator norm and ∥𝐴∥∞ = sup
1≤𝑟≤𝑚,1≤𝑠≤𝑛 |𝐴𝑟𝑠 |.
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For any real valued function 𝑓 letE𝑛[ 𝑓 (𝑋)] = 1

𝑛

∑𝑛
𝑖=1

𝑓 (𝑋𝑖) denote the empirical expectation and

/𝑈𝑠𝑒𝑟𝑠/𝑚𝑛𝑎𝑣𝑗𝑒𝑒𝑣𝑎𝑛/𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠/𝑈𝑛𝑖𝑜𝑛𝐵𝐷.𝑝𝑑𝑓G𝑛[ 𝑓 (𝑋)] = 1√
𝑛

∑𝑛
𝑖=1

( 𝑓 (𝑋𝑖) − E[𝑋𝑖]) denote

the empirical process. For two sequences of random variables {𝑎𝑛}N and {𝑏𝑛}N, we say 𝑎𝑛 ≲𝑃 𝑏𝑛

or 𝑎𝑛 = 𝑂𝑝(𝑏𝑛) if 𝑎𝑛/𝑏𝑛 is bounded in probability and say 𝑎𝑛 = 𝑜𝑝(𝑏𝑛) if 𝑎𝑛/𝑏𝑛 →𝑝 0.

2 Setup

In this section, we formally define the setting and identification strategy that we consider. We

then introduce our doubly-robust estimator and inference procedure. The parameter of interest

is the conditional average treatment effect: E[𝑌1 − 𝑌0 | 𝑋 = 𝑥]. However, for this paper we

largely focus on estimation and inference for the conditional average counterfactual outcome:

𝑔0(𝑥) B E[𝑌1 | 𝑋 = 𝑥]. (2.1)

Doubly-robust estimation and inference on E[𝑌0 | 𝑋 = 𝑥] follows a similar procedure and is

described in Section 5. The procedures can be combined for doubly-robust estimation and

inference for the CATE.

2.1 Setting

We assume the researcher observes i.i.d data and conditioning on 𝑍 is sufficient to control for

all confounding factors affecting both the treatment decision 𝐷 and the potential outcomes,

𝑌1 and 𝑌0. Our analysis allows the dimensionality of the controls, 𝑍 = (𝑍1 , 𝑋), to grow much

faster than the sample size (𝑑𝑧 ≫ 𝑛), while assuming the dimensionality of the conditioning

variables, 𝑋, remains fixed (𝑑𝑥 ≪ 𝑛).

Assumption 2.1 (Identification).

(i) {𝑌𝑖 , 𝐷𝑖 , 𝑍𝑖}𝑛𝑖=1
are independent and identically distributed.

(ii) (𝑌1 , 𝑌0) ⊥ 𝐷 | 𝑍.

(iii) There exists a value 𝜂 ∈ (0, 1) such that 0 < E[𝐷 | 𝑍 = 𝑧] < 1 almost surely in 𝑍.

Assumption 2.1(iii) is stronger than is needed for identification of 𝑔0(𝑥), which would require

only that 0 < E[𝐷 | 𝑍 = 𝑧] almost surely. However, E[𝐷 | 𝑍 = 𝑧] < 1 will also be required

for identification of E[𝑌(0) | 𝑋 = 𝑥] and being bounded strictly away from zero and one is

needed to avoid weak overlap issues in estimation. Thus to simplify exposition, both stronger

conditions are imposed here. While E[𝐷 | 𝑍 = 𝑧] being bounded away from zero and one may

be strong when 𝑍 is high dimensional, this assumption could be relaxed by allowing the value

𝜂 to tend slowly to zero. This asymptotic approach is not pursued in this paper, however.

To obtain doubly-robust estimation and inference we use the augmented inverse propensity

weighted (aIPW) signal,

𝑌(𝜋, 𝑚) = 𝐷𝑌

𝜋(𝑍) −
(
𝐷

𝜋(𝑍) − 1

)
𝑚(𝑍), (2.2)

which is a function of a fitted propensity score model, 𝜋(𝑍), and a fitted outcome regression
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model, 𝑚(𝑍), whose true values are given 𝜋★(𝑍) B E[𝐷 | 𝑍] and 𝑚★(𝑍) B E[𝑌 | 𝐷 = 1, 𝑍].
Under Assumption 2.1, the aIPW signal 𝑌(·, ·) provides doubly-robust identification of 𝑔0(𝑥).
That is, for integrable 𝜋 ≠ 𝜋★

and 𝑚 ≠ 𝑚★
,

E[𝑌1 | 𝑋 = 𝑥] = E[𝑌(𝜋★, 𝑚★) | 𝑋 = 𝑥]
= E[𝑌(𝜋 , 𝑚★) | 𝑋 = 𝑥]
= E[𝑌(𝜋★, 𝑚 ) | 𝑋 = 𝑥].

(2.3)

We use a series approach to estimate 𝑔0(𝑥), taking a quasi-projection of the aIPW signal onto a

growing set of 𝑘 weakly positive basis terms:

𝑝𝑘(𝑥) B
(
𝑝1(𝑥), . . . , 𝑝𝑘(𝑥)

)′ ∈ R𝑘+. (2.4)

The basis terms are required to be weakly positive as they are used as weights within the convex

first-stage estimators estimating equations.1Examples of weakly positive basis functions are B-

splines or shifted polynomial series terms. To ensure that the basis terms are well behaved,

we assume regularity conditions on 𝜉𝑘,∞ B sup𝑥∈𝒳 ∥𝑝𝑘(𝑥)∥∞, 𝜉𝑘,2 B sup𝑥∈𝒳 ∥𝑝𝑘(𝑥)∥2, and the

eigenvalues of the design matrix 𝑄 B E[𝑝𝑘(𝑋)𝑝𝑘(𝑋)′].

The double-robustness of the aIPW signal implies that, so long as either 𝜋 = 𝜋★
or 𝑚 = 𝑚★

, we

can write

𝑌(𝜋, 𝑚) = 𝑔0(𝑋) + 𝜖𝜋,𝑚 , E[𝜖𝜋,𝑚 |𝑋] = 0

= 𝑔𝑘(𝑋) + 𝑟𝑘(𝑋) + 𝜖𝜋,𝑚

where 𝑔0(𝑋) is the conditional counterfactual outcome (2.1), 𝑔𝑘(𝑥) B 𝑝𝑘(𝑥)′𝛽𝑘 is the 𝐿2(𝑋)
projection of 𝑔0(𝑥) onto the basis 𝑝𝑘(𝑥) and 𝑟𝑘(𝑥) B 𝑔0(𝑥) − 𝑔𝑘(𝑥) denotes the approximation

error. Notice that, while the error term 𝜖𝜋,𝑚 depends on the propensity score and outcome

regression models, the functions 𝑔0(𝑥), 𝑔𝑘(𝑥), and 𝑟𝑘(𝑥) do not depend on these values. For any

(𝜋, 𝑚) such that either 𝜋 = 𝜋★
or 𝑚 = 𝑚★

, the least squares parameter 𝛽𝑘 can be identified

𝛽𝑘 B 𝑄−1E[𝑝𝑘(𝑋)𝑌1]
= 𝑄−1E[𝑝𝑘(𝑋)𝑌(𝜋★, 𝑚★)]
= 𝑄−1E[𝑝𝑘(𝑋)𝑌(𝜋, 𝑚)]

(2.5)

Indeed, even if we have 𝑘 potentially different pairs of propensity score and outcome regression

values, (𝜋 𝑗 , 𝑚𝑗) for 𝑗 = 1, . . . , 𝑘, the least squares parameter could be identified by

𝛽𝑘 = 𝑄−1E


𝑝1(𝑋)𝑌(𝜋1 , 𝑚1)

...

𝑝𝑘(𝑋)𝑌(𝜋𝑘 , 𝑚𝑘)

 ,
so long as either 𝜋 𝑗 = 𝜋★

or 𝑚 𝑗 = 𝑚★
for each 𝑗 = 1, . . . , 𝑘. We will exploit this fact in our
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estimation procedure below.

2.2 Estimator and Inference Procedure

We assume an approximately logistic regression form for the propensity score model and linear

form for the outcome regression model:

𝜋(𝑍; 𝛾) ≈
(
1 + exp(−𝛾′𝑍)

)−1

𝑚(𝑍; 𝛼) ≈ 𝛼′𝑍,
(2.6)

where the quality of approximation depends on certain error terms introduced below that may

or may not tend to zero with the sample size. For each 𝑗 = 1, . . . , 𝑘, the parameters of (2.6),

𝛾, 𝛼 ∈ R𝑑𝑧 , are estimated, respectively, by

�̂�𝑗 B arg min

𝛾
E𝑛[𝑝 𝑗(𝑋){𝐷𝑒−𝛾′𝑍 + (1 − 𝐷)𝛾′𝑍}] + 𝜆𝛾, 𝑗 ∥𝛾∥1 , (2.7)

�̂� 𝑗 B arg min

𝛼
E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̂�

′
𝑗
𝑍(𝑌 − 𝛼′𝑍)2]/2 + 𝜆𝛼, 𝑗 ∥𝛼∥1. (2.8)

The penalty parameters 𝜆𝛾, 𝑗 and 𝛼𝛾, 𝑗 are chosen via a data dependent technique described

below. As will be described in Section 3, these particular first-stage estimating equations are

the key to obtaining doubly-robust inference.

Under standard assumptions the parameter estimators �̂�𝑗 , �̂� 𝑗 will converge uniformly over

𝑗 = 1, . . . , 𝑘 to population minimizers

�̄�𝑗 B arg min

𝛾
E[𝑝 𝑗(𝑋){𝐷𝑒−𝛾′𝑍 + (1 − 𝐷)𝛾′𝑍}], (2.9)

�̄� 𝑗 B arg min

𝛼
E[𝑝 𝑗(𝑍)𝐷𝑒−�̄�

′
𝑗
𝑍(𝑌 − 𝛼′𝑍)2]. (2.10)

which we assume are sufficiently sparse. Our first-stage estimators are then 𝜋 𝑗(𝑍) B 𝜋(𝑍; �̂�𝑗)
and 𝑚 𝑗(𝑍) B 𝑚(𝑍; �̂� 𝑗) with limiting values �̄� 𝑗(𝑍) B 𝜋(𝑍; �̄�𝑗) and �̄� 𝑗(𝑍) B 𝑚(𝑍; �̄� 𝑗), respec-

tively. Following Chernozhukov et al. (2022), we describe the difference betweeen the true

models and the limiting values of the estimated models using the approximation error terms

𝑟𝜋, 𝑗(𝑧) and 𝑟𝑚,𝑗(𝑧):

𝜋★(𝑧) = �̄� 𝑗(𝑧) + 𝑟𝜋, 𝑗(𝑧)
𝑚★(𝑧) = �̄� 𝑗(𝑧) + 𝑟𝑚,𝑗(𝑧).

If the logistic and linear models are correctly specified, these approximation terms will tend

to zero as the sample size increases. In general however, these terms may be non-negligible

asymptotically.2 . For each 𝑗 = 1, . . . , 𝑘 we will let 𝜖 𝑗 = 𝑌(�̄� 𝑗 , �̄� 𝑗) − 𝑔0(𝑋) and collect all 𝑘 such

1In case the researcher wants to use a second-stage basis that cannot be transformed to be weakly positive, we

have shown a slightly modified method of constructing our doubly-robust estimator and inference procedure that

does not require the first-stage weights to directly be the second-stage basis terms. This is available on request.

2This is a version of approximate sparsity identical to that considered by Chernozhukov et al. (2022). It is

somewhat stronger than the approximate condition considered in Belloni et al. (2012), in which the true function

(𝜋★
or 𝑚★

) must be well approximated by a sparse linear combination of basis functions, but this sparse linear
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error terms in the vector 𝜖𝑘 = (𝜖1 , . . . , 𝜖𝑘)′.

Applying the logic from Section 2.1, our second-stage estimator is defined �̂�(𝑥) B 𝑝𝑘(𝑥)′�̂�𝑘

where �̂�𝑘 is an estimate of the population projection parameter, 𝛽𝑘 , obtained by combining all

𝑘 pairs of first-stage estimators:

�̂�𝑘 B 𝑄−1E𝑛


𝑝1(𝑋)𝑌(𝜋1 , 𝑚1)

...

𝑝𝑘(𝑋)𝑌(𝜋𝑘 , 𝑚𝑘)

 , (2.11)

and 𝑄 B E𝑛[𝑝𝑘(𝑋)𝑝𝑘(𝑋)′]. We estimate the variance of �̂�(𝑥) using �̂�(𝑥) B ∥Ω̂1/2𝑝𝑘(𝑥)∥/
√
𝑛

where

Ω̂ B 𝑄−1E𝑛[{𝑝𝑘(𝑋) ◦ �̂�𝑘}{𝑝𝑘(𝑋) ◦ �̂�𝑘}′]𝑄−1 , (2.12)

and ◦ represents the Hadamard element-wise product. The vector �̂�𝑘 collects the various

estimated error terms; �̂�𝑘 B (�̂�1 , . . . , �̂�𝑘) for �̂� 𝑗 B 𝑌(𝜋 𝑗 , 𝑚 𝑗)− �̂�(𝑥), 𝑗 = 1, ..., 𝑘. Inference is based

on the 100(1 − 𝜂)% confidence bands[
𝑖(𝑥), 𝑖(𝑥)

]
B

[
�̂�(𝑥) − 𝑐★

(
1 − 𝜂/2

)
�̂�(𝑥), �̂�(𝑥) + 𝑐★

(
1 − 𝜂/2

)
�̂�(𝑥)

]
. (2.13)

For pointwise inference, the critical value 𝑐★(1 − 𝜂/2) is taken as the (1 − 𝜂/2) quantile of a

standard normal distribution. For uniform inference 𝑐★(1 − 𝜂/2) is taken

𝑐★𝑢 (1 − 𝜂/2) B (1 − 𝜂/2)-quantile of sup

𝑥∈𝒳

�����𝑝𝑘(𝑥)Ω̂1/2

�̂�(𝑥)
𝑁𝑏
𝑘

�����
where𝑁𝑏

𝑘
is a bootstrap draw from𝑁(0, 𝐼𝑘). Sections 3 and 4 show that, under standard sparsity

and moment conditions, these pointwise and uniform inference procedures remain valid even

under misspecification of either first-stage model.

Remark 2.1. The first-stage estimation procedure described above is specifically designed to

work with a second stage series estimator. If the analyst was interested in the conditional

counterfactual outcome at a specific point 𝑥0, 𝑔(𝑥0), we conjecture that a similar procedure

could also yield doubly-robust inference with a second stage kernel estimator. This could be

done as above by taking 𝑘 = 1 and substituting 𝑝1(𝑥) for a kernel weighting function 𝐾( 𝑥−𝑥0

ℎ
).

However, this approach may not work well if the researcher is interested in the entire function

𝑔0(𝑥) as a separate first-stage estimation procedure would need to be conducted for each point

in the support of 𝑋. It is unclear to us how doubly-robust inference could be developed for the

entire function 𝑔0(𝑥) when using a second stage kernel estimator.

2.3 Penalty Parameter Selection

To select the penalty parameters 𝜆𝛾, 𝑗 and 𝜆𝛼, 𝑗 in (2.7)-(2.8) we propose a data driven two-step

procedure based on the work of Chetverikov and Sørensen (2021). For each 𝑗 = 0, 1 . . . , 𝑘, we

combination need not exactly solve a population minimization problem as in (2.9)-(2.10).
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start with pilot penalty parameters given by

𝜆pilot

𝛾, 𝑗 = 𝑐𝛾, 𝑗 ×

√
ln

3(𝑑𝑧)
𝑛

and 𝜆pilot

𝛼, 𝑗 = 𝑐𝛼, 𝑗 ×

√
ln

3(𝑑𝑧)
𝑛

(2.14)

for some constants 𝑐𝛾, 𝑗 , 𝑐𝛼, 𝑗 selected from the interval [𝑐𝑛 , 𝑐𝑛] with 𝑐𝑛 > 0. In practice, the

researcher has a fair bit of flexibility in choosing these constants. The optimal choice of these

constants may depend on the underlying data generating process. We recommend using cross

validation to pick these constants from a fixed-cardinality set of possible values. In line with

Assumption 3.1(vi), the values in the set should be chosen to be on the order of the maximum

value of ∥𝑝𝑘(𝑋𝑖)∥∞ observed in the data.

Using 𝜆pilot

𝛾, 𝑗 and 𝜆pilot

𝛼, 𝑗 in lieu of 𝜆𝛾, 𝑗 and 𝜆𝛼, 𝑗 in (2.7)-(2.8) we generate pilot estimators �̂�pilot

𝑗
and

�̂�pilot

𝑗
. These pilot estimators are used to generate plug in estimators𝑈𝛾, 𝑗 and𝑈𝛼, 𝑗 of the residuals

𝑈𝛾, 𝑗 B −𝑝 𝑗(𝑋){𝐷(1 + 𝑒−�̂�
pilot

′
𝑗

𝑍) − 1}

𝑈𝛼, 𝑗 B −𝑝 𝑗(𝑋)𝐷𝑒−�̂�
pilot

′
𝑗

𝑍(𝑌 − �̂�pilot
′

𝑗
𝑍).

(2.15)

whose true values are given

𝑈𝛾, 𝑗 B −𝑝 𝑗(𝑋){𝐷(1 + 𝑒−�̄�
′
𝑗
𝑍) − 1}

𝑈𝛼, 𝑗 B −𝑝 𝑗(𝑋)𝐷𝑒−�̄�′𝑍(𝑌 − �̄�′𝑍)
(2.16)

These true residuals are the derivatives of the minimization problems in (2.9)-(2.10) evaluated

at minimizing values �̄�𝑗 and �̄� 𝑗 . After generating the residual estimates, we use a multiplier

bootstrap procedure to select final penalty parameters 𝜆𝛾, 𝑗 and 𝜆𝛼, 𝑗 .

𝜆𝛾, 𝑗 = 𝑐0 × (1 − 𝜖)-quantile of max

1≤𝑙≤𝑑𝑧
|E𝑛[𝑒𝑖𝑈𝛾, 𝑗𝑍𝑙]| given {𝑌𝑖 , 𝐷𝑖 , 𝑍𝑖}𝑛𝑖=1

,

𝜆𝛼, 𝑗 = 𝑐0 × (1 − 𝜖)-quantile of max

1≤𝑙≤𝑑𝑧
|E𝑛[𝑒𝑖𝑈𝛼, 𝑗𝑍𝑙]| given {𝑌𝑖 , 𝐷𝑖 , 𝑍𝑖}𝑛𝑖=1

(2.17)

where 𝑒1 , . . . , 𝑒𝑛 are independent standard normal random variables generated independently

of the data {𝑌𝑖 , 𝐷𝑖 , 𝑋𝑖}𝑛𝑖=1
and 𝑐0 > 1 is a fixed constant.3 In line with other work we find 𝑐0 = 1.1

works well in simulations. So long as our residual estimates converge in empirical mean square

to limiting values and 𝑘𝜖 → 0, the choice of penalty parameters in (2.17) will ensure that the

penalty parameters dominate the noise with probability approaching one uniformly over the

𝑘 first stage estimation procedures. This allows for consistent variable selection and coefficient

estimation.

3The constant 𝑐
0

can be different for the propensity score and outcome regression models and can also vary for

each 𝑗 = 1, . . . , 𝑘. All that matters is that each constant satisfies the requirements of Lemma 3.1. This complicates

notation, however.
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3 Theory Overview

We begin with a main technical lemma which provides a bound on rate at which first-stage

estimation error is passed on to the second-stage CATE and variance estimators. This bound

is comparable to others seen in the inference after model-selection literature (Belloni et al.,

2013; Tan, 2020) and is achieved under standard conditions in the ℓ1-regularized estimation

literature (Bickel et al., 2009; Bühlmann and van de Geer, 2011; Belloni and Chernozhukov,

2013; Chetverikov and Sørensen, 2021). However, this bound is achieved at the limiting values

of the propensity score and outcome regression models which may differ from the true values

𝜋★
and 𝑚★

under misspecification.

The potential misspecification of the first-stage models means we cannot directly apply orthog-

onality of the aIPW signal, discussed below, to show that the effect of first-stage estimation error

on the second-stage is negligible. Instead, we use the first order conditions for �̂�𝑗 and �̂� 𝑗 to

directly control this quantity. After presenting the lemma Section 3.2 provides some intuition

for how this is done. Controlling the rate at which first-stage estimation error is passed on

to the second-stage estimator even at points away from the true values 𝜋★
and 𝑚★

is key for

obtaining doubly-robust inference for the CATE.

3.1 Uniform First-Stage Convergence

To show uniform convergence of the first-stage estimators and thus uniform control of the bias

passed on from the first-stage estimation to the second-stage estimator we rely on Assump-

tion 3.1, below. The conditions in Assumption 3.1(v,vi) depend on the sup-norm of the basis

functions, 𝜉𝑘,∞ = sup𝑥∈𝒳 ∥𝑝𝑘(𝑥)∥∞.

Assumption 3.1 (First-Stage Convergence).

(i) The regressors 𝑍 are bounded, max1≤𝑙≤𝑑𝑧 |𝑍𝑙 | ≤ 𝐶0 almost surely.

(ii) The errors 𝑌1 − �̄� 𝑗(𝑍) are uniformly subgaussian conditional on 𝑍 in the following sense. There
exists fixed positive constants 𝐺0 and 𝐺1 such that for any 𝑗:

𝐺0E
[
exp

(
{𝑌1 − �̄� 𝑗(𝑍)}2/𝐺2

0

)
− 1 | 𝑍

]
≤ 𝐺2

1

almost surely.

(iii) There is a constant 𝐵0 such that �̄�′
𝑗
𝑍 ≥ 𝐵0 almost surely for all 𝑗.

(iv) There exists fixed constants 𝜉0 > 1 and 1 > 𝜈0 > 0 such that for each 𝑗 = 1, . . . , 𝑘 the following
empirical compatibility condition holds for the empirical hessian matrix Σ̃𝛾, 𝑗 B E𝑛[𝐷𝑒−�̄�

′
𝑗
𝑍
𝑍𝑍′].

For any 𝑏 ∈ R𝑑𝑧 and 𝒮𝑗 = {𝑙 : |�̄�𝑗 ,𝑙 | ∨ |�̄� 𝑗 ,𝑙 | ≠ 0}:∑
𝑙∉𝒮𝑗

|𝑏𝑙 | ≤ 𝜉0

∑
𝑙∈𝒮𝑗

|𝑏𝑙 | =⇒ 𝜈2

0

( ∑
𝑙∈𝒮𝑗

|𝑏𝑙 |
)

2

≤ |𝒮𝑗 |
(
𝑏′Σ̃𝛾, 𝑗𝑏

)
.

(v) There exists fixed constants 𝑐𝑢 and 𝐶𝑈 > 0 such that for all 𝑗 = 1, . . . , 𝑘, E[𝑈4

𝛾, 𝑗] ≤ (𝜉𝑘,∞𝐶𝑈 )4
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and min1≤𝑙≤𝑑𝑧 E[𝑈2

𝛾, 𝑗𝑍
2

𝑙
] ≥ 𝑐𝑢 .

(vi) The constant 𝑐𝑛 is chosen such that 𝜉𝑘.∞ ≲ 𝑐𝑛 and the following sparsity bounds hold for
𝑠𝑘 = max1≤ 𝑗≤𝑘 |𝒮𝑗 |

𝜉𝑘,∞𝑠2

𝑘
𝑐2

𝑛 ln
5(𝑑𝑧𝑛)

𝑛
→ 0, and

𝜉4

𝑘,∞ ln
7(𝑑𝑧𝑘𝑛)
𝑛

→ 0.

Assumptions 3.1(i)-(iv) are nearly identical to Assumption 1 in Tan (2020) and are standard in

the literature with the additional requirement that the conditions hold uniformly over the 𝑘

estimation procedures 𝑗 = 1, . . . , 𝑘. Assumption 3.1(v,vi) are analagous to assumptions made in

Chetverikov and Sørensen (2021) and are needed for the validity of the data dependent choice

of penalty parameter.

The first part of Assumption 3.1 assumes that the regressors are bounded while the second

assumes that tail behavior of the outcome regression errors are uniformly thin. Both of these

can be relaxed somewhat with sufficient moment conditions on the tail behavior of the controls

and errors. We should note that compactness of 𝒳 is generally required by nonparametric

estimators. The third part of the assumption bounds all limiting propensity scores �̄� 𝑗(𝑍) away

from zero uniformly.

Assumption 3.1(iv) is an empirical compatibility condition on the weighted first-stage design

matrix. We note quickly that this empirical compatability condition is imposed on the empirical

hessian matrix and as such may be interpreted as holding almost surely. Imposing this condition

almost surely on the empirical hessian as opposed to on the population hessian is mainly to

save time in the proofs. It can be shown that analog assumption on the population hessian

matrix implies the compatability condition holds on the empirical Hessian with probability

approaching one (see Lemma 5 in Appendix V of Tan (2017)), which suffices for our proofs.

The compatability condition is slightly weaker than the restricted eigenvalue conditions often

assumed in the literature (Bickel et al., 2009; Belloni et al., 2012), which would require that the

condition hold for all sets 𝒮 ⊆ {1, . . . , 𝑑𝑧} with |𝒮| = |𝒮𝑗 |.

The penultimate condition is an identifiability constraint that limits the moments of the noise

and bounds it away from zero uniformly over all estimation procedures. Many of the constants

in Assumption 3.1 are assumed to be fixed across all 𝑗. This is mainly to simplify the exposition

of the results below and in practice all constants can be allowed to grow slowly with 𝑘. However,

the growth rate of these terms affects the required first-stage sparsity.

The last condition is required for the validity of the bootstrap penalty parameter selection

procedure and is comparable to the requirements needed for the bootstrap after cross validation

technique described by Chetverikov and Sørensen (2021). The main difference is the additional

assumption on the growth rate of the basis functions, 𝜉𝑘,∞ which is to ensure uniform stability of

the estimation procedures (2.7)-(2.8) as well as some assumptions on the order of the constants

𝑐𝛾, 𝑗 and 𝑐𝛼, 𝑗 in (2.14).

Assumptions 3.1(v,vi) depend on the sup-norm of the basis functions, 𝜉𝑘,∞. This growth rate
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of this quantity will depend on the form of basis used for the second stage nonparametric

estimator. In both our simulation study as well as our empirical exercise we use B-splines

for which 𝜉𝑘,∞ ≲
√
𝑘. Other common bases used in nonparametric estimation are polynomial

series for which 𝜉𝑘 ≲ 𝑘, or wavelets for which 𝜉𝑘,∞ ≲
√
𝑘. Belloni et al. (2015) provide a

discussion for other choices of basis terms.

Lemma 3.1 (First-Stage Convergence). Suppose that Assumption 3.1 holds. In addition assume that
𝑐0 > (𝜉0 + 1)/(𝜉0 − 1), 𝑘/𝑛 → 0, 𝑘𝜖 → 0, and there is a fixed constant 𝑐 > 0 such that for all 𝑗,
𝜆𝛼, 𝑗/𝜆𝛾, 𝑗 ≥ 𝑐. Then the following weighted means converge uniformly in absolute value at least at rate:

max

1≤ 𝑗≤𝑘

��E𝑛[𝑝 𝑗(𝑋)𝑌(𝜋 𝑗 , 𝑚 𝑗)] − E𝑛[𝑝 𝑗(𝑋)𝑌(�̄� 𝑗 , �̄� 𝑗)]
�� ≲𝑃 𝑠𝑘 𝜉2

𝑘,∞ ln(𝑑𝑧)
𝑛

, (3.1)

and in empirical mean square at least at rate:

max

1≤ 𝑗≤𝑘
E𝑛[𝑝2

𝑗 (𝑋)(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))2] ≲𝑃
𝑠2

𝑘
𝜉4

𝑘,∞ ln(𝑑𝑧)
𝑛

. (3.2)

Lemma 3.1 provides a tight bound on the first-stage estimation error passed on to the second-

stage estimator even when the first-stage estimators converge to values that are not the true

propensity score or outcome regression.1 So long as this can be controlled, the estimation

procedure described in Section 2 will be valid for the psuedo-true parameter �̄�(𝑥) = 𝑝𝑘(𝑥)′�̄�𝑘

where �̄�𝑘 = E[(𝑝1(𝑋)𝑌(�̄�1 , �̄�1), . . . , 𝑝𝑘(𝑋)𝑌(�̄�𝑘 , �̄�𝑘))′]. Due to the double-robustness of the

aIPW signal, in order for the inference to target the true parameter of interest 𝑔0(𝑥), it is only

necessary for one of the models to be correctly specified as formally described below.

Lemma 3.2 (Doubly-Roubst Identification). Suppose that either the propensity score or outcome
regression model is correctly specified in the sense that

√
𝑛𝑘max1≤ 𝑗≤𝑘 E[𝑝 𝑗(𝑋)𝑟𝜋, 𝑗(𝑍)𝑟𝑚,𝑗(𝑍)] → 0.

Then, √
𝑛𝑘 |E[𝑝 𝑗(𝑋)𝑌(�̄� 𝑗 , �̄� 𝑗) − E[𝑝 𝑗(𝑋)𝑌(𝜋★, 𝑚★)]| → 0.

Importantly, the definition of correct specification in Lemma 3.2 can be satisfied even if only one

of 𝑟𝜋, 𝑗(·) or 𝑟𝑚,𝑗(·) tends to zero (in an appropriate sense). The diverging sequence 𝜎𝑛 allows for

a slower rate of decay of the approximation error and reflects the fact that the nonparametric

estimator �̂�(𝑥) converges slower than the

√
𝑛 parametric rate.

3.2 Managing First-Stage Bias

We now provide some intuition for how Lemma 3.1 is obtained and the role our particular

estimating equations play in establishing this fact. We focus on control of the vector B𝑘
,

defined in (3.3), which measures the bias passed on from first-stage estimation to the second-

stage estimate �̂�𝑘 . Limiting the size of B𝑘
is crucial in showing convergence of �̂�𝑘 to the true

1In particular under the sparsity bound 𝑠2
𝑘
𝜉4

𝑘,∞𝑘
1/2

ln(𝑑𝑧)/
√
𝑛 → 0, any linear combination of the means in both

(3.1) and (3.2) is 𝑜𝑝(
√
𝑛).
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parameter 𝛽𝑘 and thus consistency of the nonparametric estimator �̂�(𝑥).

B𝑘 B E𝑛


𝑝1(𝑋)

{
𝑌(𝜋1 , 𝑚1) − 𝑌(�̄�1 , �̄�1)

}
...

𝑝𝑘(𝑋)
{
𝑌(𝜋𝑘 , 𝑚𝑘) − 𝑌(�̄�𝑘 , �̄�𝑘)

}
 . (3.3)

For exposition, we consider a single term of (3.3), B𝑘
𝑗
, which roughly measures the first-stage

estimation bias taken on from adding the 𝑗th basis term to our series approximation of 𝑔0(𝑥).
The discussion that follows is a bit informal, instead of considering the derivatives with respect

to the true parameters below our proof strategy will directly use the Kuhn-Tucker conditions

of the optimization routines in (2.7)-(2.8). However, the general intuition is the same as is used

in the proofs.

In addition to the doubly-robust identification property (2.3), the aIPW signal is typically useful

in the high-dimensional setting because it obeys an orthogonality condition at the true values

(𝜋★, 𝑚★):2
E[∇𝜋,𝑚𝑌(𝜋★, 𝑚★) | 𝑍] = 0. (3.4)

When both the propensity score model and outcome regression model are correctly specified we

can (loosely speaking) examine the bias B𝑘
𝑗

by replacing �̄� 𝑗 = 𝜋★
and �̄� 𝑗 = 𝑚∗

and considering

the following first order expansion:

B𝑘
𝑗 = E𝑛[𝑝 𝑗(𝑋)𝑌(𝜋 𝑗 , 𝑚 𝑗)] − E𝑛[𝑝 𝑗(𝑋)𝑌(𝜋★, 𝑚★)]

= E𝑛[𝑝 𝑗(𝑋)∇𝜋,𝑚 𝑌(𝜋★, 𝑚★)]︸                           ︷︷                           ︸
𝑂𝑝(𝑛−1/2) by (3.4)

[
𝜋 𝑗 − 𝜋★

𝑚 𝑗 − 𝑚★

]
+ 𝑜𝑝(𝑛−1/2). (3.5)

By orthogonality of the aIPW signal the gradient term is mean zero, which guarantees that the

first term (the “bias” term) on the right hand side of (3.5) is asymptotically negligible so long

as the first stage estimators 𝜋 and 𝑚 are consistent for 𝜋★
and 𝑚★

in appropriate norms. 3 This

allows the researcher to ignore first-stage nuisance parameter estimation error and treat 𝜋★
and

𝑚★
as known when analyzing the asymptotic properties of the second-stage series estimator.

Importantly, the aIPW orthogonality (3.4) at the true parameters (𝜋★, 𝑚★) holds conditionally

on 𝑍 = (𝑍1 , 𝑋) and regardless of the estimation procedure used to estimate the first-stage

models. Thus, if the researcher is confident in the consistency of their first stage propensity

score and outcome regression models, they could obtain asymptotically valid inference while

only needing to conduct a single first-stage estimating procedure, e.g setting𝜋 𝑗 = 𝜋 and𝑚 𝑗 = 𝑚

for each 𝑗 = 1, . . . , 𝑘. This is the approach followed by Semenova and Chernozhukov (2021).

If one of these models is misspecified so that only one of �̄� 𝑗 = 𝜋★
or �̄� 𝑗 = 𝑚★

we still have that

E[𝑝 𝑗(𝑋)𝑌1] ≈ E𝑛[𝑝 𝑗(𝑋)𝑌(�̄� 𝑗 , �̄� 𝑗)] by double-robustness of the aIPW signal (2.3). However, the

2Robustness and orthogonality are indeed closely related, see Theorem 6.2 in Newey and McFadden (1994) for

a discussion.

3For the second term on the RHS of (3.5) to be 𝑜𝑝(𝑛−1/2), we require the stronger conditions that ∥�̂�𝑗 − 𝜋★∥ =

𝑜𝑝(𝑛−1/4) and ∥�̂�𝑗 − 𝑚★∥ = 𝑜𝑝(𝑛−1/4) in appropriate norms as in Chernozhukov et al. (2018).
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aIPW orthogonality tells us nothing about the expectation of the gradient away from the true

parameters, 𝜋★, 𝑚★
; if either �̄� 𝑗 ≠ 𝜋★

or �̄� 𝑗 ≠ 𝑚★
there is no reason to believe that the gradient

on the right hand side of (3.5) is mean zero when evaluated instead at 𝑌(�̄� 𝑗 , �̄� 𝑗). In general,

the bias B𝑘
𝑗

will then diminish at the rate of convergence of our nuisance parameters. Because

we have high dimensional controls, this convergence rate can be much slower than the rates of

converegence for series estimators derived in Newey (1997) and Belloni et al. (2015).

To get around this, we design the first-stage objective functions (2.7)-(2.8) such that the resulting

first-order conditions control the bias passed on to the second-stage. Consider the following

expansion instead around the limiting parameters �̄�𝑗 and �̄�𝑘 .

B𝑘
𝑗 = E𝑛[𝑝 𝑗(𝑋)𝑌(𝜋 𝑗 , 𝑚 𝑗)] − E𝑛[𝑝 𝑗(𝑋)𝑌(�̄� 𝑗 , �̄� 𝑗)]

= E𝑛[𝑝 𝑗(𝑋)∇𝛾𝑗 ,𝛼 𝑗 𝑌(�̄� 𝑗 , �̄� 𝑗)]
[
�̂�𝑗 − �̄�𝑗
�̂� 𝑗 − �̄� 𝑗

]
+ 𝑜𝑝(𝑛−1/2)

(3.6)

After substituting the forms of �̄� 𝑗(𝑧) = 𝜋(𝑧; �̄�𝑗) and �̄� 𝑗(𝑧) = 𝑚(𝑧; �̄� 𝑗) described in (2.6) and

differentiating with respect to 𝛾𝑗 and 𝛼 𝑗 we obtain

E[𝑝 𝑗(𝑋)∇𝛾𝑗 ,𝛼 𝑗 𝑌(�̄� 𝑗 , �̄� 𝑗)] = E

−𝑝 𝑗(𝑋)𝐷𝑒−�̄�

′
𝑗
𝑍(𝑌 − �̄�′

𝑗
𝑍)𝑍

−𝑝 𝑗(𝑥){𝐷(1 + 𝑒−�̄�
′
𝑗
𝑍)𝑍 − 𝑍}

 (3.7)

However, by definition �̄�𝑗 and �̄� 𝑗 solve the minimization problems defined in (2.9)-(2.10), the

population analogs of our finite sample estimating equations. The first order conditions of

these minimization problems yield

E

First order condition of �̄�𝑗︷                                 ︸︸                                 ︷
−𝑝 𝑗(𝑋){𝐷(1 + 𝑒 �̄�′𝑍)𝑍 − 𝑍}

−𝑝 𝑗(𝑋)𝐷𝑒−�̄�′𝑍(𝐷𝑌 − �̄�′𝑍)𝑍

︸                                 ︷︷                                 ︸
First order condition of �̄� 𝑗

= 0 =⇒ E[𝑝 𝑗(𝑋)∇𝛾𝑗 ,𝛼 𝑗𝑌(�̄� 𝑗 , �̄� 𝑗)] = 0 (3.8)

Examining the first order conditions in (3.8), we see that they exactly give us control over the

gradient (3.7). This property is the key to obtaining doubly-robust inference for the CATE.

Under suitable convergence of the first-stage parameter estimates, this guarantees the bias

examined in expansion (3.6) is negligible even under misspecification of the propensity score

or outcome regression models.

Control of this gradient under misspecification is not provided using other estimating equa-

tions, such as maximum likelihood for the logistic propensity score model or ordinary least

squares for the linear outcome regression model. Moreover, control over the gradient of B𝑘
𝑗
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from (3.3) is not provided by the first-order conditions for �̄�𝑙 and �̄�𝑙 for 𝑙 ≠ 𝑗:

E[𝑝 𝑗(𝑋)∇𝛾𝑗 ,𝛼 𝑗𝑌(�̄� 𝑗 , �̄� 𝑗)] = E

−𝑝 𝑗(𝑋)𝐷𝑒−�̄�′𝑍(𝑌 − �̄�′𝑍)𝑍

−𝑝 𝑗(𝑋){𝐷(1 + 𝑒 �̄�′𝑍)𝑍 − 𝑍}


≠ E

First order condition of �̄�𝑙︷                                ︸︸                                ︷
−𝑝𝑙(𝑋){𝐷(1 + 𝑒 �̄�′𝑍)𝑍 − 𝑍}

−𝑝𝑙(𝑋)𝐷𝑒−�̄�′𝑍(𝑌 − �̄�′𝑍)𝑍

︸                                ︷︷                                ︸
First order condition of �̄�𝑙

.

(3.9)

Showing that the inference procedure of Section 2 remains valid at all points 𝑥 ∈ 𝒳 under

misspecification requires showing negligible first-stage estimation bias for any linear transfor-

mation of the vector (3.3). As outlined above, this requires using 𝑘 separate pairs of nuisance

parameter estimator to obtain 𝑘 separate pairs of first order conditions, one for each term of

the vector.

4 Main Results

In this section, we present the main consistency and distributional results for our second-stage

estimator �̂�(𝑥) described in Section 2. A full set of second-stage results, including pointwise

and uniform linearization lemmas and uniform convergence rates, can be found in the Online

Appendix. The first set of results is established under the following condition, which limits the

bias passed from first-stage estimation onto the second-stage estimator.

Condition 1 (No Effect of First-Stage Bias). Suppose that

max

1≤ 𝑗≤𝑘

��E𝑛[𝑝 𝑗(𝑋)𝑌(𝜋 𝑗 , 𝑚 𝑗)] − E𝑛[𝑝 𝑗(𝑋)𝑌(�̄� 𝑗 , �̄� 𝑗)]
�� = 𝑜𝑝(𝑛−1/2𝑘−1/2) (4.1)

and that either the logistic propensity score model or linear outcome regression models is

correctly specified in the sense of Lemma 3.2.

Since, for any vector 𝑥 ∈ R𝑘 , ∥𝑥∥2 ≤
√
𝑘∥𝑥∥∞, Condition 1 is sufficient for the ℓ2-norm of the

bias vector B𝑘
described in (3.3) to be

√
𝑛-negligible (𝑜𝑝(𝑛−1/2)), which is what is needed for

the results of this section to hold. The condition is presented in this stronger form, however,

in order to more easily facilitate application of the results in Section 3. Via Lemma 3.1 we can

see that by using the first-stage estimating equations (2.7)-(2.8), the condition in (4.1) can be

satisfied under Assumption 3.1 and the sparsity bound

𝑠𝑘 𝜉2

𝑘,∞𝑘
1/2

ln(𝑑𝑧)
√
𝑛

→ 0. (4.2)

If the researcher were to assume different parametric forms for the first-stage model, different

first estimating equations would have to be used to obtain doubly-robust estimation and in-

ference. However, so long as the Condition 1 can be established at the limiting values of the
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first-stage models, the results of this section hold.

Having dealt with the first-stage estimation error, the main complication remaining is that

under misspecification the aIPW signals 𝑌(�̂� 𝑗 , �̂� 𝑗) for 𝑗 = 1, . . . , 𝑘 do not all converge to the

same limiting values. However, so long as at least one of the first-stage models is correctly

specified, all of the limiting aIPW signals have the same conditional mean, 𝑔0(𝑥). In the standard

setting, consistency of nonparametric estimator relies on certain conditions on the error terms.

In our setting, we require that these assumptions hold uniformly over 𝑘 the error terms. We

note, though, that there is a non-trivial dependence structure between that limiting aIPW

signals. This strong dependence gives plausibility to our uniform conditions. For example, if

the logistic propensity score model is correctly specified and the difference between the limiting

outcome regression models is bounded, | max1≤ 𝑗≤𝑘 �̄� 𝑗(𝑍) −min1≤ 𝑗≤𝑘 �̄� 𝑗(𝑍)| ≤ 𝐶 almost surely,

our conditions reduce exactly to the conditions of Belloni et al. (2015).

4.1 Pointwise Inference

Pointwise inference relies on the following assumption in tandem with Condition 1.

Assumption 4.1 (Second-Stage Pointwise Assumption). Let �̄�𝑘 B max1≤ 𝑗≤𝑘 |𝜖 𝑗 |. Assume that

(i) Uniformly over all 𝑛, the eigenvalues of 𝑄 = E[𝑝𝑘(𝑋)𝑝𝑘(𝑋)′] are bounded from above and away
from zero.

(ii) The conditional variance of the error terms is uniformly bounded in the following sense. There
exists constants 𝜎2 and �̄�2 such that for any 𝑗 = 1, 2 . . .we have that 𝜎2 ≤ Var(𝜖 𝑗 | 𝑋) ≤ �̄�2 < ∞;

(iii) For each 𝑛 and 𝑘 there are finite constants 𝑐𝑘 and ℓ𝑘 such that for each 𝑓 ∈ 𝒢

∥𝑟𝑘 ∥𝐿,2 = (E[𝑟𝑘(𝑋)2])1/2 ≤ 𝑐𝑘 and ∥𝑟𝑘 ∥𝐿,∞ = sup

𝑥∈𝒳
|𝑟𝑘(𝑥)| ≤ ℓ𝑘𝑐𝑘 .

(iv) sup𝑥∈𝒳 E[�̄�2

𝑘
1{�̄�𝑘+ℓ𝑘𝑐𝑘 > 𝛿

√
𝑛/𝜉𝑘} | 𝑋 = 𝑥] → 0 as 𝑛 → ∞ and sup𝑥∈𝒳 E[ℓ 2

𝑘
𝑐2

𝑘
1{�̄�𝑘+ℓ𝑘𝑐𝑘 >

𝛿
√
𝑛/𝜉𝑘} | 𝑋 = 𝑥] → 0 as 𝑛 → ∞ for any 𝛿 > 0.

As mentioned, these are exactly the conditions required by Belloni et al. (2015), with the

modification that the bounds on conditional variance and other moment conditions on the

error term hold uniformly over 𝑗 = 1, . . . , 𝑘. As in Belloni et al. (2012), these assumptions are

presented at a high level to abstract away from the details of functional approximation, but are

worth discussing here.

Assumption 4.1(i) assumes regularity on the basis terms being used, namely that they do

not become linearly-dependent or near linearly dependent as 𝑘 grows. Typically, satisfying

this condition requires rescaling the basis terms, which is the reason that 𝜉𝑘,∞ and 𝜉𝑘,2 grow

at the rate

√
𝑘 when using B-splines. Assumption 4.1(ii) is a technical condition that says

that the conditional variance of 𝑌(�̄� 𝑗 , �̄� 𝑗) must be bounded both from above and from below.

Assumption 4.1(iii,iv) present high level conditions on the rate of decay of the approximation

error; which is formally the error from least squares projection of 𝑔0(𝑋) onto the linear span

of 𝑝𝑘(𝑥). These conditions are related to the underlying smoothness of the function of interest
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𝑔0(𝑥). For example, if the true regression function is in a Hölder class of smoothness order 𝑠

then for b-Splines of degree 𝑠0, 𝑐𝑘 ≲ 𝑘−𝑠∧𝑠0/𝑑 (Belloni et al., 2015).

These assumptions can be shown to be satisfied by a number of commonly used functional

bases, such as polynomial bases or splines, under adequate normalizations and smoothness

of the underlying regression function. Readers should refer to Newey (1997), Chen (2007), or

Belloni et al. (2015) for a more in depth discussion of these assumptions.1

Under these assumptions, the variance of our second-stage estimator is governed by one of the

following variance matrices:

Ω̃ B 𝑄−1E[{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}′]𝑄−1

Ω0 B 𝑄−1E[{𝑝𝑘(𝑥) ◦ 𝜖𝑘}{𝑝𝑘(𝑥) ◦ 𝜖𝑘}′]𝑄−1

(4.3)

where ◦ represents the Hadamard (element-wise) product and, abusing notation, for a vector

𝑎 ∈ R𝑘 and scalar 𝑐 ∈ R we let 𝑎 + 𝑐 = (𝑎𝑖 + 𝑐)𝑘
𝑖=1

. Later on, we establish the validity of the

plug-in analog Ω̂ (2.12), as an estimator of these matrices.

Theorem 4.1 (Pointwise Normality). Assume Assumption 4.1 and that Condition 1 holds with
𝜎𝑛 = min𝛼∈𝒮𝑘−1 ∥𝛼′Ω1/2

0
∥. In addition suppose that 𝜉2

𝑘
log 𝑘/𝑛 → 0. Then, for any 𝛼 ∈ 𝑆𝑘−1:

√
𝑛
𝛼′(�̂�𝑘 − 𝛽𝑘)
∥𝛼′Ω1/2∥

→𝑑 𝑁(0, 1) (4.4)

where generally Ω = Ω̃ but if ℓ𝑘𝑐𝑘 → 0 then we can set Ω = Ω0. Moreover, for any 𝑥 ∈ 𝒳 and
𝑠(𝑥) B Ω1/2𝑝𝑘(𝑥),

√
𝑛
𝑝𝑘(𝑥)′(�̂�𝑘 − 𝛽𝑘)

∥𝑠(𝑥)∥ →𝑑 𝑁(0, 1) (4.5)

and if the second stage approximation error is negligible relative to the estimation error, namely
√
𝑛𝑟𝑘(𝑥) =

𝑜(∥𝑠(𝑥)∥), then
√
𝑛
�̂�(𝑥) − 𝑔0(𝑥)

∥𝑠(𝑥)∥ →𝑑 𝑁(0, 1) (4.6)

Theorem 4.1 shows that the estimator proposed in Section 2 has a limiting gaussian distribution

even under misspecification of either first-stage model. This allows for doubly-robust pointwise

inference after establishing a consistent variance estimator.

4.2 Uniform Convergence

Next, we turn to strengthening the pointwise results to hold uniformly over all points 𝑥 ∈ 𝒳.

This requires stronger conditions. We make the following assumptions on the tail behavior of

the error terms which strengthens Assumption 4.1.

1In practice, we recommend the use of B-splines in order to to satisfy the first requirement that the basis functions

are weakly positive and to reduce instability of the convex optimization programs described in (2.7)-(2.8).
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Assumption 4.2 (Uniform Limit Theory). Let �̄�𝑘 = sup
1≤ 𝑗≤𝑘 |𝜖 𝑗 |, 𝛼(𝑥) B 𝑝𝑘(𝑥)/∥𝑝𝑘(𝑥)∥, and let

𝜉𝐿
𝑘
B sup

𝑥,𝑥′∈𝒳
𝑥≠𝑥′

∥𝛼(𝑥) − 𝛼(𝑥′)∥
∥𝑥 − 𝑥′∥ .

Further for any integer 𝑠 let �̄�𝑠
𝑘
= sup𝑥∈𝒳 E[| �̄�𝑘 |𝑠 |𝑋 = 𝑥]. For some 𝑚 > 2 assume

(i) The regression errors satisfy sup𝑥∈𝒳 E[max1≤𝑖≤𝑛 | �̄�𝑘,𝑖 |𝑚 | 𝑋 = 𝑥] ≲𝑃 𝑛1/𝑚

(ii) The basis functions are such that (a) 𝜉2𝑚/(𝑚−2)
𝑘

log 𝑘/𝑛 ≲ 1, (b) (�̄�2

𝑘
∨ �̄�𝑚

𝑘
) log 𝜉𝐿

𝑘
≲ log 𝑘, and

(c) log �̄�𝑚
𝑘
𝜉𝑘 ≲ log 𝑘.

As before, Assumption 4.2 is very similar to its analogue in Belloni et al. (2015), with the modi-

fication that the conditions are required to hold for �̄�𝑘 as opposed to 𝜖𝑘 . Under this assumption,

we derive doubly-robust uniform rates of convergence uniform inference procedures for the

conditional counterfactual outcome 𝑔0(𝑥).

Theorem 4.2 (Strong Approximation by a Gaussian Process). Assume that Condition 1 holds with
𝜎𝑛 = min𝛼∈𝒮𝑘−1 ∥𝛼′Ω1/2

0
∥ and that Assumptions 4.1-4.2 hold with 𝑚 ≥ 3. In addition assume that (i)

�̄�1𝑛 = 𝑜𝑝(𝑎−1

𝑛 ) and (ii) 𝑎6

𝑛𝑘
4𝜉2

𝑘
(�̄�3

𝑘
+ ℓ 3

𝑘
𝑐2

𝑘
)2 log

2 𝑛/𝑛 → 0 where

�̄�1𝑛 B

√
𝜉2

𝑘
log 𝑘

𝑛
(𝑛1/𝑚√

log 𝑘 +
√
𝑘ℓ𝑘𝑐𝑘) and �̄�2𝑛 B

√
log 𝑘 · ℓ𝑘𝑐𝑘

Then, for some 𝒩𝑘 ∼ 𝑁(0, 𝐼𝑘):

√
𝑛
𝛼(𝑥)′(�̂� − 𝛽)
∥𝛼(𝑥)′Ω1/2∥

=𝑑
𝛼(𝑥)′Ω1/2

∥𝛼(𝑥)′Ω1/2∥
𝑁𝑘 + 𝑜𝑝(𝑎−1

𝑛 ) in ℓ∞(𝒳) (4.7)

so that for 𝑠(𝑥) B Ω1/2𝑝𝑘(𝑥)

√
𝑛
𝑝𝑘(𝑥)′(�̂� − 𝛽)

∥𝑠(𝑥)∥ =𝑑
𝑠(𝑥)

∥𝑠(𝑥)∥𝑁𝑘 + 𝑜𝑝(𝑎−1

𝑛 ) in ℓ∞(𝒳) (4.8)

and if sup𝑥∈𝒳
√
𝑛 |𝑟𝑘(𝑥)|/∥𝑠(𝑥)∥ = 𝑜(𝑎−1

𝑛 ), then

√
𝑛
�̂�(𝑥) − 𝑔0(𝑥)

∥𝑠(𝑥)∥ =𝑑
𝑠(𝑥)′
∥𝑠(𝑥)∥𝑁𝑘 + 𝑜𝑝(𝑎−1

𝑛 ) in ℓ∞(𝒳) (4.9)

where in general we take Ω = Ω̃ but if �̄�2𝑛 = 𝑜𝑝(𝑎−1

𝑛 ) then we can set Ω = Ω0 where Ω̃ and Ω0 are as
in (4.3).

Theorem 4.2 establishes conditions under which we obtain a doubly-robust strong approxima-

tion of the empirical process 𝑥 ↦→
√
𝑛(�̂�(𝑥) − 𝑔0(𝑥)) by a Gaussian process. After establishing

consistent estimation of the matrix Ω, this strong approximation result allows us to show va-

lidity of the uniform confidence bands described in Section 2. As noted by Belloni et al. (2015),

this is distinctly different from a Donsker type weak convergence result for the estimator �̂�(𝑥)
as viewed as a random element of ℓ∞(𝑋). In particular, the covariance kernel is left completely
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unspecified and in general need not be well behaved.

4.3 Matrix Estimation and Uniform Inference

We establish that the estimator Ω̂ proposed in (2.12) is a consistent estimator of the true limiting

variance Ω, where Ω = Ω̃ in general but if �̄�2𝑛 = 𝑜𝑝(𝑎−1

𝑛 ) then Ω = Ω0. To do so, we rely on the

second-stage assumptions Assumptions 4.1 and 4.2 as well as the following condition limiting

the first-stage estimation error passed on to the variance estimator Ω̂.

Condition 2 (Variance Estimation). Let 𝑚 > 2 be as in Assumption 4.2 and suppose that

𝜉𝑘,∞ max

1≤ 𝑗≤𝑘
E𝑛[𝑝 𝑗(𝑋)2(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))2] = 𝑜𝑝(𝑘−2𝑛−1/𝑚). (4.10)

In addition assume that either the logistic propensity score model or linear outcome regression

model is correctly specified in the sense of Lemma 3.2.

Via Lemma 3.1 we can establish Condition 2 under Assumption 3.1 as well as the additional

sparsity bound2

𝜉5

𝑘,∞𝑠
2

𝑘
𝑘2

ln(𝑑𝑧)
𝑛(𝑚−1)/𝑚 . (4.11)

Theorem 4.3 (Matrix Estimation). Suppose that Conditions 1 and 2 and Assumptions 4.1-4.2 hold.
In addition, assume that �̄�1𝑛 + �̄�2𝑛 ≲ (log 𝑘)1/2. Then, so long as either the propensity score model or
outcome regression model is correctly specified then for Ω̂ = 𝑄−1Σ̂𝑄−1:

∥Ω̂ −Ω∥ ≲𝑃 (𝑣𝑛 ∨ ℓ𝑘𝑐𝑘)

√
𝜉2

𝑘
log 𝑘

𝑛
= 𝑜(1)

Theorem 4.3 establishes that pointwise inference based on the test statistic described in Section 2,

obtained by replacing Ω in Theorem 4.1 with the consistent estimator Ω̂, is doubly-robust.

Hypothesis tests based on the test statistic as well as pointwise confidence intervals for 𝑔0(𝑥)
remain valid even if one of the first-stage parameters is misspecified.

We now establish the validity of uniform inference based on the gaussian bootstrap critical

values 𝑐★𝑢 (1 − 𝛼) defined in Section 2.

Theorem 4.4 (Validity of Uniform Confidence Bands). Suppose Conditions 1 and 2 are satis-
fied and Assumptions 4.1–4.2 hold with 𝑚 ≥ 4. In addition suppose (i) 𝑅1𝑛 + 𝑅2𝑛 ≲ log

1/2 𝑛,
(ii) 𝜉𝑘 log

2 𝑛/𝑛1/2−1/𝑚 = 𝑜(1), (iii) sup𝑥∈𝒳 |𝑟𝑘(𝑥)|/∥𝑝𝑘(𝑥)∥ = 𝑜(log
−1/2 𝑛), and (iv) 𝑘4𝜉2

𝑘
(1 +

𝑙3
𝑘
𝑟3

𝑘
)2 log

5 𝑛/𝑛 = 𝑜(1). Then, so long as either the propensity score model or outcome regression
model is satisfied

Pr

(
sup

𝑥∈𝒳
| �̂�(𝑥) − 𝑔0(𝑥)

�̂�(𝑥)
| ≤ 𝑐★(1 − 𝛼)

)
= 1 − 𝛼 + 𝑜(1).

2The sparsity bound (4.11) required for consistent variance estimation can be significantly sharpened if the

researcher is willing to use a cross fitting procedure, using one sample to estimate the nuisance parameters and

another to evaluate the aIPW signal. This is because one could more directly follow Semenova and Chernozhukov

(2021) and control alternate quantities with bounds that converge more quickly to zero.
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As a result, uniform confidence intervals formed in (2.13) satisfy

Pr(𝑔0(𝑥) ∈ [𝑖(𝑥), 𝑖(𝑥)], ∀𝑥 ∈ 𝒳) = 1 − 𝛼 + 𝑜(1).

In conjunction with Lemma 3.1, Theorem 4.1 and Theorem 4.3, Theorem 4.4 shows the validity

of the uniform inference procedure described in Section 2.

5 Estimation of the Conditional Average Treatment Effect

Up to now, we have mainly focused on doubly-robust estimation and model-assisted inference

for the function

𝑔0(𝑥) = E[𝑌1 | 𝑋 = 𝑥].

We conclude by noting that we can use a symmetric procedure to obtain model-assisted infer-

ence for the additional conditional counterfactual outcome

�̃�0(𝑥) = E[𝑌0 | 𝑋 = 𝑥].

To do so, we use the alternate aIPW signal

𝑌0(𝜋0 , 𝑚0) =
(1 − 𝐷)𝑌
1 − 𝜋0(𝑍)

+
(

1 − 𝐷
1 − 𝜋0(𝑍)

− 1

)
𝑚0(𝑍)

where as before the true value for 𝜋★
0
(𝑧) = Pr(𝐷 = 1 | 𝑍 = 𝑧) but now 𝑚★

0
(𝑧) = E[𝑌 | 𝐷 = 0, 𝑍 =

𝑧]. To estimate these nuisance models we again assume a logistic form for the propensity score

model 𝜋0(𝑧) = 𝜋(𝑧; 𝛾0) and a linear form for the outcome regression model 𝑚0(𝑧) = 𝑚(𝑧, 𝛼0) as

in (2.6) and use a separate estimation procedure for each basis term in our series approximation

of �̃�0(𝑥). The estimating equations we use to estimate each 𝛾0

𝑗
and 𝛼0

𝑗
differ from those in

(2.7)-(2.8) however, and are instead given

�̂�0

𝑗 B arg min

𝛾
E𝑛[𝑝 𝑗(𝑋){(1 − 𝐷)𝑒𝛾′𝑍 − 𝐷𝛾′𝑍}] + 𝜆𝛾, 𝑗 ∥𝛾∥1

�̂�0

𝑗 B arg min

𝛼
E𝑛[𝑝 𝑗(𝑍)(1 − 𝐷)𝑒 �̂�

0
′
𝑗
𝑍(𝑌 − 𝛼′𝑍)2]/2 + 𝜆𝛼, 𝑗 ∥𝛼∥1

which under the natural analog of Assumption 3.1 converge uniformly to population minimiz-

ers:

�̄�0

𝑗 B arg min

𝛾
E[𝑝 𝑗(𝑋){(1 − 𝐷)𝑒𝛾′𝑍 − 𝐷𝛾′𝑍}]

�̄�0

𝑗 B arg min

𝛼
E[𝑝 𝑗(𝑍)(1 − 𝐷)𝑒 �̄�

0
′
𝑗
𝑍(𝑌 − 𝛼′𝑍)2]

Letting �̄�0, 𝑗(𝑧) = 𝜋(𝑧, �̄�0

𝑗
), and �̄�0, 𝑗(𝑧) = 𝑚(𝑧, �̄�0

𝑗
) we can repeat the decomposition of Section 3,

expressing �̃�(�̄�0, 𝑗 , �̄�0, 𝑗) as functions of the parameters �̄�0

𝑗
and �̄�0

𝑗
and show that the first order

conditions for �̄�0

𝑗
and �̄�0

𝑗
directly control the bias passed on to the second stage nonparametric

estimator for �̃�0(𝑥). Convergence rates and validity of inference then follow from symmetric
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analysis of the results in Sections 3 and 4. Combining estimation and inference of the two con-

ditional counterfactual outcomes then gives a doubly-robust estimator and inference procedure

for the CATE. To perform inference on the CATE we can use the variance matrix

Ω̄ = Ω0 +Ω1 − 2Ω2

where Ω0 is as in (4.3) but Ω1 and Ω2 are given

Ω1 = 𝑄−1E[{𝑝𝑘(𝑥) ◦ 𝜖𝑘
0
}{𝑝𝑘(𝑥) ◦ 𝜖𝑘

0
}′]𝑄−1

Ω2 = 𝑄−1E[{𝑝𝑘(𝑥) ◦ 𝜖𝑘}{𝑝𝑘(𝑥) ◦ 𝜖𝑘
0
}′]𝑄−1

(5.1)

where 𝜖𝑘
0, 𝑗

= 𝑌0(�̄�0, 𝑗 , �̄�0, 𝑗) − �̃�0(𝑥) and 𝜖𝑘
0
= (𝜖𝑘

0,1
, . . . , 𝜖𝑘

0,𝑘
)′. These matrices can be consistently

estimated using their natural empirical analogs as in (2.12).

6 Empirical Application

We apply the model assisted estimator to estimate the effect of maternal smoking on infant

birthweight conditional on the age of the mother. We use the Cattaneo (2010) dataset which

can be found online on the Stata website.1 The dataset describes each infant’s birthweight in

grams, 𝑌, whether or not the mother smoked during pregnancy, 𝐷 = 1 indicating smoking,

and a number of covariates containing information on the mother’s health and socioeconomic

background, 𝑍 = (𝑋, 𝑍1), where 𝑋 represents the conditioning variable, maternal age. The

dataset includes a base of 21 control variables. We additionally construct quadratic powers

and interactions of continuous control variables to generate an additional 29 control variables

so that in total 𝑑𝑧 = 50. A full summary of the data used as well as additional details/analysis

from our empirical analysis can be found in Appendix F.

We compare the model assisted estimator of the CATE against one where standard MLE and

OLS loss functions are used to estimate the first stage propensity score and outcome regression

models, which is an implementation the CATE estimation procedure proposed by Semenova

and Chernozhukov (2021). We also qualitatively compare our results to both Zimmert and

Lechner (2019) and Fan et al. (2022), who use a kernel based approach to estimate the CATE of

maternal smoking on infant birthweight with this exact dataset. While this sort of comparison

is not perfect since we do not know the true DGP, this setting is advantageous for analysis since

we strongly expect that (i) the effect of smoking on birthweight will be negative and (ii) this

effect should grow stronger in magnitude as the age of the mother increases. These hypotheses

have been corroborated by other work that examines the conditional average treatment effect

in this setting (Zimmert and Lechner, 2019; Fan et al., 2022; Abrevaya, 2006; Lee et al., 2017).

6.1 Empirical Results

Figure 6.1 displays our main results from implementing both the model assisted and standard

MLE/OLS estimation procedures. After removing the top 3% and bottom 3% of smoker and

1The dataset can be downloaded here.

http://www.stata-press.com/data/r13/cattaneo2.dta
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non-smoker birthweights by maternal age, we select the penalty parameters for the first stage

models via the bootstrap procedure described in Section 4. The pilot penalty parameters are

uniformly taken to be equal to zero, so that the residuals used in the bootstrap procedure are

generated from non-regularized estimations. We take 𝑐0 = 2 in (2.17) and select the first stage

penalty parameters using the 90
th

, 85
th

, and 80
th

quantiles of the bootstrap distribution. For

the second stage basis functions we implement second degree b-splines with 3 knots via the

splines2 package in R (Wang and Yan, 2021).

Figure 6.1: CATE of maternal smoking estimated using model assisted estimating equations

(left) and standard MLE/OLS estimating equations (right). Top row uses the 90
th

quantile of

the bootstrap distribution to select the penalty parameters, second row uses 85
th

quantile, and

final row uses the 80
th

quantile. Second stage is computed using b-splines of the second degree

with 3 knots. 95% pointwise confidence intervals are displayed in blue short dashes and 95%

uniform confidence bands are displayed in long red dashes.

Consistent with prior work, both estimators of the CATE suggest that the effect of smoking
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on birthweight becomes more negative with age. Both estimation procedures also generally

produces negative estimates for the CATE, but it should be noted that for the lowest levels of

penalization the model assisted CATE estimate suggests a slightly positive effect of smoking for

particularly young mothers, though this difference is not significantly different from zero. The

shapes of the estimated functions remain relatively stable under various sizes of the penalty

parameter, though the model assisted procedure is more sensitive to the level of regularization

introduced.2 Overall, the magnitude of the CATE estimates produced by the model assisted

estimator seem to be more reasonable those produced by the standard estimator.

For the most part, the effects found here are similar to those found in both Zimmert and

Lechner (2019) and Fan et al. (2022), though the effects estimated using standard first stage loss

functions have somewhat larger magnitudes and in general both series estimation procedures

seem to give less reasonable results on the boundaries. Reassuringly, the point estimates of

both Zimmert and Lechner (2019) and Fan et al. (2022) seem to be within the doubly-robust

95% uniform confidence bands generated using the methods proposed this paper. Both the

doubly-robust uniform and pointwise confidence bands appear to be wider than those found

in Zimmert and Lechner (2019) and Fan et al. (2022), though this could be explained by the fact

that the doubly-robust confidence bands are accounting for potential misspecification of the

first-stage models.

As a robustness check, we also try estimating the treatment effect via second degree splines

with five knots and first degree splines with seven knots. These results are displayed in Fig-

ures 6.2 and 6.3, respectively. Again, we find that the effect of smoking on child birthweight

is almost uniformly negative regardless of estimation procedure used or choice of penalty pa-

rameter. The shape of the estimated CATE function remains fairly stable under both alternative

specifications. Again, the confidence bands from the model assisted procedure remain larger

than the confidence bands from the standard procedure. However, the in the first degree spline

specification the uniform confidence bands for the standard procedure suggest a significantly

positive CATE for some values of maternal age; an implausible result.

Finally, Table 6.1 reports the smoothed average treatment effect estimates taken from averaging

the model assisted CATE estimates from Figure 6.1 across observations. Again, these estimates

are in line with prior work

Table 6.1: Smoothed Model Assisted ATE Estimates

Bootstrap Penalty Qt. 90
th

85
th

80
th

Implied ATE -163.257 -222.431 -207.827

7 Simulation Study

We investigate the finite-sample performance of the doubly-robust estimator and inference

procedure via simulation study. We find that our proposed estimation procedure retains good

2Numerically solving the minimization problems in (2.7)-(2.8) also typically requires more iterations to converge

than solving the standard MLE/OLS minimization problems.
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Figure 6.2: CATE of maternal smoking estimated using model assisted estimating equations

(left) and standard MLE/OLS estimating equations (right). Top row uses the 95
th

quantile of

the bootstrap distribution to select the penalty parameters, second row uses 90
th

quantile, and

final row uses the 85
th

quantile. Second stage is computed using b-splines of the second degree

with 5 knots. 95% pointwise confidence intervals are displayed in blue short dashes and 95%

uniform confidence bands are displayed in long red dashes.
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Figure 6.3: CATE of maternal smoking estimated using model assisted estimating equations

(left) and standard MLE/OLS estimating equations (right). Top row uses the 95
th

quantile of

the bootstrap distribution to select the penalty parameters, second row uses 90
th

quantile, and

final row uses the 85
th

quantile. Second stage is computed using b-splines of the second degree

with 5 knots. 95% pointwise confidence intervals are displayed in blue short dashes and 95%

uniform confidence bands are displayed in long red dashes.
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coverage properties even under misspecification.

7.1 Simulation Design

Observations are generated i.i.d. according to the following distributions The error term is

generated following 𝜖 ∼ 𝑁(0, 1). The controls are set 𝑍𝑖 = (𝑍1𝑖 , 𝑋𝑖) ∈ R𝑑𝑧 where 𝑑𝑧 = 100,

𝑋 ∼ 𝑈(1, 2), and the independent regressors 𝑍1 are jointly centered Gaussian with a covariance

matrix of the Toeplitz form

Cov(𝑍1, 𝑗 , 𝑍1,𝑘) = E[𝑍1, 𝑗𝑍1,𝑘] = 2
−| 𝑗−𝑘 | , 3 ≤ 𝑗 , 𝑘 ≤ 𝑑𝑧 .

To capture misspecification, we let 𝑍†
be a transformation of the regressors in 𝑍1 where 𝑍†

𝑗
=

𝑍 𝑗 +max(0, 1+ 𝑍 𝑗)2 , ∀ 𝑗 = 3, . . . , 𝑑𝑧 . To model sparsity we use 𝑠 = 12 regressors in 𝑍 = (𝑍1 , 𝑋)
directly enter the DGP.

(S1) Correct specification: Generate𝐷 given 𝑍 from a Bernoulli distribution with Pr(𝐷 = 1|𝑍) =
{1 + exp(𝑝1 − 𝑋 − 0.5𝑋2 − 𝛾′𝑍1)}−1

and 𝑌 = 𝐷(1 + 𝑋 + 0.5𝑋2 + 𝛾′𝑍1) + 𝜖.

(S2) Propensity score model correctly specified, but outcome regression model misspecified: Generate

𝐷 given 𝑍 as in (S1), but 𝑌 = 𝐷(1 + 𝑋 + 0.5𝑋2 + 𝛾′𝑍†
1
) + 𝜖.

(S3) Propensity score model misspecified, but outcome regression model correctly specified: Generate

𝑌 according to (S1), but generate 𝐷 given 𝑍 from a Bernoulli distribution with Pr(𝐷 =

1|𝑍) = {1 + exp(𝑝2 − 𝑋 − 0.5𝑋2 + 𝛾′𝑍†
1
)}−1

.

where the constants 𝑝1 and 𝑝2 differ in various simulation setups but are always set so that

the average probability of treatment is about one half. To consider various degrees of high-

dimensionality, we implement 𝑁 ∈ {500, 1000} with 𝑑𝑧 = 100. Results are reported for 𝑆 =

1, 000 repeated simulations.

7.2 Estimators and Implementation

For the second stage basis, we use second order b-splines basis with 𝑘 = 5. B-splines are

implemented from the R package splines2 (Wang and Yan, 2021), which uses the specification

detailed in Perperoglou et al. (2019). In the tables below, we refer to our method as DR-DML
(doubly-robust double machine learning).

We compare our proposed estimator and inference procedure to one corresponding to that

of Semenova and Chernozhukov (2021), which projects a single aIPW signal onto a growing

series of basis terms. In implementing this DML method, we use the standard ℓ1-penalized

maximum likelihood (MLE) and ordinary least squares (OLS) loss functions to estimate the

first stage propensity score and outcome regression models, respectively.

Estimation error is studied for the target parameter 𝑔0(𝑥) = E[𝑌 |𝐷 = 1, 𝑋 = 𝑥] over a grid of

100 points spaced across 𝑥 ∈ [1, 2], i.e. the support of 𝑋. We study average coverage across

simulations of each method’s pointwise (at 𝑥 = 1.5) and uniform confidence intervals. To

compare the estimation error for the target parameter 𝑔(𝑥) across the two different estimators
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�̂�𝑠(𝑥) for each simulation 𝑠 = 1, . . . , 𝑆, we utilize integrated bias, variance, and mean-squared

error where �̄�(𝑥) = 𝑆−1
∑𝑆
𝑠=1

�̂�𝑠(𝑥),

IBias
2 =

∫
1

0

(�̄�(𝑥) − 𝑔0(𝑥))2𝑑𝑥,

IVar = 𝑆−1

𝑆∑
𝑠=1

∫
1

0

(�̂�𝑠(𝑥) − �̄�(𝑥))2𝑑𝑥,

IMSE = 𝑆−1

𝑆∑
𝑠=1

∫
1

0

(�̂�𝑠(𝑥) − 𝑔0(𝑥))2𝑑𝑥.

7.3 Simulation Results

Table 7.1 presents the simulation results for all three specifications (S1)-(S3) for 𝑛 = 500 and

𝑛 = 1000. Integrated squared bias, variance, and mean squared error are presented in columns

(1)-(3), respectively. Pointwise and uniform coverage results are presented in columns (4)-(7).

One can see that both the pointwise and uniform coverage rates of the doubly-robust confidence

intervals are consistently closer to their nominal values than those of the standard confidence

bands, which tend to be conservative. Suprisingly, this is the case even when both first-stage

models are correctly specified, which we suspect is due to the more robust form of our standard

error estimates. The improvement of coverage properties is particularly notable when looking

at the 90% uniform confidence bands. The standard confidence bands are quite conservative

in this case, covering the true function with nearly 97% in all setups. Comparatively, while

the doubly-robust confidence bands can be slightly conservative, their coverage probability is

much closer to the nominal 90% value.

Interestingly, these improved coverage properties do not seem to be due to reduced integrated

mean square error of our estimate. Compared to that of the standard “DML” estimator, the

integrated mean squared error of our proposed estimator is comparable but consistently higher.

Again, this suggests that the improvement in coverage properties of our proposed estimator

seem to be due to accounting for potential misspecification when constructing standard errors.

Our findings should not be interpreted as a critique of the Semenova and Chernozhukov (2021)

benchmark method, whose work we rely on and were inspired by.

8 Conclusion

Estimation of conditional average treatment effects with high dimensional controls typically

relies on first estimating two nuisance parameters: a propensity score model and an outcome

regression model. In a high-dimensional setting, consistency of the nuisance parameter es-

timators typically relies on correctly specifying their functional forms. While the resulting

second-stage estimator for the conditional average treatment effect typically remains consistent

even if one of the nuisance parameters is inconsistent, the confidence intervals may no longer
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Table 7.1: Simulation study.

DGP Estimator IBias
2

IVar IMSE Cov90 Cov95 UCov90 UCov95

(1) (2) (3) (4) (5) (6) (7)

K=5, n=500, 𝑑𝑧 = 100

(S1)

DML 0.011 0.243 0.254 0.951 0.984 0.977 0.986

DR-DML 0.052 0.269 0.321 0.929 0.968 0.923 0.946

(S2)

DML 0.007 0.225 0.252 0.938 0.965 0.977 0.987

DR-DML 0.014 0.322 0.336 0.894 0.936 0.903 0.928

(S3)

DML 0.010 0.243 0.253 0.944 0.981 0.971 0.985

DR-DML 0.052 0.265 0.317 0.922 0.964 0.923 0.944

K=5, n=1000, 𝑑𝑧 = 100

(S1)

DML 0.003 0.126 0.129 0.946 0.976 0.978 0.988

DR-DML 0.028 0.134 0.162 0.915 0.961 0.921 0.956

(S2)

DML 0.015 0.135 0.150 0.909 0.951 0.962 0.978

DR-DML 0.011 0.155 0.166 0.903 0.957 0.923 0.948

(S3)

DML 0.005 0.131 0.136 0.939 0.977 0.962 0.984

DR-DML 0.034 0.142 0.176 0.903 0.958 0.905 0.935

Note: DGP refers to the three various data generating processes introduced above.

IBias
2
, IVar, and IMSE refer to integrated squared bias, variance, and mean squared

error, respectively. Cov90, Cov95, UCov90, and UCov95 refer to the coverage proportion

of the 90% and 95% pointwise and uniform confidence intervals across simulations. 𝐾

refers to the number of series terms, 𝑁 to the sample size, and 𝑑𝑧 to the dimensionality

of the random variable 𝑍
1
.

be valid.

In this paper, we consider estimation and valid inference on the conditional average treatment

effect in the presence of high dimensional controls and nuisance parameter misspecification.

We present a nonparametric estimator for the CATE that remains consistent at the nonparamet-

ric rate, under slightly modified conditions, even under misspecification of either the logistic

propensity score model or linear outcome regression model. The resulting Wald-type confi-

dence intervals based on this estimator also provide valid asymptotic coverage under nuisance

parameter misspecification.
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A Proofs for Results in Main Text

Here we provide proofs of the main results in Sections 3-4. The proofs for Section 4 rely on

an assortment of supporting lemmas proved in Appendix C. These proofs ignore the general

misspecification error allowed for in Lemma 3.1 but modifications of the proof that accomodate

this are available on request; the strategy for allowing for this misspecification is the same as

in Chernozhukov et al. (2022).

A.1 Proofs for Main First Stage Results

Proof of Lemma 3.1

The proof of Lemma 3.1 relies on a series of non-asymptotic bounds that are established in

Online Appendix Lemmas C.1 and C.2 that hold on

⋂
6

𝑚=1
Ω𝑘,𝑚 and depend on the quantity

�̄�𝑘 = 𝑀𝜉𝑘,∞

√
log(𝑑𝑧/𝜖)

𝑛

where 𝑀 is a fixed constant. In addition let Σ̃1

𝛼, 𝑗
:= E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�

′
𝑗
𝑍 |𝑌 − �̄�′

𝑗
𝑍 |𝑍𝑍′] and Σ1

𝛼, 𝑗
:=

EΣ̃1

𝛼, 𝑗 and define the event

Ω𝑘,7 := {∥Σ̃1

𝛼, 𝑗 − Σ1

𝛼, 𝑗 ∥∞ ≤ �̄�𝑘 ,∀𝑗 ≤ 𝑘} (A.1)

In Online Appendix C.3 we show that Pr(⋂7

𝑚=1
) ≥ 1 − 𝑜(1). Under these events, Lemma A.1,

below provides the bound needed for first statement of Lemma 3.1 while Lemma A.2 provides

the bound needed for the second statement.
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Lemma A.1 (Nonasymptotic Bounds for Weighted Means). Suppose that Assumption 3.1 holds,
𝜉0 > (𝑐0 + 1)/(𝑐0 − 1), and 2𝐶0𝜈−2

0
𝑠𝑘�̄�𝑘 ≤ 𝜂 < 1. In addition, assume there is a constant 𝑐 > 0 such

that 𝜆𝛼, 𝑗/𝜆𝛾, 𝑗 ≥ 𝑐 for all 𝑗 ≤ 𝑘. Then, under the event
⋂

7

𝑚=1
Ω𝑘,𝑚 , there is a constant 𝑀2 that does not

depend on 𝑘 such that

max

1≤ 𝑗≤𝑘
|E𝑛[𝑝 𝑗(𝑋)𝑌(𝜋 𝑗 , 𝑚 𝑗)] − E𝑛[𝑝 𝑗(𝑋)𝑌(�̄� 𝑗 , �̄� 𝑗)]| ≤ 𝑀2𝑠𝑘�̄�

2

𝑘
(A.2)

Proof. We show that the bound of (A.2) holds for any 𝑗 = 1, . . . , 𝑘 in a couple steps. To save

notation, define

𝜇𝑗(𝜋, 𝑚) := E𝑛
[
𝑝 𝑗(𝑋)𝑌(𝜋, 𝑚)

]
= E𝑛

[
𝑝 𝑗(𝑋)

{
𝐷𝑌

𝜋(𝑍) +
(
𝐷

𝜋(𝑍) − 1

)
𝑚(𝑍)

}]
Step 1: Decompose Difference and Use Logistic FOCs. Consider the following decomposition

𝜇𝑗(𝜋 𝑗 , 𝑚 𝑗) − 𝜇𝑗(�̄� 𝑗 , �̄� 𝑗) = E
[
𝑝 𝑗(𝑋){𝑚 𝑗(𝑍) − �̄� 𝑗(𝑍)}

(
1 − 𝐷

�̄� 𝑗(𝑋)

)]
+ E𝑛

[
𝑝 𝑗(𝑋)𝐷{𝑌 − �̄� 𝑗(𝑍)}

(
1

𝜋 𝑗(𝑍)
− 1

�̄� 𝑗(𝑍)

)]
+ E𝑛

[
𝑝 𝑗(𝑋){𝑚 𝑗(𝑍) − �̄� 𝑗(𝑍)}

(
𝐷

�̄� 𝑗(𝑍)
− 𝐷

𝜋 𝑗(𝑍)

)]
:= 𝛿1, 𝑗 + 𝛿2, 𝑗 + 𝛿3, 𝑗

Notice that 𝛿1, 𝑗 + 𝛿3, 𝑗 = (�̂� 𝑗 − �̄� 𝑗)′E𝑛[𝑝 𝑗(𝑋)(1 − 𝐷/𝜋 𝑗(𝑍))𝑍]. By the first order conditions for �̂�𝑗
we have that

|E𝑛[𝑝 𝑗(𝑋){𝑍𝑙 −𝐷𝑍𝑙/𝜋 𝑗(𝑍)}]| ≤ 𝜆𝛾, 𝑗 ∀𝑙 = 1, . . . , 𝑑𝑧 =⇒ ∥E𝑛[𝑝 𝑗(𝑋){𝑍𝑙 −𝐷𝑍𝑙/𝜋 𝑗(𝑍)}]∥∞ ≤ 𝜆𝛾, 𝑗 .

Applying Hölder’s inequality to 𝛿1, 𝑗 + 𝛿3, 𝑗 then gives us that on the event Ω𝑘,2

|𝛿1, 𝑗 + 𝛿3, 𝑗 | ≤ ∥�̂� 𝑗 − �̄� 𝑗 ∥1𝜆𝛾, 𝑗 ≤ ∥�̂� 𝑗 − �̄� 𝑗 ∥�̄�𝑘 .

By Lemma C.2 on the event

⋂
6

𝑚=1
Ω𝑘,𝑚 and under the conditions of Lemma A.1, ∥�̂� 𝑗 − �̄� 𝑗 ∥ ≤

𝑀1𝑠𝑘�̄�𝑘 where 𝑀1 is a constant that does not depend on 𝑘. So

|𝛿1, 𝑗 + 𝛿3, 𝑗 | ≤ 𝑀1𝑠𝑘�̄�
2

𝑘
(M.1)

Step 2: Use Outcome Regression Score Domination to Bound 𝛿2, 𝑗 . Now deal with the term 𝛿2, 𝑗 . By

first order Taylor expansion, for some 𝑢 ∈ (0, 1)

𝛿2, 𝑗 = −(�̂�𝑗 − �̄�𝑗)′E𝑛[𝑝 𝑗(𝑋)𝐷{𝑌 − �̄� 𝑗(𝑍)}𝑒−�̄�
′
𝑗
𝑍
𝑍]

+ (�̂�𝑗 − �̄�𝑗)′E𝑛[𝑝 𝑗(𝑋)𝐷{𝑌 − �̄� 𝑗(𝑍)}𝑒−𝑢�̂�
′
𝑗
𝑍−(1−𝑢)�̄�′

𝑗
𝑍
𝑍𝑍′](�̂�𝑗 − �̄�𝑗)/2

:= 𝛿21, 𝑗 + 𝛿22, 𝑗

In the event Ω𝑘,1 ∩ Ω𝑘,2 ∩ Ω𝑘,3 ∩ Ω𝑘,4 we have by score domination of the linear outcome

regression model and Lemma C.1 that 𝛿21 ≤ 𝑀0𝑠𝑘�̄�2

𝑘
.

The term 𝛿22, 𝑗 is second order. On the event Ω𝑘,0 ∩Ω𝑘,1 where ∥�̂�𝑗 − �̄�𝑗 ∥1 ≤ 𝑀0𝑠𝑘�̄�𝑘 ≤ 𝑀0𝜂/𝐶0
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it can be bounded with

𝛿22, 𝑗 ≤ 𝑒𝐶0∥�̂�𝑗−�̄�𝑗 ∥1E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍 |𝑌 − �̄� 𝑗(𝑍)|{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2]

≤ 𝑒𝑀0𝜂E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍 |𝑌 − �̄� 𝑗(𝑍)|{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2].

This in turn is bounded in a few steps. First note on the event Ω𝑘,7

(E𝑛 − E)[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍 |𝑌 − �̄� 𝑗(𝑍)|{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2] ≤ �̄�𝑘 ∥�̂�𝑗 − �̄� 𝑗 ∥2

1
.

By Assumption 3.1 we have that 𝐺2

0
𝐸[𝐷 |𝑌 − �̄� 𝑗(𝑍)| | 𝑍] ≤ 𝐺2

1
/𝐺0 + 𝐺0 so that,

E[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍 |𝑌 − �̄� 𝑗(𝑍)|{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2] ≤ (𝐺2

1
/𝐺0 + 𝐺0)E[𝑝 𝑗(𝑋)𝐷𝑒−�̄�

′
𝑗
𝑍{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2].

On the event Ω𝑘,6 we have that

(E𝑛 − E)[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2] ≤ �̄�𝑘 ∥�̂�𝑗 − �̄�𝑗 ∥1.

Putting these all together gives

E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍 |𝑌 − �̄� 𝑗(𝑍)|{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2]
≤ �̄�𝑘 ∥�̂�𝑗 − �̄�𝑗 ∥2

1
+ (𝐺2

1
/𝐺0 + 𝐺0)�̄�𝑘 ∥�̂�𝑗 − �̄�𝑗 ∥2

1

+ (𝐺2

1
/𝐺0 + 𝐺0)E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�′𝑍{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}]

(M.2)

To bound (M.2) note again that in the event Ω𝑘,1 ∩Ω𝑘,2, ∥�̂�𝑗 − �̄�𝑗 ∥1 ≤ 𝑀0𝑠𝑘�̄�𝑘 and that using by

(O.4) in Online Appendix Lemma C.2:

E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2] ≤ 𝑒−𝑀0𝜂𝑀0𝑠𝑘�̄�
2

𝑘
.

Plugging these into (M.2) gives

𝛿22, 𝑗 ≤ 𝑒𝑀0𝜂𝑀2

0
𝑠2

𝑘
�̄�3

𝑘
+ 𝑒𝑀0𝜂(𝐺2

1
/𝐺0 + 𝐺0)𝑀2

0
𝑠2

𝑘
�̄�3

𝑘
+ (𝐺2

1
/𝐺0 + 𝐺0)𝑀0𝑠𝑘�̄�

2

𝑘
(M.3)

so that in total 𝛿2, 𝑗 = 𝛿21, 𝑗 + 𝛿22, 𝑗 is bouned

𝛿2, 𝑗 ≤ 𝑀0𝑠𝑘(𝐺2

1
/𝐺0 + 𝐺0 + 1)�̄�2

𝑘
+ 𝑒𝑀0𝜂𝑀2

0
𝑠2

𝑘
(𝐺2

1
/𝐺0 + 𝐺0 + 1)�̄�3

𝑘
(M.4)

Step 3: Combine Terms. Putting this together yields

|𝛿1, 𝑗 + 𝛿2, 𝑗 + 𝛿3, 𝑗 | ≤ {𝑀1 +𝑀0(𝐺2

1
/𝐺0 + 𝐺0 + 1)}𝑠𝑘�̄�2

𝑘

+ 𝑒𝑀0𝜂(𝐺2

1
/𝐺0 + 𝐺0)𝑀2

0
𝑠2

𝑘
�̄�3

𝑘

(M.5)

Use the fact that 𝑠𝑘�̄�𝑘 ≤ 𝜂 < 1 to simplify the last term of this expression

|𝛿1, 𝑗 + 𝛿2, 𝑗 + 𝛿3, 𝑗 | ≤ {𝑀1 +𝑀0(𝐺2

1
/𝐺0 + 𝐺0 + 1)}𝑠𝑘�̄�2

𝑘

+ 𝑒𝑀0𝜂(𝐺2

1
/𝐺0 + 𝐺0)𝑀2

0
𝑠𝑘�̄�𝑘

(M.6)

This gives the result (A.2) after taking 𝑀2 = 𝑀1 +𝑀0(𝐺/
1
𝐺0 + 𝐺0 + 1) + 𝑒𝑀0𝜂(𝐺2

1
/𝐺0 + 𝐺0)𝑀2

0
.

□

Lemma A.2 (Nonasymptotic Bounds for Variance Estimation). Suppose that Assumption 3.1 hold,
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𝜉0 > (𝑐0 + 1)/(𝑐0 − 1), and 2𝐶0𝜈−2

0
𝑠𝑘�̄�𝑘 ≤ 𝜂 < 1. In addition, assume there is a constant 𝑐 > 0 such

that 𝜆𝛼, 𝑗/𝜆𝛾, 𝑗 ≥ 𝑐 for all 𝑗 ≤ 𝑘. Then, under the event
⋂

7

𝑚=1
Ω𝑘,𝑚 , there is a constant 𝑀3 that does not

depend on 𝑘 such that

max

1≤ 𝑗≤𝑘
E𝑛[𝑝2

𝑗 (𝑋)(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))2] ≤ 𝑀3𝜉
2

𝑘,∞𝑠
2

𝑘
�̄�2

𝑘
(A.3)

Proof. We show the bound holds for each 𝑗 = 1, . . . , 𝑘. We start by decomposing

𝑝 𝑗(𝑋)(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗)) = 𝑝 𝑗(𝑋){𝑚 𝑗(𝑍) − �̄� 𝑗(𝑍)}
(
1 − 𝐷

�̄� 𝑗(𝑋)

)
+ 𝑝 𝑗(𝑋)𝐷{𝑌 − �̄� 𝑗(𝑍)}

(
1

𝜋 𝑗(𝑍)
− 1

�̄� 𝑗(𝑍)

)
+ 𝑝 𝑗(𝑋){𝑚 𝑗(𝑍) − �̄� 𝑗(𝑍)}

(
𝐷

�̄� 𝑗(𝑍)
− 𝐷

𝜋 𝑗(𝑍)

)
:= �̃�1, 𝑗 + �̃�2, 𝑗 + �̃�3, 𝑗

We will use the fact that (𝑎 + 𝑏 + 𝑐)2 ≤ 4𝑎2 + 4𝑏2 + 4𝑐2
to bound

E𝑛[𝑝2

𝑗 (𝑋)(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))2] ≤ 4E𝑛[�̃�2

1, 𝑗] + 4E𝑛[�̃�2

2, 𝑗] + 4E𝑛[�̃�2

3, 𝑗]. (V.1)

To bound E𝑛[�̃�2, 𝑗] use the mean value equation (O.2) in Online Appendix Lemma C.2 and the

lower bound on �̄�𝑗(𝑧) from Assumption 3.1

E𝑛[�̃�2

2, 𝑗] = E𝑛[𝑝
2

𝑗 (𝑋)𝐷{𝑌 − �̄� 𝑗(𝑍)}2{𝜋−1

𝑗 (𝑍) − �̄�−1

𝑗 (𝑍)}2]

≤ 𝜉𝑘,∞𝑒
−𝐵0

(
1 + 𝑒𝐶0∥�̂�𝑗−�̄�𝑗 ∥1

)
2

E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{𝑌 − �̄� 𝑗(𝑍)}2{ �̂�𝑗(𝑍) − �̄�𝑗(𝑍)}2]

Applying (O.8) in Online Appendix Lemma C.2, Online Appendix Lemma C.1, and 𝑠𝑘�̄�𝑘 ≤
𝜂 < 1 there is a constant �̃�1 that does not depend on 𝑘 such that in the event

⋂
7

𝑚=1
Ω𝑘,𝑚 this is

bounded

≤ �̃�1𝜉𝑘,∞𝑠𝑘�̄�
2

𝑘
(V.2)

To bound E𝑛[�̃�3, 𝑗] write 𝜋−1

𝑗
(𝑍) − �̄�−1

𝑗
(𝑍) = 𝑒

−�̄�′
𝑗
𝑍{𝑒−�̂�

′
𝑗
𝑍+�̄�′

𝑗
𝑍 − 1} and use the lower bound on

�̄�𝑗(𝑧) from Assumption 3.1:

E𝑛[�̃�2

3, 𝑗] = E𝑛[𝑝
2

𝑗 (𝑋)𝐷{𝑚 𝑗(𝑍) − �̄� 𝑗(𝑍)}2{𝜋−1

𝑗 (𝑍) − �̄�−1

𝑗 (𝑍)}2]

≤ 𝜉𝑘,∞𝑒
−𝐵0

(
1 + 𝑒𝐶0∥�̂�𝑗−�̄�𝑗 ∥1

)
2

E𝑛[𝑝 𝑗(𝑋)𝑒−�̄�
′
𝑗
𝑍{𝑚 𝑗(𝑍) − �̄� 𝑗(𝑍)}2]

Applying Online Appendix Lemma C.2, there is a constant �̃�2 that does not depend on 𝑘 such

that on the event

⋂
6

𝑚=1
Ω𝑘,𝑚 this is bounded

≤ �̃�2𝜉𝑘,∞𝑠𝑘�̄�
2

𝑘
(V.3)
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Finally, to bound E𝑛[�̃�2

1, 𝑗
] again use the lower bound on �̄�𝑗(𝑧) and decompose

E𝑛[�̃�2

1, 𝑗] = E𝑛[𝑝
2

𝑗 (𝑋){𝑚(𝑧) − �̄�(𝑧)}2{1 − 𝐷/�̄� 𝑗(𝑍)}2]
≤ 𝜉2

𝑘,∞(1 + 𝑒−𝐵0)2E𝑛[{𝑚 𝑗(𝑍) − �̄� 𝑗(𝑍)}2]
≤ 𝜉2

𝑘,∞(1 + 𝑒−𝐵0)2𝐶2

0
∥�̂� 𝑗 − �̄� 𝑗 ∥2

1

Again on the event

⋂
6

𝑚=1
Ω𝑘,𝑚 apply Online Appendix Lemma C.2 this is bounded, for some

constant �̃�3 that does not depend on 𝑘 by

≤ �̃�3𝜉
2

𝑘,∞𝑠
2

𝑘
�̄�2

𝑘
(V.4)

The result (A.3) follows by collecting (V.1)-(V.4). □

A.2 Proofs of Main Second Stage Results

The proofs for Section 4 closely follow those of Belloni et al. (2015) with some modifications

to deal with the various error terms. They also rely on some additional second stage results

proved in Online Appendix D .

Proof of Theorem 4.1

Equation (4.5) follows from applying (4.4) with 𝛼 = 𝑝(𝑥)/∥𝑝(𝑥)∥ and (4.6) follows from (4.5).

So it suffices to prove (4.4).

For any 𝛼 ∈ 𝑆𝑘−1
, 1 ≲ ∥𝛼′Ω1/2∥ because of the conditional variance of �̄�2

𝑗
is bounded from below

and from above and under the positive semidefinite ranking

Ω ≥ Ω0 ≥ 𝜎2𝑄−1.

Moreover, by condition (ii) of the theorem and Lemma D.2, 𝑅1𝑛(𝛼) = 𝑜𝑝(1). So we can write

√
𝑛𝛼′(�̂� − 𝛽) =

√
𝑛𝛼′

∥𝛼′Ω1/2∥
G𝑛[𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)] + 𝑜𝑝(1)

=

𝑛∑
𝑖=1

𝛼′
√
𝑛∥𝛼′Ω1/2∥

{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}.

Goal will be to verify Lindberg’s condition for the CLT. Throughout the rest of the proof, it will

be helpful to make the following notations. First, for any vector 𝑎 = (𝑎1 , . . . , 𝑎𝑘)′ ∈ 𝑆𝑘−1
, let

|𝑎 | = (|𝑎1 |, . . . , |𝑎𝑘 |)′ and note that |𝑎 | ∈ 𝑆𝑘−1
as well:

�̃�′
𝑛 =

𝛼′
√
𝑛∥𝛼′

𝑛Ω
1/2∥

, 𝜔𝑛 := |�̃� |′𝑝𝑘(𝑥), and �̄�𝑘 := sup

1≤ 𝑗≤𝑘
|𝜖 𝑗 |

Now, by the definition of Ω we have that

Var

©«
𝑛∑
𝑖=1

𝛼′
√
𝑛∥𝛼′Ω1/2∥

{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}ª®¬ = 1.
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Second for each 𝛿 > 0

𝑛∑
𝑖=1

E

[
(�̃�′

𝑛{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)})21
{
|�̃�′
𝑛{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}| > 𝛿

}]
≤

𝑛∑
𝑖=1

E

[
𝜔2

𝑛E
[
�̄�2

𝑘
1{|𝜔𝑛 | | �̄�𝑘 + ℓ𝑘𝑐𝑘 | > 𝛿} | 𝑋 = 𝑥

] ]
(A.4)

What we are using here is the following. Suppose 𝛼 is a nonrandom vector in R𝑘 , 𝑎 is a

(positive) random vector in R𝑘 and 𝑏 is a random vector in R𝑘 . Then,

{𝛼′(𝑎 ◦ 𝑏)} =
𝑘∑
𝑗=1

𝛼 𝑗𝑎 𝑗𝑏 𝑗 ≤ ∥𝑏∥∞
𝑘∑
𝑗=1

|𝛼 𝑗 |𝑎 𝑗 = (|𝛼 |′𝑎)∥𝑏∥∞. (A.5)

To bound the right hand side of (A.4) use the fact that 1 ≲ ∥𝛼′Ω1/2∥ because 1 ≲ 𝜎2
and

Ω ≥ Ω0 ≥ 𝜎2𝑄−1

in the positive semidefinite sense. Using these two we have

𝑛E|𝜔𝑛 |2 ≤ E[(|𝛼 |′𝑝𝑘(𝑥))2]/(𝛼′Ω𝛼) ≲ 1.

By the bounded eigenvalue condition and using the trace operator:

E[(|𝛼 |𝑝𝑘(𝑥))2] = trace(E[|𝛼 |′𝑝𝑘(𝑥)′𝑝𝑘(𝑥)|𝛼 |]) = |𝛼 |′𝑄 | |𝛼 | ≲ ∥𝛼∥ = 1

Further note, |𝜔𝑛𝑖 | ≲ 𝜉𝑘√
𝑛
. Using (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2

, the right hand side of (A.4) is bounded by

2𝑛E[|𝜔𝑛 |2 �̄�2

𝑘
1{| �̄�𝑘 | + ℓ𝑘𝑐𝑘 > 𝛿/|𝜔𝑛 |}] + 2𝑛E[|𝜔𝑛 |2ℓ 2

𝑘
𝑐2

𝑘
1{| �̄�𝑘 | + ℓ𝑘𝑐𝑘 > 𝛿/|𝜔𝑛 |}]

and both terms converge to zero. Indeed, to bound the first term note that, for some 𝑐 > 0:

2𝑛E[|𝜔𝑛 |2 �̄�2

𝑘
1{| �̄�𝑘 | + ℓ𝑘𝑐𝑘 > 𝛿/|𝜔𝑛 |}] ≲ 𝑛E[|𝜔𝑛 |2] sup

𝑥∈𝒳
E[�̄�2

𝑘
1{�̄�2

𝑘
+ ℓ𝑘𝑐𝑘 > 𝑐𝛿

√
𝑛/𝜉𝑘} | 𝑋 = 𝑥]

= 𝑜(1)

where here we use the first part of Assumption 4.1(iv). To show the second term converges to

zero, follow the same steps as for the first term, but apply the second part of Assumption 4.1(iv).

Proof of Theorem 4.2

We apply Yurinskii’s coupling lemma (Pollard, 2001)



Proofs for Results in Main Text Page 37

Yurinskii’s Coupling Lemma

Let 𝜉1 , . . . , 𝜉𝑛 be independent random 𝑘-vectors with E[𝜉𝑖] = 0 and 𝛽 :=
∑𝑛
𝑖=1
E[∥𝜉𝑖 ∥3]

finite. Let 𝑆 := 𝜉1 + · · · + 𝜉𝑛 . For each 𝛿 > 0 there exists a random vector 𝑇 with a

𝑁(0, var(𝑆)) distribution such that

P(|𝑆 − 𝑇 | > 3𝛿) ≤ 𝐶0𝐵

(
1 +

| log(1/𝐵)|
𝑘

)
where 𝐵 := 𝛽𝑘𝛿−3

(YC)

for some universal constant 𝐶0.

In order to apply the coupling, we want to consider a first order approximation to the estimator

1√
𝑛

𝑛∑
𝑖=1

𝜉𝑖 , 𝜁𝑖 = Ω−1/2𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘).

When �̄�2𝑛 = 𝑜𝑝(𝑎−1

𝑛 ) a similar argument can be used with 𝜁𝑖 = Ω−1/2𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘) replaced

with Ω−1/2𝑝𝑘(𝑥) ◦ 𝜖𝑘 . As before, the eigenvalues of Ω are bounded away from zero, therefore

E∥𝜁𝑖 ∥3 ≲ E[∥𝑝𝑘(𝑥) ◦ (𝜖𝑘(𝑥) + 𝑟𝑘)∥3]
≲ E[∥𝑝𝑘(𝑥)∥3(| �̄�𝑘 |3 + |𝑟𝑘 |3)]
≲ E[∥𝑝𝑘(𝑥)∥3](�̄�3

𝑘
+ ℓ 3

𝑘
𝑐3

𝑘
)

≲ E[∥𝑝𝑘(𝑥)∥3]𝜉𝑘(�̄�3

𝑘
+ ℓ 3

𝑘
𝑐3

𝑘
)

≲ 𝑘𝜉𝑘(�̄�3

𝑘
+ ℓ 3

𝑘
𝑐3

𝑘
)

Therefore, by Yurinskii’s coupling lemma (YC), for each 𝛿 > 0,

Pr

∥
𝑛∑
𝑖=1

𝜁𝑖/
√
𝑛 −𝒩𝑘 ∥ > 3𝛿𝑎−1

𝑛

 ≲
𝑛𝑘2𝜉𝑘(�̄�3

𝑚 + ℓ 3

𝑘
𝑐3

𝑘
)

(𝛿𝑎−1

𝑛

√
𝑛)3

(
1 +

log(𝑘3𝜉𝑘(�̄�3

𝑘
+ ℓ 3

𝑘
𝑐3

𝑘
))

𝑘

)
≲
𝑎3

𝑛𝑘
2𝜉𝑘(�̄�3

𝑘
+ ℓ 3

𝑘
𝑐3

𝑘
)

𝛿3𝑛1/2

(
1 +

log 𝑛

𝑘

)
→ 0.

because 𝑎6

𝑛𝑘
2𝜉𝑘(�̄�3

𝑚 + ℓ 3

𝑘
𝑐3

𝑘
) log

2 𝑛/𝑛 → 0. Using the first two results from Lemma D.3, (D.6)-

(D.7), we obtain that

∥
√
𝑛𝛼(𝑥)′(�̂�𝑘 − 𝛽𝑘) − 𝛼(𝑥)′Ω1/2𝒩𝑘 ∥ ≤ ∥1/

√
𝑛

𝑛∑
𝑖=1

𝛼(𝑥)′Ω1/2𝜁𝑖 − 𝛼(𝑥)′Ω1/2𝒩𝑘 ∥ + �̄�1𝑛 = 𝑜𝑝(𝑎−1

𝑛 ).

uniformly over 𝑥 ∈ 𝒳. Since ∥𝛼(𝑥)′Ω1/2∥ is bounded from below uniformly over 𝑥 ∈ 𝒳 we

obtain the first statetment of Theorem D.2 from which the second statement directly follows.

Finally, under the assumption that sup𝑥∈𝒳 𝑛
1/2 |𝑟(𝑥)|/∥𝑠(𝑥)∥ = 𝑜𝑝(𝑎−1

𝑛 ),√
𝑛𝑝(𝑥)′(�̂�𝑘 − 𝛽𝑘)

∥𝑠(𝑥)∥ −
√
𝑛(�̂�(𝑥) − 𝑔0(𝑥))

∥𝑠(𝑥)∥ = 𝑜𝑝(𝑎−1

𝑛 )

so that the third statement, (4.9) holds.
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Proof of Theorem 4.3

Preliminaries for Proof of Theorem 4.3

Lemma (Symmetrization). Let 𝑍1 , . . . , 𝑍𝑛 be independent stochastic processes with mean zero
and let 𝜖1 , . . . , 𝜖𝑛 be independent Rademacher random variables generated independetly of the
data. Then

E∗Φ

(
1

2

 𝑛∑
𝑖=1

𝜖𝑖𝑍𝑖

ℱ

)
≤ E∗Φ

( 𝑛∑
𝑖=1

𝑍𝑖

ℱ

)
≤ E∗Φ

(
2

𝜖𝑖(𝑍𝑖 − 𝜇𝑖)

ℱ

)
, (SI)

for every nondecreasing, convex Φ : R→ R and arbitrary functions 𝜇𝑖 : ℱ → R.

For 𝑝 ≥ 1 consider the Shatten norm 𝑆𝑝 on symmetrix 𝑘 × 𝑘 matrices 𝑄 defined by

∥𝑄∥𝑆𝑝 = (∑𝑘
𝑗=1

|𝜆 𝑗(𝑄)|𝑝)1/𝑝 where 𝜆1(𝑄), . . . ,𝜆𝑘(𝑄) are the eigenvalues of 𝑄. The case

𝑝 = ∞ recovers the operator norm and 𝑝 = 2 recovers the Frobenius norm.

Lemma (Khinchin’s Inequality for Matrices). For symmetric 𝑘× 𝑘 matrices𝑄𝑖 , 𝑖 = 1, . . . , 𝑛,
2 ≤ 𝑝 ≤ ∞, and an i.i.d sequence of Rademacher random variables 𝜖1 , . . . , 𝜖𝑛 we have (

E𝑛[𝑄2

𝑖 ]
)

1/2


𝑆𝑝

≤
(
E𝜖∥G𝑛[𝜖𝑖𝑄𝑖]∥𝑝𝑆𝑝

)
1/𝑝

≤ 𝐶
√
𝑝

(E𝑛[𝑄2

𝑖 ]
)

1/2


𝑆𝑝

(KI-1)

where 𝐶 is an absolute constant. So, for 𝑘 ≥ 2,

E𝜖[∥G𝑛[𝜖𝑖𝑄𝑖]∥] ≤ 𝐶
√

log 𝑘∥(E𝑛[𝑄2

𝑖 ])
1/2∥ (KI-2)

for some (possibly different) absolute constant 𝐶.

We will establish consistent estimation of

Σ = E[{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}′]

using

Σ̂ = E𝑛[{𝑝𝑘(𝑥) ◦ �̂�𝑘}{𝑝𝑘(𝑥) ◦ �̂�𝑘}′]

Consistency of Ω̂ will then follow from the consistency of 𝑄 established by Lemma D.1. To

save notation, define the vectors

𝑌 :=


𝑌(𝜋1 , 𝑚1)

...

𝑌(𝜋𝑘 , 𝑚𝑘)

 and 𝑌 :=


𝑌(𝜋1 , 𝑚1)

...

𝑌(𝜋𝑘 , 𝑚𝑘)

 (A.6)

Also define ¤𝜖𝑘 := ( ¤𝜖𝑘
1
, . . . , ¤𝜖𝑘

𝑘
) so that ¤𝜖𝑘

𝑗
:= 𝑌(�̄� 𝑗 , �̄� 𝑗) − �̂�(𝑥). Ideally, we would like to use ¤𝜖𝑘 to

estimate Σ̂, but we don’t observe ¤𝜖𝑘 . Define Δ := �̂�𝑘 − ¤𝜖𝑘 = 𝑌𝑘 − �̄�𝑘 ∈ R𝑘 .
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Using this, we can decompose

Σ̂ = E𝑛[{𝑝𝑘(𝑥) ◦ (Δ + ¤𝜖𝑘)}{𝑝𝑘(𝑥) ◦ (Δ + ¤𝜖𝑘)}]
= E𝑛[{𝑝𝑘(𝑥) ◦ Δ}{𝑝𝑘(𝑥) ◦ Δ}′]︸                              ︷︷                              ︸

Σ1

+E𝑛[{𝑝𝑘(𝑥) ◦ ¤𝜖𝑘}{𝑝𝑘(𝑥) ◦ Δ}′]︸                               ︷︷                               ︸
Σ2

+ E𝑛[{𝑝𝑘(𝑥) ◦ Δ}{𝑝𝑘(𝑥) ◦ ¤𝜖𝑘}′]︸                               ︷︷                               ︸
Σ3

+E𝑛[{𝑝𝑘(𝑥) ◦ ¤𝜖𝑘}{𝑝𝑘(𝑥) ◦ ¤𝜖𝑘}]︸                               ︷︷                               ︸
Σ4

(A.7)

We first show that ∥Σ4 − Σ∥ →𝑝 0. This is nonstandard because of the Hadamard product.

Lemma A.3 (Psuedo-Variance Estimator Consistency). Suppose Assumption 4.1 and Assump-
tion 4.2 hold. Further, define 𝑣𝑛 = E[max1≤𝑖≤𝑛 | �̄�𝑘 |2]1/2. In addition, assume that �̄�1𝑛 + �̄�2𝑛 ≲
(log 𝑘)1/2. Then,

∥𝑄 −𝑄∥ ≲𝑃

√
𝜉2

𝑘
log 𝑘

𝑛
= 𝑜(1)

and ∥Σ4 − Σ∥ ≲𝑃 (𝑣𝑛 ∨ 1 + ℓ𝑘𝑐𝑘)

√
𝜉2

𝑘
log 𝑘

𝑛

Proof. The first result is established by Lemma D.1 (Matrix LLN). Rest of proof will follow proof

of Theorem 4.6 in Belloni et al. (2015). Like in (A.7) we can define
¤Δ ≡ ¤𝜖𝑘 − 𝜖𝑘 = 𝑔0(𝑥) − �̂�(𝑥)1

and decompose

Σ4 = E𝑛[𝑝𝑘(𝑥)𝑝𝑘(𝑥)′ ¤Δ2]︸                 ︷︷                 ︸
Σ41

+E𝑛[{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}{𝑝𝑘(𝑥) · ¤Δ}′]︸                                       ︷︷                                       ︸
Σ42

+ E𝑛[{𝑝𝑘(𝑥) · ¤Δ}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}′]︸                                       ︷︷                                       ︸
Σ43

+E𝑛[{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}]︸                                                ︷︷                                                ︸
Σ44

The terms Σ41 ,Σ42 and Σ43 are simple to show are negligible.

∥Σ41 + Σ42 + Σ43∥
≤ ∥E𝑛[{𝑝𝑘(𝑥)′(�̂�𝑘 − 𝛽𝑘)}𝑝𝑘(𝑥)𝑝𝑘(𝑥)′]∥ + ∥E𝑛[{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}𝑝𝑘(𝑥)′{𝑝𝑘(𝑥)′(�̂�𝑘 − 𝛽𝑘)}]∥
+ ∥E𝑛[𝑝𝑘(𝑥){𝑝𝑘(𝑥)′(�̂�𝑘 − 𝛽𝑘)}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}′]∥
≤ max

1≤𝑖≤𝑛
|𝑝𝑘(𝑥)(�̂�𝑘 − 𝛽𝑘)|2∥E𝑛[𝑝𝑘(𝑥)𝑝𝑘(𝑥)′]∥

+ 2 max

1≤𝑖≤𝑛
| �̄�𝑘,𝑖 | + |𝑟𝑘,𝑖 | max

1≤𝑖≤𝑛
|𝑝𝑘(𝑥)′(�̂� − 𝛽)|∥E𝑛[𝑝𝑘(𝑥)𝑝𝑘(𝑥)′]∥

By Theorem D.2 | max1≤𝑖≤𝑛 |𝑝𝑘(𝑥)′(�̂�𝑘 − 𝛽𝑘)| ≲𝑃 𝜉2

𝑘
(
√

log 𝑘 + �̄�1𝑛 + �̄�2𝑛)2/𝑛, by Assumption 4.1

the approximation error is bounded max1≤𝑖≤𝑛 |𝑟𝑘,𝑖 | ≤ ℓ𝑘𝑐𝑘 , by Assumption 4.2 and Markov’s

inequality the errors are bounded max1≤𝑖≤𝑛 | �̄�𝑘,𝑖 | ≲𝑝 𝑣2

𝑛 . Finally, by the first part of Lemma A.3

∥𝑄∥ ≲𝑃 ∥𝑄∥ ≲ 1. Putting this all together with �̄�1𝑛 + �̄�2𝑛 ≲ (log 𝑘)1/2
and 𝜉2

𝑘
log 𝑘/𝑛 → 0 gives

∥Σ41 + Σ42 + Σ43∥ ≲𝑃 (𝑣𝑛 ∨ 1 + ℓ𝑘𝑐𝑘)

√
𝜉2

𝑘
log 𝑘

𝑛
.

1It is useful to recall that ¤𝜖𝑘 = �̄�𝑘 − �̂�(𝑥) and 𝜖𝑘 = �̄�𝑘 − 𝑔
0
(𝑥)
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Next, we want to control Σ44−Σ. To do this, let 𝜂1 , . . . , 𝜂𝑛 be independent Rademacher random

variables generated independently from the data. Then for 𝜂 = (𝜂1 , . . . , 𝜂𝑛)

E[∥E𝑛[{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}′] − Σ∥]
≲ E[E𝜂[E𝑛 ∥𝜂{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}′∥]]

≲

√
log 𝑘

𝑛
E[(∥E𝑛[∥𝑝𝑘(𝑥)∥2(�̄�𝑘 + 𝑟𝑘)2{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}′]∥)1/2]

≲

√
𝜉2

𝑘
log 𝑘

𝑛
E[max

1≤𝑖≤𝑛
| �̄�𝑘,𝑖 + 𝑟𝑘 |(∥E𝑛[{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}′]∥)1/2]

≤

√
𝜉2

𝑘
log 𝑘

𝑛
(E[max

1≤𝑖≤𝑛
| �̄�𝑘,𝑖 + 𝑟𝑘 |2])1/2 × (E[∥E𝑛[{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}′]∥])1/2

where the first inequality holds from Symmetrization (SI), the second from Khinchin’s inequal-

ity (KI-1), the third by max1≤𝑖≤𝑛 ∥𝑝𝑘(𝑥)∥ ≤ 𝜉𝑘 and the fourth by Cauchy-Schwarz inequality.

Since for any positive numbers 𝑎, 𝑏 and 𝑅, 𝑎 ≤ 𝑅(𝑎 + 𝑏)1/2
implies 𝑎 ≤ 𝑅2 +𝑅

√
𝑏, the expression

above and the triangle inequality yields

E[∥E𝑛[{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}′] − Σ∥]

≲
𝜉2

𝑘
log 𝑘

𝑛
(𝑣2

𝑛 + ℓ 2

𝑘
𝑐2

𝑘
) +

(
𝜉2

𝑘
log 𝑘

𝑛
{𝑣2

𝑛 + ℓ 2

𝑘
𝑐2

𝑘
}
)

1/2

∥Σ∥1/2

and so, because ∥Σ∥ ≲ 1 and (𝑣2

𝑛 + ℓ 2

𝑘
𝑐2

𝑘
)𝜉2

𝑘
log 𝑘/𝑛 → 0 we have

E[∥E𝑛[{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}{𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)}′] − Σ∥] ≲ (𝑣𝑛 ∨ 1 + ℓ𝑘𝑐𝑘)

√
𝜉2

𝑘
log 𝑘

𝑛
.

The second result of Lemma A.3 follows from Markov’s inequality. □

Now, we need to take care of the terms

Σ1 = E𝑛[{𝑝𝑘(𝑥) ◦ Δ}{𝑝𝑘(𝑥) ◦ Δ}′]
Σ2 = E𝑛[{𝑝𝑘(𝑥) ◦ ¤𝜖𝑘}{𝑝𝑘(𝑥) ◦ Δ}′]
Σ3 = E𝑛[{𝑝𝑘(𝑥) ◦ Δ}{𝑝𝑘(𝑥) ◦ ¤𝜖𝑘}′]

where Δ = 𝑌𝑘 − �̄�𝑘 and ¤𝜖𝑘 = �̄�𝑘 − �̂�(𝑥) = �̂�(𝑥) − 𝑔𝑘(𝑥) + 𝜖𝑘 . To do so we will use Condition 2.

Lemma A.4 (Negligible Variance Bias). Suppose that Condition 2, Assumption 4.1 and Assump-
tion 4.2 hold. Then

∥Σ1 + Σ2 + Σ3∥ = 𝑜𝑝(1).

Proof. From Condition 2, the term Σ1 being negligible immediately follows from Cauchy-
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Schwarz. Notice that

∥Σ1∥ ≤ 𝑘 sup

1≤𝑙≤𝑘
1≤ 𝑗≤𝑘

|E𝑛[𝑝𝑙(𝑋)(𝑌(�̂�𝑙 , �̂�𝑙) − 𝑌(�̄� 𝑗 , �̄� 𝑗))𝑝𝑙(𝑋)(𝑌(𝜋𝑙 , 𝑚𝑙) − 𝑌(�̄�𝑙 , �̄�𝑙))]|

≤ 𝑘 sup

1≤𝑙≤𝑘
(E𝑛[𝑝 𝑗(𝑋)2(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))2])1/2

sup

1≤ 𝑗≤𝑘
(E𝑛[𝑝 𝑗(𝑋)2(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))2])1/2

= 𝑜𝑝(1).

To see that Σ2 is negligible notice that

∥Σ2∥ ≤ 𝑘 sup

1≤𝑙≤𝑘
1≤ 𝑗≤𝑘

E𝑛[𝑝𝑙(𝑋)(𝜖𝑙 + 𝑝𝑘(𝑥)′(�̂�𝑘 − 𝛽𝑘))𝑝 𝑗(𝑋)(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))]

≤ 𝑘 sup

1≤𝑙≤𝑘
E𝑛[𝑝𝑙(𝑋)2(𝜖𝑙 + 𝑝𝑘(𝑥)′(�̂� − 𝛽))2]1/2E𝑛[𝑝 𝑗(𝑋)2(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))2]1/2

≤ 𝜉𝑘,∞(max

1≤𝑖≤𝑛
| �̄�𝑘 | + max

1≤𝑖≤𝑛
𝑝𝑘(𝑥)′(�̂� − 𝛽))E𝑛[𝑝 𝑗(𝑋)2(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))2]1/2

Applying Assumption 4.2 and Theorem D.2 gives

≲𝑃 𝑘𝜉𝑘,∞𝑛
1/𝑚E[𝑝 𝑗(𝑋)2𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))2]1/2 = 𝑜𝑝(1)

where the final line is via Condition 2. Showing negligibility of Σ3 follows the same steps. □

Proof of Theorem 4.4

Follows from the exact same steps as Theorem 3.5 in Semenova and Chernozhukov (2021)

after establishing strong approximation by a gaussian process as in Theorem 4.2 and consistent

variance estimation as in Theorem 4.3.

B Extension to a Broader Class of Models

In this section, we consider extending the general approach proposed in this paper to a broader

class of parameters. In particular, we consider an important subclass of the models considered

by Chernozhukov et al. (2022). Adopting the language of Chernozhukov et al. (2022), let

𝑊 ∈ 𝒲 be a data observation and consider a subvector (𝑌, 𝐷′, 𝑍′)′ where 𝑌 ∈ R is a scalar

outcome with finite variance, 𝐷 ∈ 𝒟 ⊆ R𝑑𝑡 represents a vector of treatment variables, and

𝑍 ∈ 𝒵 ⊆ R𝑑𝑧 is a covariate vector. Denote 𝛾0(𝑑, 𝑧) as the conditional expectation

𝛾0(𝑑, 𝑧) = E[𝑌 | 𝐷 = 𝑑, 𝑍 = 𝑧]

Let 𝑚(𝑤, 𝛾) : 𝒲 × 𝐿2(𝐷, 𝑍) → R denote a function of both the data and a potential con-

ditional expectation function 𝛾. Following Chernozhukov et al. (2022) we require that the

function 𝑚(𝑤, 𝛾) is linear in the function 𝛾, however we additionally require that 𝑚(𝑤, 𝛾 · 𝑓 ) =
𝑓 (𝑧)𝑚(𝑤, 𝛾) for any 𝑓 ∈ 𝐿2(𝑍) and any 𝛾 ∈ 𝐿2(𝐷, 𝑍). While this second requirement is tech-

nically a new restriction, we will see below that still it allows us to consider us to consider

conditional versions of all linear effect parameters explicitly considered in Chernozhukov et al.

(2022). In this framework, the parameter of interest is a function

𝜃0(𝑥) = E[𝑚(𝑊, 𝛾0) | 𝑋 = 𝑥] (B.1)

where 𝑋 ∈ 𝒳 ⊆ R𝑑𝑥 is a subvector of 𝑍 of fixed dimension.

Below, we give some example instances of this general framework. These correspond to
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Examples 1-4 in Chernozhukov et al. (2022).

Example B.1 (Conditional Average Policy Effect). We may consider the effect of changing the

distribution of treatment variables 𝐷 from a known 𝐹0 to another known 𝐹1, where 𝐷 is

exogenously assigned and so independent of 𝑍 and 𝛾0 does not vary with the distribution

of 𝐷. In particular, we may be interested in the differential effects of this policy change for

subpopulations described by 𝑋. In this case, the parameter of interest is

𝜃0(𝑥) = E
[∫

𝛾0(𝑑, 𝑍)𝑑𝜇(𝑑) | 𝑋 = 𝑥

]
, 𝜇(𝑑) = 𝐹1(𝑑) − 𝐹0(𝑑).

Here, 𝑚(𝑤, 𝛾) =
∫
𝛾(𝑑, 𝑧)𝑑𝜇(𝑑) and we can notice that 𝑚(𝑤, 𝛾 · 𝑓 ) = 𝑓 (𝑧)𝑚(𝑤, 𝛾).

Example B.2 (Conditional Weighted Average Derivative). Here, let 𝐷 ∈ R have a marginal

distribution absolutely continuous with respect to Lesbeque measure and let 𝜔(𝑑) be a known

weakly positive and differentiable weighting function satisfying

∫
𝜔(𝑢) 𝑑𝑢 = 1. The parameter

of interest here is

𝜃0(𝑥) = E
[∫

𝜔(𝑢)𝜕𝛾0(𝑢, 𝑍)
𝜕𝑑

𝑑(𝑢) | 𝑋 = 𝑥

]
= E

[
𝑆(𝑈)𝛾0(𝑈, 𝑍) | 𝑋 = 𝑥

]
where the equality follows from integration by parts for 𝑆(𝑢) = −𝜔′(𝑢)/𝜔(𝑢) and𝑈 represents

a continuously distributed random variable independent of 𝑍 distributed with pdf 𝜔(𝑢). Here,

𝑚(𝑤, 𝛾) = 𝑠(𝑢)𝛾(𝑢, 𝑧) is linear in 𝛾 and satisfies 𝑚(𝑤, 𝛾 · 𝑓 ) = 𝑓 (𝑧)𝑠(𝑢)𝛾(𝑢, 𝑧). If the outcome 𝑌

is generated through a potential outcomes model, 𝑌 = 𝑌(𝐷) for a potential outcome stochastic

process 𝑌(𝑑) that is independent of the treatment 𝐷 conditional on covariates 𝑍, the parameter

𝜃0 may be interpreted as a weighted average of 𝜕𝑌(𝑑)/𝜕𝑑, weighted according to𝜔(𝑑), conditional
on baseline covariates 𝑋 (Imbens and Newey, 2009). By taking a series 𝜔(·) placing increasing

mass near a particular treatment vale 𝑑, this could be used to obtain a consistent estimator

and inference procedure for the conditional average treatment effect for a particular treatment

value 𝑑.

Example B.3 (Conditional Average Treatment Effect). In this example, considered in the main

text of the paper, we deal with a potential outcomes framework where 𝐷 ∈ {0, 1} and 𝑌 is

generated according to 𝑌 = 𝐷𝑌(1) + (1 − 𝐷)𝑌(0). The potential outcomes (𝑌(1), 𝑌(0)) are

assumed independent of 𝐷 conditional on the covariates 𝑍 and the parameter of interest is

𝜃0(𝑥) = E[𝑌(1) − 𝑌(0) | 𝑋 = 𝑥]
= E[𝛾0(1, 𝑍) − 𝛾0(0, 𝑍) | 𝑋 = 𝑥]

Here, 𝑚(𝑤, 𝛾) = 𝛾(1, 𝑧) − 𝛾(0, 𝑧) satisfies 𝑚(𝑤, 𝛾 · 𝑓 ) = 𝑓 (𝑧)𝑚(𝑤, 𝛾) for any function 𝑓 (𝑧).
Departing from the treatment of the conditional average treatment effect in the main text

of the paper, but following Chernozhukov et al. (2022), the general approach outlined in

this section will essentially assume an approximately linear model for the inverse propensity

score. This will allow us to sidestep using seperate estimating procedures for E[𝑌(1) | 𝑋 = 𝑥]
and E[𝑌(0) | 𝑋 = 𝑥], as is done in the main text, but draws the typical downside of using

linear probability models; the estimated inverse propensity scores may be negative for some

observations.

Example B.4 (Conditional Average Equivalent Variation Bound). In this example, the outcome

𝑌 is the share of income spent on a commodity, 𝐷 = 𝑃1 represents the price of the commodity,

and 𝑍 includes income �̄�, prices of other goods, and other factors affecting utility. Let 𝑝 < �̄� be

upper and lower bounds over which the price may vary, 𝜅 a bound on the income effect, 𝜔(𝑧)
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some weight function, and𝑈 ∼ Unif(𝑝, �̄�) be generated independently of𝑊 .

The object of interest is

𝜃0(𝑥) = E
[
Λ(𝑈, 𝑍)𝛾0(𝑈, 𝑍) | 𝑋 = 𝑥

]
, Λ(𝑢, 𝑧) = 𝜔(𝑧)(�̄� − 𝑝)�̄�1 exp(−𝜅(𝑢 − 𝑝))

If heterogeneity in preferences is independent of 𝑍 and 𝜅 is a lower bound on the derivative of

consumption with respect to income, then E[𝜃0(𝑋)] is a bound on the weighted average over

consumers of the equivalent variation for a price change of the first good from 𝑝 to �̄�. The

parameter 𝜃0(𝑥) could then explore heterogeneity in this weighted average equivalent variation

in some demographic characteristic usch as income.

We focus on functions 𝑚(𝑤, 𝛾) such that the linear functional ℒ𝑚 : 𝐿2(𝐷, 𝑍) → R, 𝛾 ↦→
E[𝑚(𝑊, 𝛾)] is continuous, that is there exists a 𝐶 > 0 such that |E[𝑚(𝑊, 𝛾)]| ≤ 𝐶∥𝛾∥𝐿2 where

∥𝛾∥𝐿2 =
√
E[(𝛾(𝐷, 𝑍))2]. In this case, the functional ℒ𝑚 has a reisz-representer 𝛼0(𝐷, 𝑍) such

that for any 𝛾 ∈ 𝐿2(𝐷, 𝑍)

ℒ𝑚(𝛾) = E[𝑚(𝑊, 𝛾)] = E[𝛼0(𝐷, 𝑍)𝛾(𝐷, 𝑍)]

In particular, since 𝑚(𝑤, 𝛾 · 𝑓 ) = 𝑓 (𝑧)𝑚(𝑤, 𝛾) for any 𝑓 ∈ 𝐿2(𝑍) we have that

E[𝑚(𝑊, 𝛾) | 𝑍] = E[𝛼0(𝐷, 𝑍)𝛾(𝐷, 𝑍) | 𝑍]

for any function 𝛾 ∈ 𝐿2(𝐷, 𝑍). Thus, as 𝑋 is a subvector of 𝑍, we can identify 𝜃0(𝑥) via any of

the equalities below

𝜃0(𝑥) = E[𝑚(𝑊, 𝛾0) | 𝑋 = 𝑥]
= E[𝛼0(𝐷, 𝑍)𝛾0(𝐷, 𝑍) | 𝑋 = 𝑥]
= E[𝛼0(𝐷, 𝑍)𝑌 | 𝑋 = 𝑥]

To allow the dimensionality of the controls, 𝑑𝑧 , to be high-dimensional and/or for machine

learning methods to be used to estimate 𝛾0, we combine all of these to obtain an orthogonal

estimating score

𝜓(𝑤, 𝛾0 , 𝛼0) = 𝑚(𝑤, 𝛾0) + 𝛼0(𝑑, 𝑧)[𝑦 − 𝛾0(𝑑, 𝑧))]
and note that the parameter of interest can be identified 𝜃0(𝑥) = E[𝜓(𝑊, 𝛾0 , 𝛼0) | 𝑋 = 𝑥]. This

formulation allows for doubly robust identification. For any 𝛾 ∈ 𝐿2(𝐷, 𝑍) and 𝛼 ≠ 𝛼0 ∈ 𝐿2(𝐷, 𝑍)
we have that

𝜃0(𝑥) = E[𝜓(𝑊, 𝛾0 , 𝛼0) | 𝑋 = 𝑥]
= E[𝜓(𝑊, 𝛾, 𝛼0) | 𝑋 = 𝑥]
= E[𝜓(𝑊, 𝛾0 , 𝛼) | 𝑋 = 𝑥]

B.1 Estimation and Inference Procedure

As in the main text, we will estimate 𝜃0(𝑥) by taking a quasi-projection of the orthogonal score

onto a growing set of basis functions 𝑝𝑘(𝑥) = (𝑝1(𝑥), . . . , 𝑝𝑘(𝑥))′ ∈ R𝑘 , employing seperate

outcome regression and reisz representer estimators (�̂�𝑗(𝑧), �̂� 𝑗(𝑧)) for each basis term 𝑗 =

1, . . . , 𝑘. Departing from the main text, however, we will consider a cross fit approach as in

Chernozhukov et al. (2018); Semenova and Chernozhukov (2021); Chernozhukov et al. (2022).

This will allow us to relax some sparsity assumptions made in the main text, though at the cost

of some additional notational complexity.

To simplify exposition, consider splitting the sample {1, . . . , 𝑛} into two subsamples of roughly
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equal size; ℐ1 and ℐ2 such that ℐ1 ∪ ℐ2 = {1, . . . , 𝑛}, ℐ1 ∩ ℐ2 = ∅ and lim𝑛→∞ |ℐ1 |/|ℐ2 | = 1. We

will assume that both the outcome regression and reisz-representer have approximately linear

representations in some basis 𝑏(𝑑, 𝑧) ∈ R𝑑𝑏 ,

𝛾0(𝑧) ≈ 𝑏(𝑑, 𝑧)′Π𝛾
and 𝛼0(𝑧) ≈ 𝑏(𝑑, 𝑧)′Π𝛼 ,

though our inference results will be valid even if one of these models is misspecified. To allow

for a large number of controls, we will allow 𝑑𝑏 ≫ 𝑛 and for each split 𝑠 = 1, 2 and basis term

𝑗 = 1, . . . , 𝑘 we conduct a seperate estimation procedure for Π𝛾
and Π𝛼

using an ℓ1-penalty:

Π̂𝛼
𝑠, 𝑗 = arg min

Π∈R𝑑𝑧
1

|ℐ𝑐
𝑠 |

∑
𝑖∈ℐ𝑐

𝑠

𝑝 𝑗(𝑋𝑖)
{

1

2

(𝑏(𝐷𝑖 , 𝑍𝑖)′Π)2 − 𝑚(𝑊𝑖 , 𝑏(𝐷𝑖 , 𝑍𝑖)′Π)
}
+ 𝜆∥Π∥1

Π̂
𝛾
𝑠, 𝑗

= arg min

Π∈R𝑑𝑧
1

|ℐ𝑐
𝑠 |

1

2

∑
𝑖∈ℐ𝑐

𝑠

𝑝 𝑗(𝑋𝑖)
(
𝑌𝑖 − 𝑏(𝐷𝑖 , 𝑍𝑖)′Π

)
2 + 𝜆∥Π∥1

We can then define �̂�𝑠, 𝑗(𝑑, 𝑧) = 𝑏(𝑑, 𝑧)′Π̂𝛼
𝑠, 𝑗

and �̂�𝑠,𝑘(𝑑, 𝑧) = 𝑏(𝑑, 𝑧)′Π̂𝛾
𝑙 ,𝑘

. Using these 𝑘 pairs

of first-stage outcome-regression and reisz-representer estimators define the second-stage esti-

mator 𝜃(𝑥) B 𝑝𝑘(𝑥)′�̂�𝑘 where

�̂�𝑘 B 𝑄−1

©«
𝑛−1

∑
2

𝑠=1

∑
𝑖∈ℐ𝑠 𝑝1(𝑋𝑖)𝜓(𝑊𝑖 , �̂�𝑠,1 , �̂�𝑠,1)

𝑛−1
∑

2

𝑠=1

∑
𝑖∈ℐ𝑠 𝑝2(𝑋𝑖)𝜓(𝑊𝑖 , �̂�𝑠,2 , �̂�𝑠,2)

...

𝑛−1
∑

2

𝑠=1

∑
𝑖∈ℐ𝑠 𝑝𝑘(𝑋𝑖)𝜓(𝑊𝑖 , �̂�𝑠,𝑘 , �̂�𝑠,𝑘)

ª®®®®®¬
for 𝑄 B E𝑛[𝑝𝑘(𝑋)𝑝𝑘(𝑋)′] as in the main text. We estimate the variance of 𝜃(𝑥) using �̂�(𝑥) B
∥Ω̂1/2𝑝𝑘(𝑥)∥/

√
𝑛, where

Ω̂ B 𝑄−1E𝑛[{𝑝𝑘(𝑋) ◦ �̂�𝑘}{𝑝𝑘(𝑋) ◦ �̂�𝑘}′]𝑄−1

and ◦ represents the Hadamard element-wise product. The vector �̂�𝑘 collects the various

estimated error terms; �̂�𝑘 B (�̂�1 , . . . , �̂�𝑘)′ for �̂� 𝑗 B 𝜓(𝑊, �̂�𝑗 , �̂� 𝑗) − 𝜃(𝑥). Inference is based on the

100(1 − 𝜂)% confidence bands

[𝑖(𝑥), 𝑖(𝑥)] B [𝜃(𝑥) − 𝑐★(1 − 𝜂/2)�̂�(𝑥), 𝜃(𝑥) + 𝑐★(1 − 𝜂/2)�̂�(𝑥)]

For pointwise inference, the critical value 𝑐★(1 − 𝜂/2) is taken as the (1 − 𝜂/2) quantile of a

standard normal distribution while for uniform inference we take

𝑐★𝑢 (1 − 𝜂/2) B (1 − 𝜂/2)-quantile of sup

𝑥∈𝒳

�����𝑝𝑘(𝑥)𝜔1/2

�̂�(𝑥)
𝑁𝑏
𝑘

�����
where 𝑁𝑏

𝑘
is a bootstrap draw from 𝑁(0, 𝐼𝑘).

B.2 Formal Results

In this subsection, we state high level assumptions under which our first stage estimation

procedure can satisfy Conditions 1 and 2. From there, the validity of the inference procedure

described above follows directly from results in Section 4.
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For each 𝑗 = 1, . . . , 𝑘 define the population minimizers

Π̄𝛼
𝑗 = arg min

Π
E

[
𝑝 𝑗(𝑋𝑖)

{
1

2

(𝑏(𝐷𝑖 , 𝑍𝑖)′Π)2 − 𝑚(𝑊𝑖 , 𝑏(𝐷𝑖 , 𝑍𝑖)′Π)
}]

Π̄
𝛾
𝑗
= arg min

Π
E

[
𝑝 𝑗(𝑋𝑖)

(
𝑌𝑖 − 𝑏(𝐷𝑖 , 𝑍𝑖)′Π

)
2

]
and their functional analogs, �̄� 𝑗(𝑑, 𝑧) = 𝑏(𝑑, 𝑧)′Π̄𝛼

𝑗
and �̄�𝑗(𝑑, 𝑧) = 𝑏(𝑑, 𝑧)′Π̄𝛾

𝑗
. For each 𝑗 =

1, . . . , 𝑘 let 𝑟𝛼, 𝑗(𝑑, 𝑧) and 𝑟𝛾, 𝑗(𝑑, 𝑧) be approximation errors defined such that

𝛼0(𝑑, 𝑧) = 𝑏(𝑑, 𝑧)′Π̄𝛼
𝑗 + 𝑟𝛼, 𝑗(𝑑, 𝑧)

= �̄� 𝑗(𝑑, 𝑧) + 𝑟𝛼, 𝑗(𝑑, 𝑧)
and 𝛾0(𝑑, 𝑧) = 𝑏(𝑑, 𝑧)′Π̄𝛾

𝑗
+ 𝑟𝛾, 𝑗(𝑑, 𝑧)

= �̄�𝑗(𝑑, 𝑧) + 𝑟𝛾, 𝑗(𝑑, 𝑧)

If the linear models for the resiz-representer and outcome regression provide a good approx-

imation of the true models, then these approximation error terms will tend to zero. Under

misspecification, however, they may persist even in large samples.

Define the convergence rates for Π̂𝛼
𝑗

and Π̂
𝛾
𝑗

in prediction norm as

𝑟𝛼 = max

1≤ 𝑗≤𝑘
1≤𝑠≤2

E
[
(𝑏(𝐷, 𝑍)′(Π̂𝛼

𝑠, 𝑗 − Π̄𝛼
𝑗 ))

2 | ℐ𝑐
𝑠

]
1/2

and 𝑟𝛾 = max

1≤ 𝑗≤𝑘
1≤𝑠≤2

E
[
(𝑏(𝐷, 𝑍)′(Π̂𝛾

𝑠, 𝑗
− Π̄

𝛾
𝑗
))2 | ℐ𝑐

𝑠

]
1/2

Recall the definition of the linear functional ℒ𝑚(·) : 𝐿2(𝐷, 𝑍) → R and the operator norm, ∥ · ∥𝑂 ,

∥ℒ𝑚 ∥𝑂 = sup

𝛾∈𝐿2(𝐷,𝑍)
𝛾≠0

����ℒ𝑚(𝛾)
∥𝛾∥𝐿2

����
Assumption B.1. Suppose that for some constant 𝐶0 > 0, (i) max1≤ 𝑗≤𝑘 ∥�̄�𝑗 ∥∞ ∨ ∥𝛾0∥∞ ≤ 𝐶0, (ii)
∥ℒ𝑚 ∥𝑂 ≤ 𝐶0, (iii)

Assumption B.1 is presented similarly to Assumption 5.2 in Navjeevan et al. (2023).

Theorem B.1. Suppose that Assumption B.1 holds. Then

sup

1≤ 𝑗≤𝑘
|E𝑛

[
𝑝 𝑗(𝑋)

(
𝜓(𝑊, �̂�𝑗 , �̂� 𝑗) − 𝜓(𝑊, �̄�𝑗 , �̄� 𝑗)

)]
| ≲𝑝 𝑛−1/2𝑘−1/2

Moreover, if sup
1≤ 𝑗≤𝑘 E[𝑝 𝑗(𝑋)𝑟𝛼, 𝑗(𝐷, 𝑍)𝑟𝛾, 𝑗(𝐷, 𝑍)] ≲ 𝑛−1/2𝑘−1/2 then

sup

1≤ 𝑗≤𝑘
|E

[
𝑝 𝑗(𝑋)

(
𝜓(𝑊, �̄�𝑗 , �̄� 𝑗) − 𝜓(𝑊, 𝛾0 , 𝛼0)

)]
| ≲ 𝑛−1/2𝑘−1/2

Theorem B.1 allows us to verify Condition 1 under mild conditions on the convergence rate of

the estimators Π̂𝛼
𝑗

and Π̂
𝛾
𝑗
. Importantly, the second statement in the theorem requires only one

of either 𝑟𝛼, 𝑗(𝑑, 𝑧) or 𝑟𝛾, 𝑗 to be negligible asymptotically.

To ensure consistent variance estiamtion, we next turn to high level conditions under which
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Condition 2 may be verified.

Theorem B.2. Suppose that Assumption B.1 holds. In addition suppose that 𝑟𝛾𝑟𝛼 ≲𝑝 𝜉𝑘,∞𝑘−2𝑛−1/𝑚

for 𝑚 > 2 as in Assumption 4.2. Then

sup

1≤ 𝑗≤𝑘
E𝑛

[
𝑝2

𝑗 (𝑋)
(
𝜓(𝑊, �̂�𝑗 , �̂� 𝑗) − 𝜓(𝑊 ; �̄�𝑗 , �̄� 𝑗)

)
2

]
≲𝑝 𝜉𝑘,∞𝑘

−2𝑛−1/𝑚

Moreover, if sup
1≤ 𝑗≤𝑘 E[𝑝 𝑗(𝑋)𝑟𝛼, 𝑗(𝐷, 𝑍)𝑟𝛾, 𝑗(𝐷, 𝑍)] ≲ 𝑛−1/2𝑘−1/2 then

sup

1≤ 𝑗≤𝑘
E

[
𝑝2

𝑗 (𝑋)
(
𝜓(𝑊, �̄�𝑗 , �̄� 𝑗) − 𝜓(𝑊 ; 𝛾0 , 𝛼0)

)
2

]
≲ 𝜉𝑘,∞𝑘

−2𝑛−1/𝑚

We omit the proofs of Theorems B.1 and B.2 here for brevity but they are available upon request.

They both follow from similar steps as in the proof of Theorem 5.1 in Navjeevan et al. (2023).
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C Supporting Lemmas for First Stage

Here we provide supporting lemmas and their proofs. We start off with non-asymptotic bounds

for first stage parameters and means.

C.1 Nonasymptotic Bounds for the First Stage

The nonasymptotic bounds for the first stage will depend on certain events. In Appendix C.3

we will show that under Assumption 3.1 these events happen with probability approaching

one. To control sparsity, define 𝒮𝛾, 𝑗 := { 𝑗 : �̄� 𝑗 ≠ 0}, 𝒮𝛼, 𝑗 := { 𝑗 : �̄� 𝑗 ≠ 0}. Recall 𝑠𝑘 :=

max1≤ 𝑗≤𝑘{|𝒮𝛾, 𝑗 | ∨ |𝒮𝛼, 𝑗 |}. Define the scores

𝑆𝛾, 𝑗 := E𝑛[𝑈𝛾, 𝑗𝑍]
𝑆𝛼, 𝑗 := E𝑛[𝑈𝛼, 𝑗𝑍]

(C.1)

With these in mind, we will consider nonasymptotic bounds under the events:

Ω𝑘,1 := {𝜆𝛾, 𝑗 ≥ 𝑐0 · ∥𝑆𝛾, 𝑗 ∥∞ ,∀𝑗 ≤ 𝑘}
Ω𝑘,2 := {𝜆𝛾, 𝑗 ≤ �̄�𝑘 ,∀𝑗 ≤ 𝑘}

(C.2)

Following Chetverikov and Sørensen (2021), the first event is referred to as “score domination”

while the second event is referred to as “penalty majorization”.

Bounds will be established on the ℓ1 convergence rate of the estimated coefficient vector as well

as on the symmetrized Bregman divergences, 𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) and 𝐷

‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; 𝛾𝑗), defined by

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) := E𝑛

[
𝑝 𝑗(𝑋)𝐷{𝑒−�̂�

′
𝑗
𝑍 − 𝑒−�̄�

′
𝑗
𝑍}{�̄�′

𝑗𝑍 − �̂�′
𝑗𝑍}

]
,

𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̂�) := E𝑛

[
𝑝 𝑗(𝑋)𝐷𝑒−�̂�

′
𝑗
𝑍(�̄�′

𝑗𝑍 − �̂�′
𝑗𝑍)

2

]
.

(C.3)

Lemma C.1 (Nonasymptotic Bounds for Logistic Model). Suppose that Assumption 3.1 holds with
𝜉0 > (𝑐0 + 1)/(𝑐0 − 1) and 2𝐶0𝜈−2

0
𝑠𝑘�̄�𝑘 ≤ 𝜂 < 1. Then, under the events Ω𝑘,1 ∩Ω𝑘,2 defined in (C.2),

there exists a finite constant 𝑀0 that does not depend on 𝑘 such that

max

1≤ 𝑗≤𝑘
𝐷‡(�̄� , �̂�) ≤ 𝑀0𝑠𝑘�̄�

2

𝑘
and max

1≤ 𝑗≤𝑘
∥�̂�𝑗 − �̄�𝑗 ∥1 ≤ 𝑀0𝑠𝑘�̄�𝑘 (C.4)

Proof. We show that the bound of (C.4) holds for each 𝑗 = 1, . . . , 𝑘. For any 𝛾 ∈ R𝑑 define

ℓ̃ 𝑗(𝛾) := E𝑛[𝑝 𝑗(𝑋){𝐷𝑒−𝛾′𝑍 + (1 − 𝐷)𝛾′𝑍}]. By optimality of �̂�𝑗 we must have, for any 𝑢 ∈ (0, 1]:

ℓ̃ 𝑗

(
�̂�𝑗

)
+ 𝜆𝛾, 𝑗 ∥�̂�𝑗 ∥1 ≤ ℓ̃

(
(1 − 𝑢)�̂�𝑗 + 𝑢�̄�𝑗

)
+ 𝜆𝛾, 𝑗 ∥(1 − 𝑢)�̂�𝑗 + 𝑢�̄�𝑗 ∥1.

Using convexity of the ℓ1 norm ∥ · ∥1, this gives after rearrangment

ℓ̃ 𝑗

(
�̂�𝑗

)
− ℓ̃

(
(1 − 𝑢)�̂�𝑗 + 𝑢�̄�𝑗

)
+ 𝜆𝛾, 𝑗𝑢∥�̂�𝑗 ∥1 ≤ 𝜆𝛾, 𝑗𝑢∥�̄�𝑗 ∥1.

Divide both sides by 𝑢 and let 𝑢 →+
0

E𝑛[𝑝 𝑗(𝑋)𝐷{𝑒−�̂�′𝑍 + (1 − 𝐷)}{�̂�′
𝑗𝑍 − �̄�′

𝑗𝑍}] + 𝜆𝛾, 𝑗 ∥�̂�𝑗 ∥1 ≤ 𝜆𝛾, 𝑗 ∥�̄�𝑗 ∥1.
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By direct calculation, we have that 𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) from (C.3) can be expressed

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) = E𝑛[𝑝 𝑗(𝑋)𝐷{𝑒−�̂�′𝑍+(1−𝐷)}{�̂�′

𝑗𝑍− �̄�′
𝑗𝑍}]−E𝑛[𝑝 𝑗(𝑋)𝐷{𝑒−�̄�′𝑍+(1−𝐷)}{�̂�′

𝑗𝑍− �̄�′
𝑗𝑍}].

Combining the last two displays yields

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) + E𝑛[𝑝 𝑗(𝑋)𝐷{𝑒−�̄�′𝑍 + (1 − 𝐷)}{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}] + 𝜆𝛾, 𝑗 ∥�̂�𝑗 ∥1 ≤ 𝜆𝛾, 𝑗 ∥�̄�𝑗 ∥1 (L.1)

In the event Ω𝑘,1 we have that

|E𝑛[𝑝 𝑗(𝑋)𝐷{𝑒−�̄�′𝑍 + (1 − 𝐷){�̂�′𝑍 − �̄�′𝑍}}] ≤ 𝑐−1

0
𝜆𝛾, 𝑗 ∥�̂�𝑗 − �̄�𝑗 ∥1 (L.2)

Combining (L.1) and (L.2) yields

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) + 𝜆𝛾, 𝑗 ∥�̂�𝑗 ∥1 ≤ 𝜆𝛾, 𝑗 ∥�̄�𝑗 ∥ + 𝑐−1

0
𝜆𝛾, 𝑗 ∥�̂�𝑗 − �̄�𝑗 ∥1.

Expanding ∥𝛾𝑗 ∥1 =
∑
𝑙∈𝒮𝛾, 𝑗

|𝛾𝑙 | +
∑
𝑙∉𝒮𝛾, 𝑗

|𝛾𝑙 | for 𝛾 = �̂�𝑗 , �̄�𝑗 and applying the triangle inequalities

|�̂�𝑗 ,𝑙 | ≥ |�̄�𝑗 ,𝑙 | − |�̂�𝑗 ,𝑙 − �̄�𝑗 ,𝑙 | for 𝑙 ∈ 𝒮𝛾, 𝑗 and the equality �̂�𝑗 ,𝑙 = �̂�𝑗 ,𝑙 − �̄�𝑗 ,𝑙 gives

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) + 𝜆𝛾, 𝑗

{ ∑
𝑙∈𝒮𝛾, 𝑗

|�̄�𝑗 ,𝑙 | −
∑
𝑙∈𝒮𝛾, 𝑗

|�̂�𝑗 ,𝑙 − �̄�𝑗 ,𝑙 | +
∑
𝑗∉𝒮𝛾, 𝑗

|�̂�𝑗 ,𝑙 − �̄�𝑗 ,𝑙 |
}

≤ 𝜆𝛾, 𝑗

{ ∑
𝑙∈𝒮𝛾, 𝑗

|�̄�𝑗 ,𝑙 | + 𝑐−1

0

∑
𝑙∈𝒮𝛾, 𝑗

|�̂�𝑗 ,𝑙 − �̄�𝑗 ,𝑙 | + 𝑐−1

0

∑
𝑗∉𝒮𝛾, 𝑗

|�̂�𝑗 ,𝑙 − �̄�𝑗 ,𝑙 |
}

Rearrange to get

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) + (1 − 𝑐−1

0
)𝜆𝛾, 𝑗

∑
𝑙∉𝒮𝛽

|�̂�𝑗 ,𝑙 − �̄�𝑗 ,𝑙 | ≤ (1 + 𝑐0)−1𝜆𝛾, 𝑗

∑
𝑙∈𝒮𝛾, 𝑗

|�̂�𝑗 ,𝑙 − �̄�𝑗 ,𝑙 |.

Adding (1 − 𝑐−1

0
)𝜆𝛾, 𝑗

∑
𝑙∈𝒮𝛾, 𝑗

|�̂�𝑗 ,𝑙 − �̄�𝑗 ,𝑙 | gives

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) + (1 − 𝑐−1

0
)∥�̂�𝑗 − �̄�𝑗 ∥1 ≤ 2𝜆𝛾, 𝑗

∑
𝑙∈𝒮𝛾, 𝑗

|�̂�𝑗 ,𝑙 − �̄�𝑗 ,𝑙 | (L.3)

By Lemma 4 in Appendix V.3 of Tan (2017) we have that for 𝛿 𝑗 := �̂�𝑗 − �̄�𝑗

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) ≥

1 − 𝑒−𝐶0 ∥𝛿 𝑗 ∥1

𝐶0∥ �̂� 𝑗 ∥

(
𝛿′𝑗Σ̃𝛾, 𝑗𝛿 𝑗

)
(L.4)

By (L.3) and 𝜉0 > (𝑐0 + 1)/(𝑐0 − 1) we have that

∑
𝑙∉𝒮𝛾, 𝑗

|𝛿 𝑗 ,𝑙 | ≤ 𝜉0

∑
𝑙∈𝒮𝛾, 𝑗

|𝛿 𝑗 ,𝑙 |. Applying the

empirical compatability condition from Assumption 3.1 to (L.3) then yields

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) + (1 − 𝑐−1

0
)𝜆𝛾, 𝑗 ∥𝛿 𝑗 ∥1 ≤ 2𝜆𝛾, 𝑗𝜈

−1

0
|𝒮𝛾, 𝑗 |1/2(𝛿′𝑗Σ̃𝛾, 𝑗𝛿 𝑗)1/2

(L.5)

Combining (L.4) and (L.5) to get an upper bound on (𝛿′
𝑗
Σ̃𝛿 𝑗)1/2

gives

𝜈0∥𝛿 𝑗 ∥2 ≤ (𝛿′𝑗Σ̃𝛾, 𝑗𝛿 𝑗)1/2 ≤ 2𝜆𝛾, 𝑗𝜈
−1

0
|𝒮𝛾, 𝑗 |1/2

𝐶0∥𝛿 𝑗 ∥1

1 − 𝑒−𝐶0∥𝛿 𝑗 ∥1

.
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Plugging the second bound into (L.5) gives

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) + (1 − 𝑐−1

0
)𝜆𝛾, 𝑗 ∥𝛿 𝑗 ∥1 ≤ 2𝜆

∑
𝑙∈𝒮𝛾, 𝑗

|𝛿 𝑗 ,𝑙 | ≤ 4𝜆2

𝛾, 𝑗𝜈
−2

0
|𝒮𝛾, 𝑗 |

𝐶0∥𝛿 𝑗 ∥1

1 − 𝑒−𝐶0∥𝛿 𝑗 ∥1

.

The second inequality and

∑
𝑙∉𝒮𝛾, 𝑗

|𝛿 𝑗 ,𝑙 | ≤ 𝜉0

∑
𝑙∈𝒮𝛾, 𝑗

|𝛿 𝑗 ,𝑙 | imply 1− 𝑒−𝐶0∥𝛿 𝑗 ∥1 ≤ 2𝐶0𝜆𝛾, 𝑗𝜈−2

0
|𝒮𝛾, 𝑗 | ≤

𝜂 so,

1 − 𝑒−𝐶0∥𝛿 𝑗 ∥1

𝐶0∥𝛿 𝑗 ∥1

=

∫
1

0

𝑒−𝐶0∥𝛿 𝑗 ∥1𝑢 𝑑𝑢 ≥ 𝑒−𝐶0∥𝛿 𝑗 ∥1 ≥ 1 − 𝜂.

Combining the last two displays gives

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) + (1 − 𝑐−1

0
)𝜆𝛾, 𝑗 ∥�̂�𝑗 − �̄�𝑗 ∥1 ≤ 4𝜆2

𝛾, 𝑗𝜈
−2

0
(1 − 𝜂)|𝒮𝛾, 𝑗 | (L.6)

Applying Ω𝑘,2 to bound 𝜆𝛾, 𝑗 ≤ �̄�𝑘 and noting that |𝒮𝛾, 𝑗 | ≤ 𝑠𝑘 by definition gives (C.4) with

𝑀0 =
4𝜈−1

0
(1−𝜂)

1−𝑐−1

0

. □

For each 𝑗, consider the matrices,

Σ̃𝛼, 𝑗 := E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍(𝑌 − �̄�′

𝑗𝑍)
2𝑍𝑍′]

Σ̃𝛾, 𝑗 := E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍
𝑍𝑍′]

(C.5)

In addition define Σ𝛼, 𝑗 := EΣ̃𝛼, 𝑗 and Σ𝛾, 𝑗 := EΣ̃𝛾, 𝑗 . For the outcome regression model, we will

consider nonasymptotic bounds under the following additional events:

Ω𝑘,3 := {𝜆𝛼, 𝑗 ≥ 𝑐0∥𝑆𝛼, 𝑗 ∥∞ ,∀𝑗 ≤ 𝑘}
Ω𝑘,4 := {𝜆𝛼, 𝑗 ≤ �̄�𝑘 ,∀𝑗 ≤ 𝑘}
Ω𝑘,5 := {∥Σ̃𝛼, 𝑗 − Σ𝛼, 𝑗 ∥∞ ≤ �̄�𝑘 ,∀𝑗 ≤ 𝑘}
Ω𝑘,6 := {∥Σ̃𝛾, 𝑗 − Σ𝛾, 𝑗 ∥∞ ≤ �̄�𝑘 ,∀𝑗 ≤ 𝑘}

(C.6)

Lemma C.2 (Nonasymptotic Bounds for Linear Model). Suppose that Assumption 3.1 holds,
𝜉0 > (𝑐0 + 1)/(𝑐0 − 1), and 2𝐶0𝜈−2

0
𝑠𝑘�̄�𝑘 ≤ 𝜂 < 1. In addition, assume there is a constant 𝑐 > 0 such

that 𝜆𝛼, 𝑗/𝜆𝛾, 𝑗 ≥ 𝑐 for all 𝑗 ≤ 𝑘. Then, under the event
⋂

6

𝑚=1
Ω𝑘,𝑚 there is a constant 𝑀1 that does not

depend on 𝑘 such that

max

1≤ 𝑗≤𝑘
𝐷

‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗) ≤ 𝑀1𝑠𝑘�̄�

2

𝑘
and max

1≤ 𝑗≤𝑘
∥�̂� 𝑗 − �̄� 𝑗 ∥1 ≤ 𝑀1𝑠𝑘�̄�𝑘 (C.7)

Proof. We show that the bound of (C.7) holds for each 𝑗 = 1, . . . , 𝑘. We proceed in a few steps.

Step 1: Optimization Step. Let ℓ̃ 𝑗(𝛼; �̂�𝑗) := E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̂�
′
𝑗
𝑍{𝑌−𝛼′𝑍}2]/2. Optimality of �̂� 𝑗 implies

that for any 𝑢 ∈ (0, 1]:

ℓ̃ 𝑗

(
�̂� 𝑗 ; �̂�𝑗

)
− ℓ̃ 𝑗

(
(1 − 𝑢)�̂� 𝑗 + 𝑢�̄� 𝑗 ; �̂�𝑗

)
+ 𝜆𝛼, 𝑗 ∥�̂� 𝑗 ∥1 ≤ 𝜆𝛼, 𝑗 ∥(1 − 𝑢)�̂� 𝑗 + 𝑢�̄� 𝑗 ∥1.

Convexity of the ℓ1 norm ∥ · ∥1 gives

ℓ̃ 𝑗

(
�̂� 𝑗 ; �̂�𝑗

)
− ℓ̃ 𝑗

(
(1 − 𝑢)�̂� 𝑗 + 𝑢�̄� 𝑗 ; �̂�𝑗

)
+ 𝜆𝛼, 𝑗𝑢∥�̂� 𝑗 ∥1 ≤ 𝜆𝛼, 𝑗𝑢∥�̄� 𝑗 ∥1.
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Dividing both sides by 𝑢 and letting 𝑢 → 0
+

gives:

−E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̂�
′
𝑗
𝑍{𝑌 − �̂�′

𝑗𝑍}{�̂�
′
𝑗𝑍 − �̄�′

𝑗𝑍}] + 𝜆𝛼, 𝑗 ∥�̂� 𝑗 ∥1 ≤ 𝜆𝛼, 𝑗 ∥�̄� 𝑗 ∥1.

Rearranging using the form of 𝐷
‡
𝛼, 𝑗 in (C.3) yields:

𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̂�𝑗) + 𝜆𝛼, 𝑗 ∥�̂� 𝑗 ∥1 ≤ (�̂� 𝑗 − �̄�′

𝑗)E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̂�′𝑍{𝑌 − �̄�′
𝑗𝑍}𝑍] + 𝜆𝛼, 𝑗 ∥�̄� 𝑗 ∥1 (O.1)

Step 2: Quasi-Score Domination and relating �̄�𝑗 to �̂�𝑗 . For this step, we will use the fact that we are

in the event Ω𝑘,1 ∩Ω𝑘,2 ∩Ω𝑘,3 ∩Ω𝑘,5 ∩Ω𝑘,6. Using the expression for 𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) from (C.3) we

find that for some 𝑢 ∈ (0, 1):

𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) = −E𝑛[𝑝 𝑗(𝑋)𝐷{𝑒−�̂�

′
𝑗
𝑍 − 𝑒−�̄�

′
𝑗
𝑍}{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}]

= E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−𝑢(�̂�𝑗−�̄�𝑗)′𝑍𝑒−�̄�
′
𝑗
𝑍{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2]

where the second step uses the mean value theorem:

𝑒
−�̂�′

𝑗
𝑍 − 𝑒−�̄�

′
𝑗
𝑍
= 𝑒

−𝑢�̂�′
𝑗
𝑍−(1−𝑢)�̄�′

𝑗
𝑍(�̂�𝑗 − �̄�𝑗)′𝑍 (O.2)

In the event Ω𝑘,1 ∩ Ω𝑘,2 using the bound in Online Appendix Lemma C.1 and the fact that

𝐶0𝜈−2

0
𝑠𝑘�̄�𝑘 ≤ 𝜂 < 1 gives us that

𝐶0∥�̂�𝑗 − �̄�𝑗 ∥1 ≤ 𝐶0𝑀0𝑠𝑘�̄�𝑘 ≤ 𝑀0𝜂. (O.3)

In the event Ω𝑘,1∩Ω𝑘,2 the bound in (L.6) also gives us that𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) ≤ 𝑀0𝑠𝑘𝜆2

𝛾, 𝑗 . Combining

the above displays then yields

𝑀0𝑠𝑘𝜆
2

𝛾, 𝑗 ≥ 𝐷
‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) ≥ 𝑒𝑀0𝜂E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�

′
𝑗
𝑍{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2]. (O.4)

Again applying the bound on 𝐶0∥�̂�𝑗 − �̄�𝑗 ∥1 (O.3) gives

𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̂�𝑗) = E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̂�

′
𝑗
𝑍(�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍)

2]

= E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−(�̂�𝑗−�̄�𝑗)′𝑍𝑒−�̄�
′
𝑗
𝑍(�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍)

2]

≥ 𝑒−𝑀0𝜂𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗)

(O.5)

Decomposing the empirical expectation on the RHS of (O.1) gives

(�̂� 𝑗 − �̄� 𝑗)′E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̂�
′
𝑗
𝑍{𝑌 − �̄�′

𝑗𝑍}𝑍] = (�̂� 𝑗 − �̄� 𝑗)′E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{𝑌 − �̄�′

𝑗𝑍}𝑍]︸                                             ︷︷                                             ︸
𝛿1, 𝑗

+ E𝑛[𝑝 𝑗(𝑋)𝐷{𝑒−�̂�
′
𝑗
𝑍 − 𝑒−�̄�

′
𝑗
𝑍}{𝑌 − �̄�′

𝑗𝑍}{�̂�
′
𝑗𝑍 − �̄�′

𝑗𝑍}]︸                                                              ︷︷                                                              ︸
𝛿2, 𝑗

By Hölder’s inequality, in the event Ω𝑘,3, 𝛿1, 𝑗 is bounded

𝛿1, 𝑗 ≤ 𝑐−1

0
∥�̂� 𝑗 − �̄� 𝑗 ∥1𝜆𝛼, 𝑗 (O.6)

By the mean value equation (O.2) and the Cauchy-Schwarz inequality, 𝛿2, 𝑗 can be bounded
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from above by

𝛿2, 𝑗 ≤ 𝑒𝐶0∥�̂�𝑗−�̄�𝑗 ∥1 × E1/2

𝑛 [𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{�̂�′𝑍 − �̄�′𝑍}2]

× E1/2

𝑛 [𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{𝑌 − �̄�′

𝑗𝑍}
2{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2]
(O.7)

Using (O.3) the first term in (O.7) can be bounded by 𝑒𝑀0𝜂
. The second term is exactly the

square root of 𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗). The third term is bounded in a few steps. First, in the event Ω𝑘,5

we have that

(E𝑛 − E)[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{𝑌 − �̄�′

𝑗𝑍}
2{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}] ≤ �̄�𝑘 ∥�̂�𝑗 − �̄�𝑗 ∥2

1
.

By Assumption 3.1 and Lemma E.6 we have that E[𝐷{𝑌 − �̄�′
𝑗
𝑍}2] ≤ 𝐺2

0
+ 𝐺2

1
so that:

E[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{𝑌 − �̄�′

𝑗𝑍}
2{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2] ≤ (𝐺2

0
+ 𝐺2

1
)E[𝑝 𝑗(𝑋)𝐷𝑒−�̄�

′
𝑗
𝑍{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2].

In the event Ω𝑘,6 we have that

(E𝑛 − E)[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2] ≤ �̄�𝑘 ∥�̂�𝑗 − �̄�𝑗 ∥1.

and we can bound E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{�̂�′

𝑗
𝑍 − �̄�′

𝑗
𝑍}2] using (O.4). Putting this together gives

E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{𝑌 − �̄�′

𝑗𝑍}
2{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}

2] ≤ �̄�𝑘 ∥�̂�𝑗 − �̄�𝑗 ∥2

1

+(𝐺2

0
+ 𝐺2

1
)�̄�𝑘 ∥�̂�𝑗 − �̄�𝑗 ∥2

1

+ (𝐺2

0
+ 𝐺2

1
)𝑒−𝑀0𝜂𝑀0𝑠𝑘𝜆

2

𝛾, 𝑗

(O.8)

Applying convexity of

√· and the bounds on ∥�̂�𝑗 − �̄�𝑗 ∥2

1
in the event Ω𝑘,1 ∩Ω𝑘,2 from (L.6) gives

𝛿2, 𝑗 ≤ {𝑒𝑀0𝜂(1 + (𝐺2

0
+ 𝐺2

1
)1/2)(𝑀0�̄�𝑘𝜆𝛾, 𝑗𝑠𝑘)1/2 + (𝐺2

0
+ 𝐺1)2(𝑀0𝑠𝑘𝜆

2

𝛾, 𝑗)
1/2}𝐷‡

𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗)
1/2

≤ �̃�{(�̄�𝑘𝜆𝛾, 𝑗𝑠𝑘)1/2 + (𝑠𝑘𝜆𝛾, 𝑗)1/2}𝐷‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗)

1/2

(O.9)

where �̃� = max{𝑒𝑀0𝜂𝑀
1/2

0
(1 + 𝐺0 + 𝐺1), (𝐺2

0
+ 𝐺2

1
)𝑀1/2

0
}. Combining (O.6) and (O.9) gives a

bound on the empirical expectation on the RHS of (O.1).

(�̂� 𝑗 − �̄� 𝑗)′E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̂�
′
𝑗
𝑍{𝑌 − �̄�′

𝑗𝑍}𝑍] ≤ 𝑐−1

0
∥�̂� 𝑗 − �̄� 𝑗 ∥1𝜆𝛼, 𝑗︸                ︷︷                ︸

Bound on 𝛿
1, 𝑗 from (O.6)

+ �̃�{(�̄�𝑘𝜆𝛾, 𝑗𝑠𝑘)1/2 + (𝑠𝑘𝜆2

𝛾, 𝑗)
1/2}𝐷‡

𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗)
1/2︸                                                        ︷︷                                                        ︸

Bound on 𝛿
2, 𝑗 from (O.9)

(O.10)

For convenience, we will sometimes continue to refer to the bound on 𝛿2, 𝑗 from (O.9) as simply

𝛿2, 𝑗 .

Step 3: Express Minimization Constraint in Terms of �̄�𝑗 and Simplify. We use the results from Step 2
to rewrite the minimization bound (O.1) from Step 1. Using (O.5) and (O.10) together with the
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minimization bound (O.1) yields

𝑒−𝑀0𝜂𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗) + 𝜆𝛼, 𝑗 ∥�̂� 𝑗 ∥1 ≤ 𝑐−1

0
𝜆𝛼, 𝑗 ∥�̂� 𝑗 − �̄� 𝑗 ∥1 + 𝜆𝛼, 𝑗 ∥�̄� 𝑗 ∥1 + 𝛿2, 𝑗 (O.11)

Apply the triangle inequality |�̂� 𝑗 ,𝑙 | ≥ |�̄� 𝑗 ,𝑙 | − |�̂� 𝑗 ,𝑙 − �̄� 𝑗 ,𝑙 | for 𝑙 ∈ 𝒮𝛼, 𝑗 and |�̂� 𝑗 ,𝑙 | = |�̂� 𝑗 ,𝑙 − �̄� 𝑗 ,𝑙 | for

𝑙 ∉ 𝒮𝛼, 𝑗 to the above to obtain

𝑒−𝑀0𝜂𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗) + (1 − 𝑐−1

0
)∥�̂� 𝑗 − �̄� 𝑗 ∥1 ≤ 2𝜆𝛼, 𝑗

∑
𝑙∈𝒮𝛼, 𝑗

|�̂� 𝑗 ,𝑙 − �̄� 𝑗 ,𝑙 | + 𝛿2, 𝑗 .

Let 𝛿 𝑗 = �̂� 𝑗 − �̄� 𝑗 . We use the form 𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗) = E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�

′
𝑗
𝑍{�̂�′

𝑗
𝑍 − �̄�′

𝑗
𝑍}2] = 𝛿′

𝑗
Σ̃𝛾, 𝑗𝛿 𝑗 to

expand out

𝑒−𝑀0𝜂(𝛿′𝑗Σ̃𝛾, 𝑗𝛿 𝑗) + (1 − 𝑐−1

0
)𝜆𝛼, 𝑗 ∥𝛿∥1 ≤ 2𝜆𝛼, 𝑗

∑
𝑙∈𝒮𝛼, 𝑗

|𝛿 𝑗 ,𝑙 |

+ �̃�{(𝑠𝑘�̄�𝑘𝜆𝛾, 𝑗)1/2 + (𝑠𝑘𝜆𝛾, 𝑗)1/2}(𝛿′𝑗Σ̃𝛾, 𝑗𝛿 𝑗)1/2

(O.12)

Step 4: Apply Empirical Compatability Condition. Let 𝛿3, 𝑗 := �̃�{(𝑠𝑘�̄�𝑘𝜆𝛾, 𝑗)1/2 + (𝑠𝑘𝜆𝛾, 𝑗)1/2} and

𝐷★
𝛼, 𝑗

:= 𝑒−𝑀0𝜂(𝛿′
𝑗
Σ̃𝛾, 𝑗𝛿 𝑗) + (1 − 𝑐−1

0
)𝜆𝛼, 𝑗 ∥𝛿 𝑗 ∥1. In the even Ω𝑘,1 ∩ Ω𝑘,2 ∩ Ω𝑘,3 ∩ Ω𝑘,5 ∩ Ω𝑘,6 that

(O.12) holds, there are two possibilities. For 𝜉2 = 1 − 2𝑐0/{(𝜉1 + 1)(𝑐0 − 1)} ∈ (0, 1] either

𝜉2𝐷
★
𝛼, 𝑗 ≤ 𝛿3, 𝑗(𝛿′𝑗Σ̃𝛾, 𝑗𝛿 𝑗)1/2

(O.13)

or (1 − 𝜉2)𝐷★
𝛼, 𝑗 ≤ 2𝜆𝛼, 𝑗

∑
𝑙∈𝒮𝛼, 𝑗

|𝛿 𝑗 ,𝑙 |, that is

𝐷★
𝛼 𝑗 ≤ (𝜉1 + 1)(𝑐0 − 1)𝑐−1

0
𝜆𝛼, 𝑗

∑
𝑙∈𝒮𝛼, 𝑗

|𝛿 𝑗 ,𝑙 | (O.14)

We deal with these two cases separately. First, if (O.14) holds, then

∑
𝑙∉𝒮𝛼, 𝑗

|𝛿 𝑗 ,𝑙 | ≤ 𝜉1

∑
𝑙∈𝒮𝑗 ,𝑙 |𝛿 𝑗 ,𝑙 |.

We can apply the empirical compatability of Assumption 3.1 to (O.14) to obtain.

𝑒−𝑀0𝜂(𝛿′𝑗Σ̃𝛾, 𝑗𝛿 𝑗) + (1 − 𝑐−1

0
)𝜆𝛼, 𝑗 ∥𝛿 𝑗 ,𝑙 ∥ ≤ 𝜈1(𝜉1 + 1)(𝜉1 − 1)𝜆𝛼, 𝑗(𝑠 𝑗𝛿 𝑗Σ̃𝛾, 𝑗𝛿 𝑗)1/2.

Inverting for (𝛿 𝑗Σ̃𝛾, 𝑗𝛿 𝑗)1/2
and plugging in gives

𝑒−𝑀0𝜂𝐷
‡
𝛼, 𝑗(�̂�, �̄� 𝑗 ; �̄�𝑗) + (1 − 𝑐−1

0
)𝜆𝛼, 𝑗 ∥�̂� 𝑗 − �̄� 𝑗 ∥1 ≤ �̃�𝑠𝑘𝜆

2

𝛼, 𝑗 (O.15)

where �̃� = 𝑒𝑀0𝜂(𝜉1 +1)(𝑐0 −1)𝑐−1

0
. Next, assume that (O.13) holds. In this case, we can directly

invert for (𝛿 𝑗Σ̃𝛾, 𝑗𝛿 𝑗)1/2
to get that

𝑒−𝑀0𝜂𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗) + (1 − 𝑐−1

0
)𝜆𝛼, 𝑗 ∥�̂� 𝑗 − �̄� 𝑗 ∥1 ≤ 𝜉−1

2
�̃�{(𝑠𝑘�̄�𝑘𝜆𝛾, 𝑗)1/2 + (𝑠𝑘𝜆2

𝛾, 𝑗)
1/2}2

(O.16)

Combining (O.15) and (O.16) gives

𝑒−𝑀0𝜂𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗) + (1 − 𝑐−1

0
)𝜆𝛼, 𝑗 ∥�̂� 𝑗 − �̄� 𝑗 ∥1 ≤ �̃�𝑠𝑘𝜆

2

𝛼, 𝑗

+ 𝜉−1

2
�̃�{(𝑠𝑘�̄�𝑘𝜆𝛾, 𝑗)1/2 + (𝑠𝑘𝜆2

𝛾, 𝑗)
1/2}2

(O.17)

Step 5: Apply Penalty Majorization and Bounded Penalty Ratio. Use the fact that 𝜆𝛾, 𝑗/𝜆𝛼, 𝑗 ≤ 𝑐−1
to
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express (O.17) as

𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗) ≤ 𝑒𝑀0𝜂�̃�𝑠𝑘𝜆

2

𝛼, 𝑗 + 𝑒
𝑀0𝜂𝜉−1

2
�̃�{(𝑠𝑘�̄�𝑘𝜆𝛾, 𝑗)1/2 + (𝑠𝑘𝜆2

𝛾, 𝑗)
1/2}2

∥�̂� 𝑗 − �̄� 𝑗 ∥1 ≤ (1 − 𝑐−1

0
)−1�̃�𝑠𝑘𝜆𝛼, 𝑗 + (1 − 𝑐−1

0
)−1𝑐−1�̃�{(𝑠𝑘�̄�𝑘)1/2 + (𝑠𝑘𝜆𝛾, 𝑗)1/2}2

In the event Ω𝑘,2 ∩Ω𝑘,3 we have that 𝜆𝛾, 𝑗 ∨ 𝜆𝛼, 𝑗 ≤ �̄�𝑘 , so that the above simplifies to

𝐷
‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗) ≤ 𝑀1𝑠𝑘�̄�

2

𝑘

∥�̂� 𝑗 − �̄� 𝑗 ∥1 ≤ 𝑀1𝑠𝑘�̄�𝑘
(O.18)

for 𝑀1 = max{𝑒𝑀0𝜂 , 𝑐−1(1 − 𝑐−1

0
)−1}(�̃� + 2𝑒𝑀0𝜂𝜉−1

2
�̃�). This completes the result (C.7). □

C.2 Nonasymptotic Bounds for Residual Estimation

We now provide nonasymptotic bounds on the empirical mean square error between the

estimated residuals𝑈𝛾, 𝑗 and𝑈𝛼, 𝑗 and the true residuals

𝑈𝛾, 𝑗 := −𝑝 𝑗(𝑋){𝐷𝑒−�̄�
′
𝑗
𝑍 + (1 − 𝐷)}

𝑈𝛼, 𝑗 := 𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍(𝑌 − �̄�pilot

′

𝑗
𝑍),

(C.8)

These bounds will be shown under the events in (C.2), (C.6), and (A.1) using the results in

Lemmas C.1 and C.2.

Lemma C.3 (Nonasymptotic Logistic Residual Bound). Suppose that Assumption 3.1 and the
conditions of Lemma C.1 hold. Then, in the event Ω𝑘,1 ∩ Ω𝑘,2 described on (C.2) there is a constant
𝑀𝛾,𝑟 that does not depend on 𝑘 such that:

max

1≤ 𝑗≤𝑘
E𝑛[(𝑈𝛾, 𝑗 −𝑈𝛾, 𝑗)2] ≤ 𝑀𝛾,𝑟𝜉𝑘,∞𝑠𝑘�̄�

2

𝑘
. (C.9)

Proof. Consider each 𝑗 separately. By applying the mean value theorem (O.2) and Lemma C.1,

we can write

(𝑈𝛾, 𝑗 −𝑈𝛾, 𝑗)2 = 𝑝 𝑗(𝑋)2𝐷{𝑒−�̂�
′
𝑗
𝑍 − 𝑒−�̄�

′
𝑗
𝑍}{𝑒−�̂�

′
𝑗
𝑍 − 𝑒−�̄�

′
𝑗
𝑍}

≤ 𝜉𝑘,∞𝑝 𝑗(𝑋)𝐷{𝑒−�̂�
′
𝑗
𝑍 − 𝑒−�̄�

′
𝑗
𝑍}𝑒−�̄�

′
𝑗
𝑍−𝑢(�̂�𝑗−�̄�𝑗)′𝑍{�̄�′

𝑗𝑍 − �̂�′
𝑗𝑍}

≤ 𝜉𝑘,∞𝑒
−𝐵0+𝑀0𝜂𝐷{𝑒−�̂�

′
𝑗
𝑍 − 𝑒−�̄�

′
𝑗
𝑍}{�̄�′

𝑗𝑍 − �̂�′
𝑗𝑍}

So that

E𝑛[(𝑈𝛾, 𝑗 −𝑈𝛾, 𝑗)2] ≤ 𝑒−𝐵0+𝑀0𝜂𝜉𝑘,∞ E𝑛[𝑝 𝑗(𝑋)𝐷{𝑒−�̂�
′
𝑗
𝑍}{�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍}]︸                                    ︷︷                                    ︸

=𝐷
‡
𝛾, 𝑗(�̂�𝑗 ,�̄�𝑗)

≤ 𝑒−𝐵0+𝑀0𝜂𝜉𝑘,∞𝑠𝑘�̄�
2

𝑘

□

Lemma C.4 (Nonasymptotic Linear Residual Bound). Suppose that Assumption 3.1 and the condi-
tions of Lemma C.2 hold. Then, in the event

⋂
6

𝑚=1
Ω𝑘,𝑚 , there is a constant 𝑀𝛼,𝑟 that does not depend

on 𝑘 such that
max

1≤ 𝑗≤𝑘
E𝑛[(𝑈𝛼, 𝑗 −𝑈𝛼, 𝑗)2] ≤ 𝑀𝛼,𝑟𝜉

2

𝑘,∞𝑠
2

𝑘
�̄�2

𝑘
(C.10)
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Proof. Recall that 𝑈𝛼, 𝑗 = 𝑝 𝑗(𝑋)𝐷𝑒−�̂�
′
𝑗
𝑍(𝑌 − �̂�′

𝑗
𝑍) and 𝑈𝛼, 𝑗 = 𝑝 𝑗(𝑋)𝐷𝑒−�̄�

′
𝑗
𝑍(𝑌 − �̄�′

𝑗
𝑍). As an

intermediary, define
¤𝑈𝛾, 𝑗 = 𝑝 𝑗(𝑋)𝐷𝑒−�̂�

′
𝑗
𝑍(𝑌 − �̄�′

𝑗
𝑍). We will show a bound on the empirical

mean square error between𝑈𝛼, 𝑗 and
¤𝑈𝛼, 𝑗 as well as on the empirical mean square error between

¤𝑈𝛼, 𝑗 and𝑈𝛼, 𝑗 . The bound in (C.10) will then follow from (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2
.

First consider (𝑈𝛼, 𝑗 − ¤𝑈𝛼, 𝑗)2:

E𝑛[(𝑈𝛼, 𝑗 − �̄�𝛼, 𝑗)2] = E𝑛𝑝2

𝑗 (𝑋)𝐷𝑒−2�̂�′
𝑗
𝑍(�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍)

2]

= E𝑛[𝑝2

𝑗 (𝑋)𝐷𝑒−2(�̄�′
𝑗
𝑍−(�̂�𝑗−�̄�𝑗)′𝑍)(�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍)

2]

≤ 𝜉𝑘∞𝑒
−𝐵0 𝑒2𝑀0𝜂 E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�

′
𝑗
𝑍(�̂�′

𝑗𝑍 − �̄�′
𝑗𝑍)]︸                                ︷︷                                ︸

=𝐷
‡
𝛼, 𝑗(�̂� 𝑗 ,�̄� 𝑗 ;�̄�𝑗)

≤ 𝑒2𝑀0𝜂−𝐵0𝑀1𝜉𝑘,∞𝑠𝑘�̄�
2

𝑘

Where the last empirical expectation is bounded by Lemma C.2. Next, consider ( ¤𝑈𝛼, 𝑗 −𝑈𝛼, 𝑗)2:

E𝑛[( ¤𝑈𝛼, 𝑗 −𝑈𝛼, 𝑗)2] = E𝑛[𝑝2

𝑗 (𝑋)𝐷{𝑒−�̂�′𝑍 − 𝑒−�̄�′𝑍}2{𝑌 − �̄�′
𝑗𝑍}

2]

= E𝑛[𝑝2

𝑗 (𝑋)𝐷{𝑒−�̄�′𝑍−𝑢(�̂�−�̄�)′𝑍(�̄�′
𝑗𝑍 − �̂�′

𝑗𝑍)}
2(𝑌 − �̄�′

𝑗𝑍)
2]

≤ 2𝑒𝑀0𝜂−𝐵0𝐶2

0
𝜉𝑘,∞(𝑀1𝑠𝑘�̄�𝑘)2E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�

′
𝑗
𝑍(𝑌 − �̄�′

𝑗𝑍)
2]

To proceed we assume that 𝑍 contains a constant. That is 𝑍 = (1, 𝑍2 , . . . , 𝑍𝑑𝑧 ). However, this is

not necessary it just simplifies the proof a bit. We bound the final empirical expectation in the

event Ω𝑘,5. In this event we can bound

E𝑛[𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍(𝑌 − �̄�′

𝑗𝑍)
2] = (E𝑛 − E)[𝑝 𝑗(𝑋)𝐷𝑒−�̄�

′
𝑗
𝑍(𝑌 − �̄�′

𝑗𝑍)
2] + E[𝑝 𝑗(𝑋)𝐷𝑒−�̄�

′
𝑗
𝑍(𝑌 − �̄� 𝑗(𝑋))2]

≤ �̄�𝑘 + 𝜉𝑘,∞𝑒
−𝐵0(𝐷0 + 𝐷1)2.

Combining the above, and using the fact that 𝑠𝑘�̄�𝑘 ≤ 𝜂 < 1 completes the reult.

□

C.3 Probability Bounds for the First Stage

In this section we establish that each of the events in (C.2), (C.6), and (A.1) occurs under

Assumption 3.1 with probability approaching one.

Lemma C.5 (Logistic Score Domination and Penalty Majorization). Suppose Assumption 3.1 holds
and that the penalty parameter 𝜆𝛾, 𝑗 is chosen as described in Section 2. Then, for 𝑛 sufficiently large, the
event Ω𝑘,1 holds with probability 1 − 𝜖 − 𝜌𝛾,𝑛 where

𝜌𝛾,𝑛 = 𝐶max


4𝑘𝑛 + 4𝑘

𝑛2

,

(
�̃�𝜉𝑘,∞𝑠𝑘,𝛾𝑐2

𝑛 ln
5(𝑑𝑧𝑛)

𝑛

)
1/2

,

(
�̃�𝜉4

𝑘,∞ ln
7(𝑑𝑧𝑘𝑛)
𝑛

)
1/6

,
1

ln
2(𝑑𝑧𝑘𝑛)

 .
(C.11)

where 𝐶, �̃� are absolute constants that do not depend on 𝑘. In particular so long as 𝜖 → 0 as 𝑛 → ∞,
this shows that Pr(Ω𝑘,1) = 1 − 𝑜(1) under the rate conditions of Assumption 3.1.

Moreover, with probability at least 1 − 5𝑘
𝑛 − 4𝑘

𝑛2
there is a constant 𝑀2 that does not depend on 𝑘 such
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that Ω𝑘,2 holds with

�̄�𝑘 = max{𝑀2 , 𝑀4 , 𝑀5 , 𝑀6 , 𝑀7}𝜉𝑘,∞

√
ln(𝑑𝑧𝑛)
𝑛

(C.12)

where 𝑀4 , 𝑀5 , 𝑀6 and 𝑀7 are all constants that also do not depend on 𝑘 described in Lemma C.6 and
Lemmas C.7-C.9. In particular, so long as 𝑘/𝑛 → 0, Pr(Ω𝑘,2) = 1 − 𝑜(1).

Proof. Collecting the logistic nonasymptotic residual bound from Lemma C.3 and the probabil-

ity bounds from Lemmas C.7–C.10 we find that, (eventually) with probability at least 1− 4𝑘
𝑛 − 4𝑘

𝑛2
:

max

1≤ 𝑗≤𝑘
1≤𝑙≤𝑑𝑧

E𝑛[(𝑈𝛾, 𝑗𝑍𝑙 −𝑈𝛾, 𝑗𝑍𝑙)2] ≤ 𝑀𝛾,𝑟𝐶
2

0

𝜉𝑘,∞𝑠𝑘,𝛾𝑐2

𝑛 ln
3(𝑑𝑧𝑛)

𝑛
. (P.1)

where 𝑀𝛾,𝑟 is a constant that does not depend on 𝑘. Define the vectors

𝑊𝑘 := (𝑈𝛾,1𝑍
′, . . . , 𝑈𝛾,𝑘𝑍

′)′ ∈ R𝑘𝑑𝑧
:= (𝑊 ′

𝑘,1 , . . . ,𝑊
′
𝑘,𝑘)

′

�̂�𝑘 := (𝑈𝛾,1𝑍
′, . . . , 𝑈𝛾,𝑘𝑍

′)′ ∈ R𝑘𝑑𝑧

:= (�̂� ′
𝑘,1 , . . . , �̂�

′
𝑘,𝑘)

′.

Notice by optimality of �̄�1 , . . . , �̄�𝑘 that 𝑊𝑘 is a mean zero vector. Under our assumptions the

covariance matrix Σ𝑘 =
1

𝑛

∑𝑛
𝑖=1
E[𝑊𝑘𝑊

′
𝑘
] exists and is finite. Define the sequences of constants

𝛿2

𝛾,𝑛 := 𝑀𝛾,𝑟𝐶
2

0
𝜉𝑘,∞𝑠𝑘,𝛾𝑐

2

𝑛 ln
5(𝑑𝑧𝑛)/𝑛

𝛽𝛾,𝑛 :=
4𝑘

𝑛
+ 4𝑘

𝑛2

Then, by (P.1) we have that with probability at least 1 − 𝛽𝛾,𝑛

Pr

(
∥E𝑛[(�̂�𝑘 −𝑊𝑘)2]∥∞ > 𝛿2

𝑛/ln
2(𝑑𝑧𝑛)

)
≤ 𝛽𝑛 . (P.2)

Let 𝑒1 , . . . , 𝑒𝑛 be i.i.d normal random variables generated independently of the data. Define the

scaled random variables and the multiplier bootstrap process

𝑆𝑒𝛾,𝑛 := 𝑛−1/2

𝑛∑
𝑖=1

𝑒𝑖�̂�𝑘,𝑖

:= (𝑆𝑒′𝛾,1 , . . . , 𝑆
𝑒′

𝛾,𝑘)
′

and let Pr𝑒 denote the probability measure with respect to the 𝑒′
𝑖
𝑠 conditional on the observed

data. Assumption 3.1 implies that the conditions of (E.1) hold for 𝑍 =𝑊𝑘 with 𝑏 replaced by 𝑐𝑢
and 𝐵𝑛 replaced by 𝐵𝑘 = (𝜉𝑘,∞𝐶0𝐶𝑈 )3∨1. Further, via (P.2) the residual estimation requirement

of with 𝛿𝑛 and 𝛽𝑛 replaced by 𝛿𝛾,𝑛 and 𝛽𝛾,𝑛 .

Let �̂�𝛾, 𝑗(𝛼)be the 𝛼 quantile of ∥𝑆𝑒′𝛾, 𝑗 ∥ conditional on the data𝑍𝑖 and the estimates𝑍𝑖 . Theorem E.4

then shows that there is a finite constant depending only on 𝑐𝑢 such that

max

1≤ 𝑗≤𝑘
sup

𝛼∈(0,1)

��
Pr(∥𝑆𝛾, 𝑗 ∥ ≥ �̂�𝛾, 𝑗(𝛼)) − 𝛼

�� ≤ 𝐶max

{
𝛽𝛾,𝑛 , 𝛿𝛾,𝑛 ,

(
𝐵4

𝑘
ln

7(𝑘𝑑𝑧𝑛)
𝑛

)
1/6

,
1

ln
2(𝑘𝑑𝑧𝑛)

}
.

This gives the first claim of Lemma C.5 by construction of 𝜆𝛾, 𝑗 . The second claim follows
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Lemma E.1. For this second claim we will consider the marginal convergence of each𝑈𝛾, 𝑗𝑍 as

opposed to their joint convergence (the convergence of𝑊𝑘). First, notice that condiitonal on the

data, the random vector E𝑛[𝑒𝑈𝛾, 𝑗𝑍] is centered gaussian in R𝑑𝑧 . Lemma E.1 then shows that

�̂�𝛾, 𝑗(𝜖) ≤ (2 +
√

2)

√
ln(𝑑𝑧/𝜖)

𝑛
max

1≤𝑙≤𝑑𝑧
E𝑛[𝑈2

𝛾, 𝑗𝑍
2

𝑙
].

Furthermore, with probability at least 1 − 𝛽𝛾,𝑛 − 1

𝑛 we have that, for all 𝑗 = 1, . . . , 𝑘:

max

1≤𝑙≤𝑑𝑧
E𝑛[𝑈2

𝛾, 𝑗𝑍
2

𝑙
] ≤ 𝐶2

0
E𝑛[𝑈2

𝛾, 𝑗] ≤ 2𝐶2

0
(E𝑛[𝑈2

𝛾, 𝑗] + E𝑛[(𝑈
2

𝛾, 𝑗 −𝑈𝛾, 𝑗)2]) ≤ 4𝐶2

0
𝜉2

𝑘,∞𝐶
2

𝑈 + 𝛿2

𝛾,𝑛/ln
2(𝑑𝑧𝑛))

Under the rate conditions of Assumption 3.1, 𝛿2

𝛾,𝑛/ln
2(𝑑𝑧𝑛) will eventually be smaller than 1

and so the claim in (C.12) holds with 𝑀2 = 8𝐶2

0
𝐶2

𝑈
∨ 1 . □

Lemma C.6 (Linear Score Domination and Penalty Majorization). Suppose Assumption 3.1 holds
and that the penalty parameters𝜆𝛾, 𝑗 and𝜆𝛼, 𝑗 are chosen as described in Section 2. Then, for 𝑛 sufficiently
large, the event Ω𝑘,3 holds with probability 1 − 𝜖 − 𝜌𝛼,𝑛 where:

𝜌𝛼,𝑛 = 𝐶max


4𝑘𝑛 + 4𝑘

𝑛2

,

(
�̃�𝜉2

𝑘,∞𝑠
2

𝑘,𝛼𝑐
2

𝑛 ln
5(𝑑𝑧𝑛)

𝑛

)
1/2

,

(
�̃�𝜉4

𝑘,∞ ln
7(𝑑𝑧𝑘𝑛)
𝑛

)
1/6

,
1

ln
2(𝑑𝑧𝑘𝑛)

 .
(C.13)

where 𝐶, �̃� are absolute constants that do not depend on 𝑘. In particular so long as 𝜖 → 0 as 𝑛 → ∞,
this shows that Pr(Ω𝑘,3) = 1 − 𝑜(1) under Assumption 3.1.

Moreover, with probability at least 1 − 5𝑘
𝑛 − 4𝑘

𝑛2
there is a constant 𝑀4 that does not depend on 𝑘 such

that Ω𝑘,4 holds with

�̄�𝑘 = max{𝑀2 , 𝑀4 , 𝑀5 , 𝑀6 , 𝑀7}𝜉𝑘,∞

√
ln(𝑑𝑧𝑛)
𝑛

(C.14)

where 𝑀2 , 𝑀5 , 𝑀6 and 𝑀7 are all constants that also do not depend on 𝑘 described in Lemma C.5 and
Lemmas C.7-C.9. In particular, so long as 𝑘/𝑛 → 0, Pr(Ω𝑘,4) = 1 − 𝑜(1).

Proof. Apply the same steps as the proof of Lemma C.5 with

𝛿2

𝛼,𝑛 = 𝑀𝛼,𝑟𝐶
2

0
𝜉2

𝑘,∞𝑠
2

𝑘
𝑐2

𝑛 ln
5(𝑑𝑧𝑛)/𝑛

𝛽𝛼,𝑛 =
4

𝑛
+ 4

𝑛2

□

Lemma C.7 (Probabilistic Bound on Ω𝑘,5). Let Σ̃𝛼, 𝑗 and Σ𝛼, 𝑗 = EΣ̃𝛼, 𝑗 be as in (C.5). Under
Assumption 3.1 if

�̄�𝑘 ≥ 4𝜉𝑘,∞(𝐺2

0
+ 𝐺0𝐺1)𝐶2

0

[
𝐺2

0
log(𝑑𝑧/𝜖)/𝑛 + 𝐺0𝐺1

√
log(𝑑𝑧/𝜖)/𝑛

]
Then Pr(Ω𝑘,5) ≥ 1 − 2𝑘𝜖2. In particular, there is a constant 𝑀5 that does not depend on 𝑘, such that
if �̄�𝑘 ≥ 𝜉𝑘,∞𝑀5

√
log(𝑑𝑧/𝜖)/𝑛 and 𝑘𝜖2 → 0 as 𝑛 → ∞ then under the conditions of Assumption 3.1,

Pr(Ω𝑘,5) = 1 − 𝑜(1).
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Proof. We show that this happens with probability 1 − 2𝜖2
for each 𝑗 = 1, . . . , 𝑘. For any

𝑙 , ℎ = 1, . . . , 𝑑𝑧 , the variable

𝑝 𝑗(𝑋)𝑒−�̄�′𝑍𝐷{𝑌 − �̄� 𝑗(𝑍)}2𝑍𝑙𝑍ℎ

is the product of 𝑝𝑘(𝑋)𝑒−�̄�
′
𝑗
𝑍
𝑍𝑙𝑍ℎ , which is bounded in absolute value by 𝜉𝑘,∞𝐶2

0
𝑒−𝐵0

, and

𝐷{𝑌 − �̄� 𝑗(𝑍)}, which is uniformly sub-gaussian conditional on 𝑍. By Lemma E.7 we have:

E
[
|(Σ̃𝛼, 𝑗)𝑙ℎ − (Σ̃𝛼, 𝑗)𝑙ℎ |𝑘

]
≤ 𝑘!

2

(2𝜉𝑘,∞𝐶−2

0
𝑒−𝐵0𝐺2

0
)𝑘−2(2𝜉𝑘,∞𝐶2

0
𝑒−𝐵0𝐺0𝐺1)2 , 𝑘 = 2, 3, . . . .

Apply the above and Lemma E.5 with 𝑡 = log(𝑑2

𝑧/𝜖2)/𝑛 to obtain

Pr

(
|(Σ̃𝛼, 𝑗)𝑙ℎ − (Σ̃𝛼, 𝑗)𝑙ℎ | > 2𝑒−𝐵0𝜉𝑘,∞𝐶

2

0
𝐺2

0
𝑡 + 2𝑒−𝐵0𝜉𝑘,∞𝐶

2

0
𝐺0𝐺1

√
2𝑡

)
≤ 2𝜖2/𝑑2

𝑧 .

A union bound completes the argument. □

Lemma C.8 (Probabilistic Bound on Ω𝑘,6). Let Σ̃𝛾, 𝑗 and Σ𝛾, 𝑗 = EΣ̃𝛾, 𝑗 be as in (C.5). Under
Assumption 3.1 if

�̄�𝑘 ≥ 𝜉𝑘,∞
√

2(𝑒−𝐵0 + 1)𝐶0

√
log(𝑑𝑧/𝜖)/𝑛,

then Pr(Ω𝑘,6) ≤ 1 − 2𝑘𝜖2. In particular, there is a constant 𝑀6 that does not depend on 𝑘, such that
if �̄�𝑘 ≥ 𝜉𝑘,∞𝑀6

√
log(𝑑𝑧/𝜖)/𝑛 and 𝑘𝜖2 → 0 as 𝑛 → ∞ then under the conditions of Assumption 3.1,

Pr(Ω𝑘,6) = 1 − 𝑜(1).

Proof. Consider each 𝑗 separately. For any 𝑙 , ℎ = 1, . . . , 𝑑𝑧 , note |(Σ̃𝛾, 𝑗)𝑙ℎ | = |𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍
𝑍𝑙𝑍ℎ | ≤

𝜉𝑘,∞𝐶2

0
𝑒−𝐵0

so that (Σ̃𝛾, 𝑗)𝑙ℎ−(Σ𝛾, 𝑗)𝑙ℎ is mean zero and bounded in abosulte values by 2𝜉𝑘,∞𝐶2

0
𝑒−𝐵0

.

Applying Lemma E.3 with �̄�𝑘 ≥ 4𝜉𝑘,∞𝐶2

0
𝑒−𝐵0

√
log(𝑑𝑧/𝜖)/𝑛 yields:

Pr

(
|(Σ̃𝛾, 𝑗)𝑙ℎ − (Σ𝛾, 𝑗)𝑙ℎ | ≥ �̄�𝑘

)
≤ 2𝜖2/𝑑2

𝑧 .

A union bound completes the argument. □

Lemma C.9 (Probabilitstic Bound on Ω𝑘,7). Let Σ̃1

𝛼, 𝑗 and Σ1

𝛼, 𝑗 = EΣ̃1

𝛼, 𝑗 be as in (A.1). Under
Assumption 3.1 if

�̄�𝑘 ≥ 𝜉𝑘∞4(𝐺2

0
+ 𝐺2

1
)1/2𝑒−𝐵0𝐶2

0

√
log(𝑑𝑧/𝜖)/𝑛,

then Pr(Ω𝑘,7) ≥ 1 − 2𝑘𝜖2. In particular, there is a constant 𝑀7 that does not depend on 𝑘 such that if
�̄�𝑘 ≥ 𝜉𝑘,∞𝑀7

√
log(𝑑𝑧/𝜖)/𝑛 and 𝑘𝜖2 → 0 as 𝑛 → ∞ then, under the conditions of Assumption 3.1,

Pr(Ω𝑘,7) ≥ 1 − 𝑜(1).

Proof. We deal with each 𝑗 term separately. The variables 𝑝 𝑗(𝑋)𝑒−�̄�
′
𝑗
𝑍 |𝑌 − �̄� 𝑗(𝑍)|𝑍𝑙𝑍ℎ are uni-

formly sub-gaussian conditional on 𝑍 because |𝑝 𝑗(𝑋)𝑒−�̄�
′
𝑗
𝑍
𝑍𝑙𝑍ℎ | ≤ 𝜉𝑘,∞𝑒−𝐵0𝐶2

0
and𝐷 |𝑌−�̄� 𝑗(𝑍)|

is uniformly sub-gaussian. Applying Lemma E.4 for �̄�𝑘 ≥ 𝑒−𝐵0𝜉𝑘,∞𝐶2

0

√
8(𝐺2

0
+ 𝐺1)2

√
log(𝑑𝑧/𝜖)/𝑛

yields

Pr

(
|(Σ̃𝛾, 𝑗)𝑙ℎ − (Σ𝛾, 𝑗)𝑙ℎ | ≥ �̄�𝑘

)
≤ 2𝜖2/𝑑2

𝑧 .

A union bound completes the argument. □
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C.4 Probability Bounds for Residual Estimation

For showing consistent residual estimation, we employ the following two lemmas.

Lemma C.10 (Deterministic Logistic Score Domination). Under Assumption 3.1 let

�̄�𝑘 ≥ 𝜉𝑘,∞
√

2(𝑒−𝐵0 + 1)𝐶0

√
ln(𝑑𝑧/𝜖)/𝑛.

Then if for all 𝑗 = 1, . . . , 𝑘 we let 𝜆𝛾, 𝑗 ≡ �̄�𝑘 , Pr(Ω𝑘,1∩Ω𝑘,2) ≥ 1−2𝑘𝜖. In particular, there is a constant
𝑀

𝑝

8
that does not depend on 𝑘 such that if �̄�𝑘 ≥ 𝑀

𝑝

8
𝜉𝑘,∞

√
ln(𝑑𝑧𝑛)/𝑛 Pr(Ω𝑘,1 ∩Ω𝑘,2) ≥ 1 − 2𝑘/𝑛𝑝 .

Proof. Let us recall that

∥𝑆 𝑗 ∥∞ = max

1≤𝑙≤𝑑𝑧
|E𝑛[𝑝 𝑗(𝑋){−𝐷𝑒−�̄�

′
𝑗
𝑍 + (1 − 𝐷)}𝑍 𝑗]|.

Notice for each 1 ≤ 𝑙 ≤ 𝑑𝑧 , 𝑆 𝑗 ,𝑙 = 𝑝 𝑗(𝑋){−𝐷𝑒−�̄�
′
𝑗
𝑍 + (1 − 𝐷)}𝑍𝑙 is bounded in absolute value by

𝐶0𝜉𝑘,∞(𝑒−𝐵0 + 1) and is mean zero by optimality of �̄�𝑗 . For �̄�𝑘 ≥ 2(𝑒−𝐵0 + 1)𝐶0

√
ln(𝑑𝑧/𝜖)/𝑛 apply

Lemma E.3 to see the result. □

Lemma C.11 (Deterministic Linear Score Domination). Under Assumption 3.1 let

�̄�𝑘 ≥ 𝜉𝑘,∞(𝑒−𝐵0𝐶0)
√

8(𝐺2

0
+ 𝐺2

1
)
√

ln(𝑑𝑧/𝜖)/𝑛.

Then if for all 𝑗 = 1, . . . , 𝑘 we let 𝜆𝛾, 𝑗 ≡ �̄�𝑘 , Pr(Ω𝑘,3∩Ω𝑘,4) ≥ 1−2𝑘𝜖. In particular, there is a constant
𝑀

𝑝

9
that does not depend on 𝑘 such that if �̄�𝑘 ≥ 𝑀

𝑝

9
𝜉𝑘,∞

√
ln(𝑑𝑧𝑛)/𝑛, Pr(Ω𝑘,3 ∩Ω𝑘,4) ≥ 1 − 2𝑘/𝑛𝑝 .

Proof. Notice 𝑆 𝑗 ,𝑙 = 𝑝 𝑗(𝑋)𝐷𝑒−�̄�
′
𝑗
𝑍{𝑌 − �̄� 𝑗(𝑍)}𝑍𝑙 for 𝑙 = 1, . . . , 𝑝. By optimality of �̄� 𝑗 , 𝑆 𝑗 ,𝑙 is mean

zero. Under Assumption 3.1, |𝑆 𝑗 ,𝑙 | ≤ 𝑒−𝐵0𝐶0 |𝐷{𝑌 − �̄� 𝑗(𝑍)}| so by Assumption 3.1 the variables

𝑆 𝑗 ,𝑙 are uniformly sub-gaussian conditional on 𝑍 in the following sense:

max

𝑙=1,...,𝑝
�̃�2

0
E[exp(𝑆2

𝑗 ,𝑙
/�̃�2

0
) − 1] ≤ �̃�2

1

for �̃�0 = 𝜉𝑘,∞𝐶0𝐺0𝑒
−𝐵0

and �̃�1 = 𝜉𝑘,∞𝐶0𝐺1𝑒
−𝐵0

. Apply Lemma E.4 for �̄�𝑘 defined above in the

statement of Lemma C.11 and union bound to obtain the result. □

D Additional Second Stage Results

Theorem D.1 (Integrated Rate of Convergence). Assume that Condition 1 and Assumption 4.1
hold. In addition suppose that 𝜉2

𝑘
log 𝑘/𝑛 → 0 and 𝑐𝑘 → 0. Then if either the propensity score our

outcome regression model are correctly specified:

∥ �̂�𝑘 − 𝑔0∥𝐿,2 = (E[(�̂�(𝑥) − 𝑔0(𝑥))2])1/2 ≲𝑝
√
𝑘/𝑛 + 𝑐𝑘 (D.1)

Proof. We begin with a matrix law of large numbers from Rudelson (1999), which is used to

show 𝑄 →𝑝 𝑄.

Lemma D.1 (Rudelson’s LLN for Matrices). Let𝑄1 , . . . , 𝑄𝑛 be a sequence of independent, symmetric,
non-negative 𝑘 × 𝑘 matrix valued random variables with 𝑘 ≥ 2 such that 𝑄 = E[E𝑛𝑄𝑖] and ∥𝑄𝑖 ∥ ≤ 𝑀
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a.s. Then for 𝑄 = E𝑛[𝑄𝑖],

Δ := E∥𝑄 −𝑄∥ ≲
𝑀 log 𝑘

𝑛
+

√
𝑀∥𝑄∥ log 𝑘

𝑛
.

In particular if 𝑄𝑖 = 𝑝𝑖𝑝
′
𝑖
with ∥𝑝𝑖 ∥ ≤ 𝜉𝑘 almost surely, then

Δ := E∥𝑄 −𝑄∥ ≲
𝜉2

𝑘
log 𝑘

𝑛
+

√
𝜉2

𝑘
∥𝑄∥ log 𝑘

𝑛
.

Now, to prove Theorem D.1 we have that:

∥ �̂�𝑘 − 𝑔0∥𝐿,2 ≤ ∥𝑝𝑘(𝑥)′�̂�𝑘 − 𝑝𝑘(𝑥)′𝛽𝑘 ∥𝐿,2 + ∥𝑝𝑘(𝑥)′𝛽𝑘 − 𝑔∥𝐿,2
≤ ∥𝑝𝑘(𝑥)′�̂�𝑘 − 𝑝𝑘(𝑥)′𝛽𝑘 ∥𝐿,2 + 𝑐𝑘

where under the normalization 𝑄 = 𝐼𝑘 we have that

∥𝑝′�̂� − 𝑝′𝛽∥𝐿,2 = ∥�̂� − 𝛽∥

Further,

∥�̂�𝑘 − 𝛽𝑘 ∥ = ∥𝑄−1E[𝑝𝑘(𝑥) ◦ (𝑌 − �̄�)]∥ + ∥𝑄−1E𝑛[𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)]∥
≤ ∥𝑄−1E[𝑝𝑘(𝑥) ◦ (𝑌 − �̄�)]∥ + ∥𝑄−1E𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘]∥ + ∥𝑄−1E𝑛[𝑝𝑘(𝑥)𝑟𝑘]∥

By the matrix LLN (Lemma D.1) we have that since 𝜉2

𝑘
log 𝑘/𝑛 → 0, ∥𝑄−𝑄∥ →𝑝 0. This means

that with probability approaching one all eigenvalues of 𝑄 are boundedaway from zero, in

particular they are larger than 1/2. So w.p.a 1

≲ ∥E[𝑝𝑘(𝑥) ◦ (𝑌 − �̄�)]∥ + ∥E𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘]∥ + ∥E𝑛[𝑝𝑘(𝑥)𝑟𝑘]∥

Under Condition 1 the first term is 𝑜𝑝(
√
𝑘/𝑛). By equation (A.48) in Belloni et al. (2015) the

third term is bounded in probability by 𝑐𝑘 . For the second term apply the third condition in

Assumption 4.1 to see

E∥E𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘]∥2 = E
𝑘∑
𝑗=1

𝜖2

𝑗 𝑝 𝑗(𝑥)
2/𝑛 ≤ �̄�2E𝑛[𝑝𝑘(𝑥)𝑝𝑘(𝑥)′/𝑛] ≲ E[𝑝𝑘(𝑥)𝑝𝑘(𝑥)′/𝑛] = 𝑘/𝑛.

This gives ∥E𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘]∥ ≲𝑝
√
𝑘/𝑛 and thus shows (D.1).

□

Lemma D.2 (Pointwise Linearization). Suppose that Condition 1 and Assumption 4.1, hold. In
addition assume that 𝜉2

𝑘
log 𝑘/𝑛 → 0. Then for any 𝛼 ∈ 𝑆𝑘−1,
√
𝑛𝛼′(�̂�𝑘 − 𝛽𝑘) = 𝛼′G𝑛[𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)] + 𝑅1𝑛(𝛼) (D.2)

where the term 𝑅1𝑛(𝛼), summarizing the impact of unknown design, obeys

𝑅1𝑛(𝛼) ≲𝑝

√
𝜉2

𝑘
log 𝑘

𝑛
(1 +

√
𝑘ℓ𝑘𝑐𝑘) (D.3)
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Moreover, √
𝑛𝛼′(�̂�𝑘 − 𝛽𝑘) = 𝛼′G𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘] + 𝑅1𝑛(𝛼) + 𝑅2𝑛(𝛼) (D.4)

where the term 𝑅2𝑛 , summarizing the impact of approximation error on the sampling error of the
estimator, obeys

𝑅2𝑛(𝛼) ≲𝑝 ℓ𝑘𝑐𝑘 (D.5)

Proof. Decompose as before,

√
𝑛𝛼′(�̂�𝑘 − 𝛽𝑘) =

√
𝑛𝛼′𝑄−1E𝑛[𝑝𝑘(𝑥) ◦ (𝑌 − �̄�)]

+ 𝛼′G𝑛[𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)]
+ 𝛼′[𝑄−1 − 𝐼]G𝑛[𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)].

The first term is 𝑜𝑝(1) under Condition 1, we can just include this term in 𝑅1𝑛(𝛼). Now bound

𝑅1𝑛(𝛼) and 𝑅2𝑛(𝛼).

Step 1. Conditional 𝑋 = [𝑥1 , . . . , 𝑥𝑛], the term

𝛼′[𝑄−1 − 𝐼]G𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘].

has mean zero and variance bounded by �̄�2𝛼′[𝑄−1 − 𝐼]𝑄−1[𝑄−1 − 𝐼]𝛼. Next, by Lemma D.1,

with probability approaching one, all eigenvalues of 𝑄−1
are bounded from above and away

zero. So,

�̄�2𝛼′[𝑄−1 − 𝐼𝑘]𝑄−1[𝑄−1 − 𝐼𝑘]𝛼 ≲ �̄�2∥𝑄∥∥𝑄−1∥2∥𝑄−1 − 𝐼𝑘 ∥2 ≲𝑝
𝜉2

𝑘
log 𝑘

𝑛
.

so by Chebyshev’s inequality,

𝛼′[𝑄−1 − 𝐼]G𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘] ≲𝑝

√
𝜉2

𝑘
log 𝑘

𝑛
.

Step 2. From the proof of Lemma 4.1 in Belloni et al. (2015), we get that

𝛼′(𝑄−1 − 𝐼𝑘)G𝑛[𝑝𝑘(𝑥)𝑟𝑘] ≲𝑝

√
𝜉2

𝑘
log 𝑘

𝑛
ℓ𝑘𝑐𝑘

√
𝑘

This completes the bound on 𝑅1𝑛(𝛼) and gives (D.2)-(D.3). Next, also from the proof of Lemma

4.1 from Belloni et al. (2015),

𝑅2𝑛(𝛼) = 𝛼′G𝑛[𝑝𝑘(𝑥)𝑟𝑘] ≲𝑝 ℓ𝑘𝑐𝑘 ,

which gives (D.4)-(D.5).

□

The following lemma shows that, after adding Assumption 4.2 the linearization of our coeffi-

cient estimator �̂�𝑘 established in Lemma D.2 holds uniformly over all points 𝑥 ∈ 𝒳. That is

to say the error from linearization is bounded in probability uniformly over all 𝑥 ∈ 𝒳. It will

form an important building block in uniform consistency and strong approximation results

presented in Theorems D.2 and 4.2.

Lemma D.3 (Uniform Linearization). Suppose that Condition 1 and Assumption 4.1-4.2 hold. Then
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if either the propensity score model our outcome regression model is correctly specified:
√
𝑛𝛼(𝑥)′(�̂�𝑘 − 𝛽𝑘) = 𝛼(𝑥)′G𝑛[𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)] + 𝑅1𝑛(𝛼(𝑥)) (D.6)

where 𝑅1𝑛(𝛼(𝑥)) describes the design error and satisfies

𝑅1𝑛(𝛼(𝑥)) ≲𝑝

√
𝜉2

𝑘
log 𝑘

𝑛
(𝑛1/𝑚√

log 𝑘 +
√
𝑘ℓ𝑘𝑐𝑘) := �̄�1𝑛 (D.7)

uniformly over 𝑥 ∈ 𝒳. Moreover,
√
𝑛𝛼(𝑥)′(�̂�𝑘 − 𝛽𝑘) = 𝛼(𝑥)′G𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘] + 𝑅1𝑛(𝛼(𝑥)) + 𝑅2𝑛(𝛼(𝑥)) (D.8)

where 𝑅2𝑛(𝛼(𝑥)) describes the sampling error and satisfies, uniformly over 𝑥 ∈ 𝒳:

𝑅2𝑛(𝛼(𝑥)) ≲𝑃
√

log 𝑘 · ℓ𝑘𝑐𝑘 := �̄�2𝑛 (D.9)

Proof. As in the proof of Lemma D.2, we decompose

√
𝑛𝛼(𝑥)′(�̂�𝑘 − 𝛽𝑘) =

√
𝑛𝛼(𝑥)′𝑄−1E𝑛[𝑝𝑘(𝑥) ◦ (𝑌 − �̄�)]

+ 𝛼(𝑥)′G𝑛[𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)]
+ 𝛼(𝑥)′[𝑄−1 − 𝐼]G𝑛[𝑝𝑘(𝑥) ◦ (𝜖𝑘 + 𝑟𝑘)].

(D.10)

Using Condition 1, the matrix LLN (Lemma D.1), and bounded eigenvalues of the design matix,

we have that:

sup

𝑥∈𝒳

√
𝑛𝛼(𝑥)′𝑄−1E𝑛[𝑝𝑘(𝑥) ◦ (𝑌 − �̄�)] = 𝑜𝑝(1).

Since this is 𝑜𝑝(1), we can simply include this term in 𝑅1𝑛(𝛼(𝑥)). Now derive bounds on

𝑅1𝑛(𝛼(𝑥)) and 𝑅2𝑛(𝛼(𝑥)).

Step 1: Conditional on the data let

𝑇 :=

{
𝑡 = (𝑡1 , . . . , 𝑡𝑛) ∈ R𝑛 : 𝑡𝑖 = 𝛼(𝑥)′(𝑄−1 − 𝐼)𝑝𝑘(𝑥) ◦ 𝜖𝑘 , 𝑥 ∈ 𝒳

}
.

Define the norm ∥ · ∥𝑛,2 on R𝑛 by ∥𝑡∥2

𝑛,2
= 𝑛−1

∑𝑛
𝑖=1
𝑡2
𝑖
. For an 𝜀 > 0 an 𝜀-net of the normed

space (𝑇, ∥ · ∥𝑛,2) is a subset 𝑇𝜀 of 𝑇 such that for every 𝑡 ∈ 𝑇 there is a point 𝑡𝜀 ∈ 𝑇𝜀 such that

∥𝑡 − 𝑡𝜀∥𝑛,2 < 𝜀. The covering number 𝑁(𝑇, ∥ · ∥𝑛,2 , 𝜀) of 𝑇 is the infimum of the cardinality of

𝜀-nets of 𝑇.

Let 𝜂1 , . . . , 𝜂𝑛 be independent Rademacher random variables that are independent of the data.

Let 𝜂 = (𝜂1 , . . . , 𝜂𝑛). Let E𝜂[·] denote the expectation with respect to the distribution of 𝜂. By

Dudley’s inequality (Dudley, 1967),

E𝜂

[
sup

𝑥∈𝒳

���𝛼(𝑥)′[𝑄−1 − 𝐼]G𝑛[𝜂𝑖𝑝𝑘(𝑥) ◦ 𝜖𝑘]
���] ≲ ∫ 𝜃

0

√
log𝑁(𝑇, ∥ · ∥𝑛,2 , 𝜀) 𝑑𝜀.



Additional Second Stage Results Page 16

where

𝜃 := 2 sup

𝑡∈𝑇
∥𝑡∥𝑛,2

= 2 sup

𝑥∈𝒳

(
E𝑛[(𝛼(𝑥)′(𝑄−1 − 𝐼)𝑝𝑘(𝑥) ◦ 𝜖𝑘)2]

)
1/2

≤ 2 max

1≤𝑖≤𝑛
| �̄�𝑘,𝑖 |∥𝑄−1 − 𝐼∥∥𝑄∥1/2 ,

by (A.5). Now, for any 𝑥 ∈ 𝒳,(
E𝑛[(𝛼(𝑥)′(𝑄−1 − 𝐼)𝑝𝑘(𝑥) ◦ 𝜖𝑘 − 𝛼(�̃�)′(𝑄−1 − 𝐼)𝑝𝑘(𝑥) ◦ 𝜖𝑘)2]

)
1/2

≤ max

1≤𝑖≤𝑛
| �̄�𝑘,𝑖 |∥𝛼(𝑥) − 𝛼(�̃�)∥∥𝑄−1 − 𝐼∥∥𝑄∥1/2

≤ 𝜉𝐿
𝑘

max

1≤𝑖≤𝑛
| �̄�𝑘,𝑖 |∥𝑄−1 − 𝐼∥∥𝑄∥1/2∥𝑥 − �̃�∥

So, for some 𝐶 > 0,

𝑁(𝑇, ∥ · ∥𝑛,2 , 𝜀) ≤ ©«
𝐶𝜉𝐿

𝑘
max1≤𝑖≤𝑛 | �̄�𝑘,𝑖 |∥𝑄−1 − 𝐼∥∥𝑄∥1/2

𝜀
ª®¬
𝑑𝑥

.

This gives us that∫ 𝜃

0

√
log(𝑁(𝑇, ∥ · ∥2,𝑛 , 𝜀)) 𝑑𝜀 ≤ max

1≤𝑖≤𝑛
| �̄�𝑘,𝑖 |∥𝑄−1 − 𝐼∥∥𝑄∥1/2

∫
2

0

√
𝑑𝑥 log(𝐶𝜉𝐿

𝑘
/𝜀) 𝑑𝜀.

By Assumption 4.2 we have thatE[max1≤𝑖≤𝑛 | �̄�𝑘,𝑖 | | 𝑋] ≲𝑃 𝑛1/𝑚
where𝑋 = (𝑥1 , . . . , 𝑥𝑛). In addi-

tion 𝜉2𝑚/(𝑚−2)
𝑘

log 𝑘/𝑛 ≲ 1 for 𝑚 > 2 gives that 𝜉2

𝑘
/log 𝑘/𝑛 → 0. So, ∥𝑄−1 − 𝐼∥ ≲𝑃 (𝜉2

𝑘
log 𝑘/𝑛)1/2

and ∥𝑄−1∥ ≲𝑃 1. Combining this all with log 𝜉𝐿
𝑘
≲ log 𝑘 implies

E

[
sup

𝑥∈𝒳

��𝛼(𝑥)′[𝑄−1 − 𝐼]G𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘]
�� | 𝑋]

≤ 2E

[
E𝜂 sup

𝑥∈𝒳

��𝛼(𝑥)′[𝑄−1 − 𝐼]G𝑛[𝜂𝑖𝑝𝑘(𝑥) ◦ 𝜖𝑘]
�� | 𝑋]

≲𝑃 𝑛
1/𝑚

√
𝜉2

𝑘
log

2 𝑘

𝑛

where the first line is due to symmetrization inequality. This gives us

sup

𝑥∈𝒳

��𝛼(𝑥)′[𝑄−1 − 𝐼]G𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘]
�� ≲𝑝 𝑛1/𝑚

√
𝜉2

𝑘
log

2 𝑘

𝑛
(D.11)

Step 2: Now simply report the results on approximation error from Belloni et al. (2015) . Since

the approximation error is the same for all signals 𝑌(�̄�𝑘 , �̄�𝑘), there is no Hadamard product to
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deal with.

sup

𝑥∈𝒳

��𝛼(𝑥)′[𝑄−1 − 𝐼]G𝑛[𝑝𝑘(𝑥)𝑟𝑘]
�� ≲𝑃 √

𝜉2

𝑘
log 𝑘

𝑛
ℓ𝑘𝑐𝑘

√
𝑘 (D.12)

sup

𝑥∈𝒳

��𝛼(𝑥)′G𝑛[𝑝𝑘(𝑥)𝑟𝑘]�� ≲𝑃 ℓ𝑘𝑐𝑘√log 𝑘 (D.13)

Looking at (D.10) and combining (D.11)-(D.12) gives the bound on 𝑅1𝑛(𝛼(𝑥)) while (D.13) gives

the bound on 𝑅2𝑛(𝛼(𝑥)).

□

Theorem D.2 gives conditions under which our estimator converges in probability to the true

conditional counterfactual outcome 𝑔0(𝑥). In particular, this convergence happens uniformly

at the rates defined in (D.15)-(D.16). If these two terms go to zero, the entire estimator will

converge uniformly to the true conditional expectation of interest.

Theorem D.2 (Uniform Rate of Convergence). Suppose that Condition 1 and Assumptions 4.1-4.2
hold. Then so long as either the propensity score model or outcome regression model is correctly specified:

sup

𝑥∈𝒳

��𝛼(𝑥)′G𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘]
�� ≲𝑃 √

log 𝑘 (D.14)

Moreover, for

�̄�1𝑛 :=

√
𝜉2

𝑘
log 𝑘

𝑛
(𝑛1/𝑚√

log 𝑘 +
√
𝑘ℓ𝑘𝑐𝑘)

�̄�2𝑛 :=
√

log 𝑘 · ℓ𝑘𝑐𝑘

we have that
sup

𝑥∈𝒳

��𝑝𝑘(𝑥)′(�̂�𝑘 − 𝛽𝑘)
�� ≲𝑃 𝜉𝑘√

𝑛

(√
log 𝑘 + �̄�1𝑛 + �̄�2𝑛

)
(D.15)

and
sup

𝑥∈𝒳

���̂�(𝑥) − 𝑔0(𝑥)
�� ≲𝑃 𝜉𝑘√

𝑛

(√
log 𝑘 + �̄�1𝑛 + �̄�2𝑛

)
+ ℓ𝑘𝑐𝑘 (D.16)

Proof. The goal will be to apply the following two theorems from Giné and Koltchinskii (2006)

and der Vaart and Wellner (1996).
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Preliminaries for Proof of Theorem D.2

Theorem (Gine and Koltchinskii, 2006). Let 𝜉1 , . . . , 𝜉𝑛 be 𝑖.𝑖.𝑑 random variables taking
values in a measurable space (𝑆,𝒮) with a common distribution 𝑃 defined on the underlying 𝑛-
fold product space. Let ℱ be a measurable class of functions mapping 𝑆 → R with a measurable
envelope 𝐹. Let 𝜎2 be a constant such that sup 𝑓 ∈ℱ Var( 𝑓 ) ≤ 𝜎2 ≤ ∥𝐹∥2

𝐿2(𝑃). Suppose there
exist constats 𝐴 > 𝑒2 and 𝑉 ≥ 2 such that sup𝑄 𝑁(ℱ , 𝐿2(𝑄), 𝜀∥𝐹∥𝐿2(𝑄)) ≤ (𝐴/𝜀)𝑉 for all
0 < 𝜀 ≤ 1. Then

E

[ 𝑛∑
𝑖=1

{ 𝑓 (𝜉𝑖) − E[ 𝑓 (𝜉1)]}

ℱ

]
≤ 𝐶


√
𝑛𝜎2𝑉 log

𝐴∥𝐹∥𝐿2(𝑃)
𝜎

+𝑉 ∥𝐹∥∞ log

𝐴∥𝐹∥𝐿2(𝑃)
𝜎

 .
(GK)

where 𝐶 is a universal constant.

Theorem (VdV&W 2.14.1). Let ℱ be a 𝑃-measurable class of measurable functions with a
measurable envelope function 𝐹. Then for any 𝑝 ≥ 1,∥G𝑛 ∥∗ℱ 

𝑃,𝑝
≲ ∥𝐽(𝜃𝑛 , ℱ )∥𝐹∥𝑛 ∥𝑃,𝑝 ≲ 𝐽(1, ℱ )∥𝐹∥𝑃,2∨𝑝 (VW)

where 𝜃𝑛 =
∥ 𝑓 ∥𝑛∗ℱ /∥𝐹∥𝑛 , where ∥ · ∥𝑛 is the 𝐿2(P𝑛) seminorm and the inequalities are valid

up to constants depending only on the 𝑝 in the statement. The term 𝐽(·, ·) is given

𝐽(𝛿, ℱ ) = sup

𝑄

∫ 𝛿

0

√
1 + log𝑁(ℱ , ∥ · ∥𝐿2(𝑄) , 𝜀∥𝐹∥𝐿2(𝑄)) 𝑑𝜀.

We would like to apply these theorems to bound sup𝑥∈𝒳 |𝛼(𝑥)′G𝑛[𝑝𝑘(𝑥) ◦ 𝜖𝑘]| and thus show

(D.14). The other two statements of Theorem D.2 follow from this. To this end, let’s consider

the class of functions

𝒢 := {(𝜖𝑘 , 𝑥) ↦→ 𝛼(𝑣)′(𝑝𝑘(𝑥) ◦ 𝜖𝑘), 𝑣 ∈ 𝒳}.

Let’s note that |𝛼(𝑣)′𝑝𝑘(𝑥)| ≤ 𝜉𝑘 , Var(𝛼(𝑣)′𝑝𝑘(𝑥)) = 1, and for any 𝑣, �̃� ∈ 𝒳

|𝛼(𝑣)′(𝑝𝑘(𝑥) ◦ 𝜖𝑘) − 𝛼(�̃�)′(𝑝𝑘(𝑥) ◦ 𝜖𝑘)| ≤ |�̄�𝑘 |𝜉𝐿𝑘𝜉𝑘 ∥𝑣 − �̃�∥ ,

where �̄�𝑘 = ∥𝜖𝑘 ∥∞. Then, taking 𝐺(𝜖𝑘 , 𝑥) ≤ �̄�𝑘𝜉𝑘 we have that

sup

𝑄

𝑁(𝒢 , 𝐿2(𝑄), 𝜀∥𝐺∥𝐿2(𝑄)) ≤
(
𝐶𝜉𝐿

𝑘

𝜀

)𝑑
. (D.17)

Now, for a 𝜏 ≥ 0 specified later define 𝜖−
𝑘

= 𝜖𝑘1{| �̄�𝑘 | ≤ 𝜏} − E[𝜖𝑘1{| �̄�𝑘 | ≤ 𝜏} | 𝑋] and

𝜖+
𝑘
= 𝜖𝑘1{| �̄�𝑘 | > 𝜏} −E[𝜖𝑘1{| �̄�𝑘 | > 𝜏} | 𝑋]. Since E[𝜖𝑘 | 𝑋] = 0 we have that 𝜖𝑘 = 𝜖−

𝑘
+ 𝜖+

𝑘
. Using

this decompose:

1√
𝑛

𝑛∑
𝑖=1

𝛼(𝑣)′(𝑝𝑘(𝑥) ◦ 𝜖𝑘) =
𝑛∑
𝑖=1

𝛼(𝑣)′(𝑝𝑘(𝑥) ◦ 𝜖−𝑘 )/
√
𝑛 +

𝑛∑
𝑖=1

𝛼(𝑣)′(𝑝𝑘(𝑥) ◦ 𝜖+
𝑘
)/
√
𝑛.
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We deal with each of these terms individually, in two steps.

Step 1: For the first term, we set up for an application of (GK). Equation (D.17) gives us the

constants 𝐴 = 𝐶𝜉𝐿
𝑘

and 𝑉 = 𝑑𝑥 ∨ 2. To get 𝜎2
note that for any 𝑣 ∈ 𝒳,

Var(𝛼(𝑣)′(𝑝𝑘(𝑥) ◦ 𝜖−𝑘 )/
√
𝑛) ≤ E[(𝛼(𝑣)′(𝑝𝑘(𝑥) ◦ 𝜖−𝑘 )/

√
𝑛)2]

≤ 1

𝑛
E[(𝛼(𝑣)′𝑝𝑘(𝑥))2] sup

𝑥∈𝒳
E[∥𝜖−𝑘 ∥

2

∞ | 𝑋 = 𝑥]

≤
�̄�2

𝑘
∧ 𝜏2

𝑛

Finally note that we can take the envelope 𝐺 = ∥𝜖−
𝑘
∥∞𝜉𝑘/

√
𝑛 where ∥𝐺∥𝐿2(𝑃) ≤ �̄�𝑘∧𝜏√

𝑛
and

∥𝐺∥∞ ≤ 𝜏𝜉𝑘/
√
𝑛.

We can now apply (GK) to get that

E[sup

𝑥∈𝒳
|𝛼(𝑥)′G𝑛[𝑝𝑘(𝑥) ◦ 𝜖−𝑘 ]|] ≲

√
�̄�2

𝑘
∧ 𝜏2

log(𝜉𝐿
𝑘
) +

𝜏𝜉𝑘 log(𝜉𝐿
𝑘
)

√
𝑛

.

Step 2: For the second term, we set up for an application of (VW) with the envelope function

𝐺 = ∥𝜖+
𝑘
∥∞𝜉𝑘/

√
𝑛 and note that

E[∥𝜖+
𝑘
∥2

∞] ≤ E[�̄�2

𝑘
1{| �̄�𝑘 | > 𝜏}] ≤ 𝜏−𝑚+2E[| �̄�𝑘 |𝑚]

We can now use (VW) to bound

E

sup

𝑥∈𝒳
|𝛼(𝑥)′G𝑛[𝑝𝑘(𝑥) ◦ 𝜖+

𝑘
]|
 ≲ √

E[| �̄�𝑘 |𝑚]𝜏−𝑚/2+1𝜉𝑘

∫
1

0

√
log(𝜉𝐿

𝑘
/𝜀) 𝑑𝜀

≲
√
𝜎𝑚
𝑘
𝜏−𝑚/2+1𝜉𝑘

√
log(𝜉𝐿

𝑘
).

Step 3: Let 𝜏 = 𝜉2/(𝑚−2)
𝑘

and apply Markov’s inequality. The bounds from step one and two

become

sup

𝑥∈𝒳
|𝛼(𝑥)′G𝑛[𝑝𝑘(𝑥) ◦ 𝜖−𝑘 ]| ≲𝑃

√
�̄�2

𝑘
log(𝜉𝐿

𝑘
) +

𝜉2𝑚/(𝑚−2)
𝑘

log(𝜉𝐿
𝑘
)

√
𝑛

sup

𝑥∈𝒳
|𝛼(𝑥)′G𝑛[𝑝𝑘(𝑥) ◦ 𝜖+

𝑘
]| ≲𝑃

√
�̄�𝑚
𝑘

log(𝜉𝐿
𝑘
)

Applying Assumption 4.2 along with the inequality

𝜉𝑚/(𝑚−2)
𝑘

log 𝑘
√
𝑛

=
√

log 𝑘

√
𝜉2𝑚/(𝑚−2)
𝑘

log 𝑘

𝑛
≲ log 𝑘

completes the proof.

□
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Theorem D.3 (Validity of Gaussian Bootstrap). Suppose that the assumptions of Theorem 4.2 hold
with 𝑎𝑛 = log 𝑛 and the assumptions of Theorem 4.3 hold with 𝑎𝑛 = 𝑂(𝑛−𝑏) for some 𝑏 > 0. In
addition, suppose that there exists a sequence 𝜉′𝑛 obeying 1 ≲ 𝜉′𝑛 ≲ ∥𝑝𝑘(𝑥)∥ uniformly for all 𝑥 ∈ 𝒳
such that ∥𝑝𝑘(𝑥) − 𝑝𝑘(𝑥′)∥/𝜉′𝑛 ≤ 𝐿𝑛 ∥𝑥 − 𝑥′∥, where log 𝐿𝑛 ≲ log 𝑛. Let 𝑁𝑏

𝑘
be a bootstrap draw from

𝑁(0, 𝐼𝑘) and 𝑃★ be the distribution conditional on the observed data {𝑌𝑖 , 𝐷𝑖 , 𝑍𝑖}𝑛𝑖=1
. Then the following

approximation holds uniformly in ℓ∞(𝒳):

𝑝𝑘(𝑥)′Ω̂1/2

Ω̂1/2𝑝𝑘(𝑥)
𝑁𝑏
𝑘
=𝑑

𝑝𝑘(𝑥)′Ω1/2

∥Ω1/2𝑝𝑘(𝑥)∥
+ 𝑜𝑃★(log

−1 𝑁) (D.18)

Proof. See Theorem 3.4 in Semenova and Chernozhukov (2021).

□

E High Dimensional Probability Results

E.1 High Dimensional Central Limit and Bootstrap Theorems

Lemma E.1 (Gaussian Quantile Bound). Let 𝑌 = (𝑌1 , . . . , 𝑌𝑝) be centered Gaussian in R𝑝 with
𝜎2 ≤ max1≤ 𝑗≤𝑝 E[𝑌2

𝑗
] and 𝜌 ≥ 2. Let 𝑞𝑌(1 − 𝜖) denote the (1 − 𝜖)-quantile of ∥𝑌∥∞ for 𝜖 ∈ (0, 1).

Then 𝑞𝑌(1 − 𝜖) ≤ (2 +
√

2)𝜎
√

ln(𝑝/𝜖).

Proof. See Chetverikov and Sørensen (2021), Lemma D.2. □

Now let 𝑍1 , . . . , 𝑍𝑛 be independent, mean zero random variables inR𝑝 , and denote their scaled

average and variance by

𝑆𝑛 :=
1√
𝑛

𝑛∑
𝑖=1

𝑍𝑖 and Σ :=
1

𝑛

𝑛∑
𝑖=1

E[𝑍𝑖𝑍′
𝑖].

For R𝑝 values random variables𝑈 and 𝑉 , define the distributional measure of distance

𝜌(𝑈,𝑉) := sup

𝐴∈𝒜𝑝

��
Pr(𝑈 ∈ 𝐴) − Pr(𝑉 ∈ 𝐴)

��
where𝒜𝑝 denotes the collection of all hyperrectangles inR𝑝 . For any symmetric positive matrix

𝑀 ∈ R𝑝×𝑝 , write 𝑁𝑀 := 𝑁(0, 𝑀).

Theorem E.1 (High-Dimensional CLT). If, for some finite constants 𝑏 > 0 and 𝐵𝑛 ≥ 1,

1

𝑛

𝑛∑
𝑖=1

E[𝑍2

𝑖 𝑗] ≥ 𝑏,
1

𝑛

𝑛∑
𝑖=1

E[|𝑍𝑖 𝑗 |2+𝑘] ≤ 𝐵𝑘𝑛 and E
[
max

1≤ 𝑗≤𝑝
𝑍4

𝑖 𝑗

]
≤ 𝐵4

𝑛 . (E.1)

for all 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . , 𝑝} and 𝑘 ∈ {1, 2}, then there exists a finite constant 𝐶𝑏 , depending
only on 𝑏, such that:

𝜌(𝑆𝑛 , 𝑁Σ) ≤ 𝐶𝑏

(
𝐵4

𝑛 ln
7(𝑝𝑛)
𝑛

)
1/6

.

Proof. See Chernozhukov et al. (2017), Proposition 2.1. □

Let 𝑍𝑖 be an estimator of 𝑍𝑖 and let 𝑒1 , . . . , 𝑒𝑛 be i.i.d 𝑁(0, 1) and independent of both the 𝑍𝑖’s

and 𝑍𝑖’s. Define 𝑆𝑒𝑛 := 1√
𝑛

∑𝑛
𝑖=1

𝑒𝑖𝑍𝑖 and let Pr𝑒 denote the conditional probability measure
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computed with respect to the 𝑒′
𝑖
𝑠 for fixed 𝑍𝑖’s and 𝑍𝑖’s. Also abbreviate

�̃�(𝑆𝑒𝑛 , 𝑁Σ) := sup

𝐴∈𝒜𝑝

����Pr𝑒

(
𝑆𝑒𝑛 ∈ 𝐴

)
− Pr (𝑁Σ ∈ 𝐴)

���� .
Theorem E.2 (Multiplier Bootstrap for Many Approximate Means). Let (E.1) hold for some finite
constants 𝑏 > 0 and 𝐵𝑛 ≥ 1, and let {𝛽𝑛}N and {𝛿𝑛}N be sequences in R++ converging to zero such that

Pr

©«max

1≤ 𝑗≤𝑝

1

𝑛

𝑛∑
𝑖=1

(𝑍𝑖 𝑗 − 𝑍𝑖 𝑗)2 >
𝛿2

𝑛

ln
2(𝑝𝑛)

ª®¬ ≤ 𝛽𝑛 (E.2)

Then, there exists a finite constant 𝐶𝑏 depending only on 𝑏 such that with probability at least 1 − 𝛽𝑛 −
1/ln

2(𝑝𝑛),

�̃�(𝑆𝑒𝑛 , 𝑁Σ) ≤ 𝐶𝑏 max

𝛿𝑛 ,
(
𝐵𝑛 ln

6(𝑝𝑛)
𝑛

)
1/6 .

Proof. See Belloni et al. (2018), Theorem 2.2 or Chetverikov and Sørensen (2021) Theorem

D.2. □

We now consider a partition of 𝑍 and 𝑍 into 𝑘 subvectors.

𝑍 := (𝑍′
1
, . . . , 𝑍′

𝑘)
′ ∈ R𝑑1 ,...,𝑑𝑘

and 𝑍 := (𝑍′
1
, . . . , 𝑍′

𝑘)
′ ∈ R𝑑1 ,...,𝑑𝑘

where

∑𝑘
𝑗=1

𝑑 𝑗 = 𝑝. Given such a partition, for any symmetric, positive definite 𝑀 ∈ R𝑝×𝑝 let

𝑁𝑀,𝑗 denote the marginal distribution of the subvector of 𝑁𝑀 corresponding the the indices of

partition 𝑗. In other words, 𝑁𝑀1
would denote the marginal distribution of the first 𝑑1 elements

of an R𝑝 vector with distribution 𝑁𝑀 , 𝑁2 would denote the marginal distribution of the next

𝑑2 elements and so on. For each 𝑗 = 1, . . . , 𝑘 define 𝑞𝑁
𝑀,𝑗

: R → R̄ as the (extended) quantile

function of ∥𝑁𝑀,𝑗 ∥∞,

𝑞𝑁𝑀,𝑗(𝜖) := inf

{
𝑡 ∈ R : Pr(∥𝑁𝑀,𝑗 ∥∞ ≤ 𝑡) ≥ 𝜖

}
.

Define 𝑞𝑁
𝑀,𝑗

(𝜖) = +∞ if 𝜖 ≥ 1 and−∞ if 𝜖 ≤ 0 so that 𝑞𝑁
𝑀,𝑗

is always montone (strictly) increasing.

Lemma E.2. Let 𝑀 ∈ R𝑝×𝑝 be symmetric positive definite, let𝑈 be a random variable in R𝑝 . Partition
𝑈 into 𝑘 subvectors, 𝑈 = (𝑈′

1
, . . . , 𝑈′

𝑘
)′ ∈ R𝑑1 ,...,𝑑𝑘 where 𝑑1 + · · · + 𝑑𝑘 = 𝑝. For each 𝑗 = 1, .., 𝑘 let 𝑞 𝑗

denote the quantile function of ∥𝑈 𝑗 ∥∞. Then for any 𝑗 = 1, . . . , 𝑘,

𝑞𝑁𝑀,𝑗(𝜖 − 2𝜌(𝑈, 𝑁𝑀)) ≤ 𝑞 𝑗(𝜖) ≤ 𝑞𝑁𝑀,𝑗(𝜖 + 𝜌(𝑈, 𝑁𝑀)) for all 𝜖 ∈ (0, 1).

Proof. Proof is a slight modification of that of Lemma D.3 in Chetverikov and Sørensen (2021).

Main idea is to add and substract a ∥𝑁𝑀 ∥∞ term and use the fact that the approximation is

achieved over all hyperrectangles. We show the bound holds for each 𝑗 = 1, . . . , 𝑘. Without

loss of generality, consider𝑈1. Let 𝑁𝑀,1 denote the maginal distribution of the first 𝑑1 elements
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of a R𝑝 vector with distribution 𝑁𝑀 .

Pr(∥𝑈1∥∞ ≤ 𝑡) = Pr(∥𝑁𝑀,1∥∞ ≤ 𝑡) + Pr(∥𝑈1∥∞ ≤ 𝑡) − Pr(∥𝑁𝑀,1∥∞ ≤ 𝑡)

= Pr(∥𝑁𝑀,1∥∞ ≤ 𝑡) +
(
Pr(𝑈 ∈ [−𝑡 , 𝑡]𝑝 × R𝑝−𝑑1) − Pr(𝑁𝑀 ∈ [−𝑡 , 𝑡]𝑝 × R𝑝−𝑑1)

)
≤ Pr(∥𝑁𝑀,1∥∞ ≤ 𝑡) + 𝜌(𝑈, 𝑁𝑀)

for any 𝑡 ∈ R. A similar construction will give that

Pr(∥𝑈1∥∞ ≤ 𝑡) ≥ Pr(∥𝑁𝑀,1∥∞ ≤ 𝑡) − 𝜌(𝑈, 𝑁𝑀).

Substituting 𝑡 = 𝑞𝑁
𝑀,1

(𝜖 − 2𝜌(𝑈, 𝑁𝑀)) into the upper bound on Pr(∥𝑈1∥∞ ≤ 𝑡) gives the lower

bound statement, while 𝑡 = 𝑞𝑁
𝑀,1

(𝜖 + 𝜌(𝑈, 𝑁𝑀)) and using the lower bound on Pr(∥𝑈1∥∞ ≤ 𝑡)
gives the upper bound statement. □

As with 𝑍 partition 𝑆𝑛 and 𝑆𝑒𝑛 into

𝑆𝑛 = (𝑆′𝑛,1 , . . . , 𝑆
′
𝑛,𝑘)

′ ∈ R𝑑1 ,...,𝑑𝑘
and 𝑆𝑒𝑛 = (𝑆𝑒′𝑛,1 , . . . , 𝑆

𝑒′

𝑛,𝑘
)′ ∈ R𝑑1 ,...,𝑑𝑘 .

For each 𝑗 = 1, . . . , 𝑘 define 𝑞𝑛,𝑗(𝜖) as the 𝜖-quantile of ∥𝑆𝑛,𝑗 ∥∞

𝑞𝑛,𝑗(𝜖) := inf{𝑡 ∈ R : Pr(∥𝑆𝑛,𝑗 ∥∞ ≤ 𝑡) ≥ 𝜖} for 𝜖 ∈ (0, 1).

Let �̂�𝑛,𝑗(𝜖) be the 𝜖-quantile of ∥𝑆𝑒
𝑛,𝑗

∥∞, computed conditionally on 𝑋𝑖 and 𝑋𝑖’s,

�̂�𝑛,𝑗(𝜖) := inf{𝑡 ∈ R : Pr𝑒(∥𝑆𝑒𝑛,𝑗 ∥∞ ≤ 𝑡) ≥ 𝜖} for 𝜖 ∈ (0, 1).

Theorem E.3 (Quantile Comparasion). If (E.1) holds for some finite constants 𝑏 > 0 and 𝐵𝑛 ≥ 1,
and

𝜌𝑛 := 2𝐶𝑏

(
𝐵4

𝑛 ln
7(𝑝𝑛)
𝑛

)
1/6

denotes the upper bound in Theorem E.1 multiplied by two, then for all 𝑗 = 1, . . . , 𝑘

𝑞𝑁
Σ, 𝑗(1 − 𝜖 − 𝜌𝑛) ≤ 𝑞𝑛,𝑗(1 − 𝜖) ≤ 𝑞𝑁

Σ, 𝑗(1 − 𝜖 + 𝜌𝑛) for all 𝜖 ∈ (0, 1).

If, in addition, (E.2) holds for some sequences {𝛿𝑛}N and {𝛽𝑛}N converging to zero, and

𝜌′𝑛 ≤ 2𝐶′
𝑏 max

𝛿,
(
𝐵4

𝑛 ln
6(𝑝𝑛)
𝑛

)
1/6

denotes the upper bound in Theorem E.2 multiplied by two, then with probability at least 1 − 𝛽𝑛 −
1/ln

2(𝑝𝑛) we have for all 𝑗 = 1, . . . , 𝑘,

𝑞𝑁
Σ, 𝑗(1 − 𝜖 − 𝜌′𝑛) ≤ �̂�𝑛,𝑗(1 − 𝜖) ≤ 𝑞𝑁

Σ, 𝑗(1 − 𝜖 + 𝜌′𝑛) for all 𝜖 ∈ (0, 1).

Proof. From Lemma E.2 with𝑈 = 𝑆𝑛 we obtain

𝑞𝑁
Σ, 𝑗(1 − 𝜖 − 2𝜌(𝑆𝑛 , 𝑁Σ)) ≤ 𝑞𝑛,𝑗(1 − 𝜖) ≤ 𝑞𝑁

Σ, 𝑗(1 − 𝜖 + 𝜌(𝑆𝑛 , 𝑁Σ)).

The first chain of inequalities then follows from 2𝜌(𝑆𝑛 , 𝑁Σ) ≤ 𝜌𝑛 by Theorem E.1.
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For the second claim, apply Lemma E.2 with𝑈 = 𝑆𝑒𝑛 and condition on the 𝑍𝑖’s and 𝑍𝑖’s obtain

𝑞𝑁
Σ, 𝑗(1 − 𝜖 − 2�̃�(𝑆𝑒𝑛 , 𝑁Σ)) ≤ �̂�𝑛(1 − 𝜖) ≤ 𝑞𝑁

Σ, 𝑗(1 − 𝜖 + �̃�(𝑆𝑒𝑛 , 𝑁Σ)).

The second chain of inequalities then follows on the event 2�̃�(𝑆𝑒𝑛 , 𝑁Σ) ≤ 𝜌′𝑛 , which by Theo-

rem E.2 happens with probability at least 1 − 𝛽𝑛 − 1/ln
2(𝑝𝑛). □

Theorem E.4 (Multiplier Bootstrap Consistency). Let (E.1) and (E.2) hold for some constants 𝑏 > 0

and 𝐵𝑛 ≥ 1 and some sequences {𝛿𝑛}N and {𝛽𝑛}N in R++ converging to zero. Then, there exists a finite
constant 𝐶𝑏 , depending only on 𝑏, such that

max

1≤ 𝑗≤𝑘
sup

𝜖∈(0,1)

��
Pr(∥𝑆𝑛,𝑗 ∥∞ ≥ �̂�𝑛,𝑗(1 − 𝛼)) − 𝛼

�� ≤ 𝐶𝑏 max

𝛽𝑛 , 𝛿𝑛 ,
(
𝐵4

𝑛 ln
7(𝑝𝑛)
𝑛

)
1/6

,
1

ln
2(𝑝𝑛)

 .
Proof. By Theorem E.1 and Theorem E.3,

Pr(∥𝑆𝑛,𝑗 ∥∞ ≤ �̂�𝑛,𝑗(1 − 𝜖)) ≤ Pr(∥𝑆𝑛,𝑗 ∥∞ ≤ 𝑞𝑁
Σ, 𝑗(1 − 𝜖 + 𝜌′𝑛)) + 𝛽𝑛 +

1

ln
2(𝑝𝑛)

≤ Pr(∥𝑁Σ, 𝑗 ∥∞ ≤ 𝑞𝑁
Σ, 𝑗(1 − 𝜖 + 𝜌′𝑛)) + 𝜌𝑛 + 𝛽𝑛 +

1

ln
2(𝑝𝑛)

≤ 1 − 𝜖 + 𝜌′𝑛 + 𝜌𝑛 + 𝛽𝑛 +
1

ln
2(𝑝𝑛)

Where the second inequality is making use of the same rectangle argument as before. A parallel

argument shows that

Pr(∥𝑆𝑛,𝑗 ∥∞ ≤ �̂�𝑛,𝑗(1 − 𝜖)) ≥ 1 − 𝜖 −
(
𝜌′𝑛 + 𝜌𝑛 + 𝛽𝑛 +

1

ln
2(𝑝𝑛)

)
.

Combining these two inequalities gives the result.

□

E.2 Concentration and Tail Bounds

We make use of the following concentration and tail bounds. Lemmas E.3–E.7 can be found in

Bühlmann and van de Geer (2011). The proof of Lemma E.8 is trivial but provided here.

Lemma E.3. Let (𝑌1 , . . . , 𝑌𝑛) be independent random variables such that E[𝑌𝑖] = 0 for 𝑖 = 1, . . . , 𝑛

and max𝑖=1,...,𝑚 |𝑌𝑖 | ≤ 𝑐0 for some constant 𝑐0. Then, for any 𝑡 > 0,

Pr

(���� 1𝑛 𝑛∑
𝑖=1

𝑌𝑖

���� > 𝑡

)
≤ 2 exp

(
−𝑛𝑡

2

2𝑐2

0

)
.

Lemma E.4. Let (𝑌1 , . . . , 𝑌𝑛) be independent random variables such that E[𝑌𝑖] = 0 for 𝑖 = 1, . . . ,

and (𝑌1 , . . . , 𝑌𝑛) are uniformly sub-gaussian: max1≤𝑖≤𝑛 𝑐2

1
E[exp(𝑌2

𝑖
/𝑐2

1
) − 1] ≤ 𝑐2

2
for some constants

(𝑐1 , 𝑐2). Then for any 𝑡 > 0,

Pr

(���� 1𝑛 𝑛∑
𝑖=1

𝑌𝑖

���� > 𝑡

)
≤ 2 exp

(
− 𝑛𝑡2

8(𝑐2

1
+ 𝑐2

2
)

)
.
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Lemma E.5. Let (𝑌1 , . . . , 𝑌𝑛) be independent variables such that E[𝑌𝑖] = 0 for 𝑖 = 1, . . . , 𝑛 and

1

𝑛

𝑛∑
𝑖=1

E[|𝑌𝑖 |𝑘] ≤
𝑘!

2

𝑐𝑘−2

3
𝑐2

4
, 𝑘 = 2, 3, . . . ,

for some constants (𝑐3 , 𝑐4). Then, for any 𝑡 > 0,

Pr

(���� 1𝑛 𝑛∑
𝑖=1

𝑌𝑖

���� > 𝑐3𝑡 + 𝑐4

√
2𝑡

)
≤ 2 exp(−𝑛𝑡).

Lemma E.6. Suppose that 𝑌 is sub-gaussian: 𝑐2

1
E[exp(𝑌2/𝑐2

1
) − 1] ≤ 𝑐2

2
for some constants (𝑐1 , 𝑐2).

Then
E[|𝑌 |𝑘] ≤ Γ

(
𝑘

2

+ 1

)
(𝑐2

1
+ 𝑐2

2
)𝑐𝑘−2

1
, 𝑘 = 2, 3, . . . .

Lemma E.7. Suppose that 𝑋 is bounded, |𝑋 | ≤ 𝑐0, and 𝑌 is sub-gaussian, 𝑐2

2
E[exp(𝑌2/𝑐2

1
) − 1] ≤ 𝑐2

2

for some constants (𝑐1 , 𝑐2). Then 𝑍 = 𝑋𝑌2 satisfies

E
[
|𝑍 − E[𝑍]|𝑘

]
≤ 𝑘!

2

𝑐𝑘−2

3
𝑐2

4
, 𝑘 = 2, 3, . . . ,

for 𝑐3 = 2𝑐0𝑐
2

1
and 𝑐4 = 2𝑐0𝑐1𝑐2.

Lemma E.8. Suppose that 𝑌 is sub-gaussian in the following sense, there exist positive constants
𝑐0 , 𝑐1 > 0 such that 𝑐2

0
E[exp(𝑌2/𝑐2

0
) − 1] ≤ 𝑐2

1
. Then

E[|𝑌 |] ≤ 𝑐2

1
/𝑐0 + 𝑐0.

Proof. Use the fact that 𝑒𝑥
2

> |𝑥 | and the characterization of sub-gaussian. □

F Additional Details on Empirical Application

As mentioned in the setup, to avoid outlier contamination we drop the top 3% and bottom 3%

of birthweights by maternal age. We also drop ages for which there are fewer than 10 smoker

or non smoker observations. The result is a dataset with 4107 (of an initial 4602) observations

on the outcome variable, birthweight. In addition to the 21 control variables (𝑍) available in

the dataset, we further generate an additional 29 interaction/higher order variables that we

believe may be useful in controlling for confounding as well as a constant. Table F.1 provides

a summary of the initial 21 control variables.1

In addition to these 21 control variables, we include the folowing interactions: mbsmoke ×
alcohol, medu × fedu, mage × fage, msmoke

2
, msmoke × alcohol, mage

2
, mage × mmarried,

mage×medu, mage× fedu, monthslb
2
, msmoke×monthslb

2
, monthslb

2 ×msmoke
2
, msmoke

2

× prenatal
2
, msmoke

2 ×mage
2
, mage

2 ×monthslb
2
, mage

2 × fage, fage
2 ×mage

2
, fage

2 ×mage,

mage
2 × mrace, fage

2 × frace, msmoke
2 × alcohol, mage

2 × alcohol, fage
2 × alcohol, monthslb

2

× alcohol, mage
2 × mhisp, fage

2 × fhisp, medu × mage
2
. We also include indicators for the

month of birth.

1This table is generated using the wonderful stargazer package in R (Hlavac, 2022).
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Table F.1: Summary of Data used in Emprical Exercise

Statistic N Mean St. Dev. Min Max

bweight 4,107 3,384.354 447.616 1,544 4,668

mmarried 4,107 0.708 0.455 0 1

mhisp 4,107 0.034 0.181 0 1

fhisp 4,107 0.038 0.192 0 1

foreign 4,107 0.054 0.226 0 1

alcohol 4,107 0.031 0.174 0 1

deadkids 4,107 0.252 0.434 0 1

mage 4,107 26.125 5.025 16 36

medu 4,107 12.703 2.470 0 17

fage 4,107 27.000 9.022 0 60

fedu 4,107 12.324 3.624 0 17

nprenatal 4,107 10.822 3.613 0 40

monthslb 4,107 21.938 30.255 0 207

order 4,107 1.858 1.056 0 12

msmoke 4,107 0.390 0.890 0 3

mbsmoke 4,107 0.183 0.386 0 1

mrace 4,107 0.847 0.360 0 1

frace 4,107 0.822 0.382 0 1

prenatal 4,107 1.204 0.507 0 3

birthmonth 4,107 6.556 3.352 1 12

lbweight 4,107 0.025 0.155 0 1

fbaby 4,107 0.443 0.497 0 1

prenatal1 4,107 0.803 0.398 0 1

In conducting analysis, we found it quite helpful to the stability of the final model assisted

estimator to do some light trimming of the estimated propensity score and outcome regression

models. In particular we trim the estimated propensity score(s) to be between 0.01 and 0.99

and trim the estimated mean regression models so that they take a value no more than roughly

12.5% higher or lower than the maximum or minimum value of 𝑌 observed in the data.

Because the control variables are all of different magnitudes, it is common to do some normal-

ization before estimating the ℓ1-regularized propensity score and outcome regression models

so that all variables are “punished” equally by the penalty. We normalize our data by scaling

each variable to take on values between zero and one.

G Consistency between First Stage and Second Stage Assumptions

In this section, we examine the consistency between the first stage and second stage assumptions

on the basis terms 𝑝𝑘(𝑥). In particular, we are interested in finding a positive basis that also

satisfies the bounded eigenvalue condition on the design matrix in Assumption 4.1. We also

discuss how to construct the model assisted estimator with weights in (2.7)-(2.8) that are not

directly the second stage basis terms in case the researcher is worried about their choice of basis

terms satisfying the first stage and second stage stage assumptions simultaneously.
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Suppose that 𝒳 = [0, 1]. First, note that the first stage non-negativity and second stage design

assumptions can be trivially satisfied by using a locally constant basis; that is by taking

𝑝 𝑗(𝑥) = 1[ℓ 𝑗−1 ,ℓ 𝑗)(𝑥) (G.1)

for some 0 = ℓ0 < ℓ1 < · · · < ℓ𝑡 = 1. While this basis may have poor approximation qualities,

the general principle can be extended to any basis whose elements have disjoint (or limitedly

overlapping) supports. Higher order piecewise polynomial approximations can often be im-

plemented using B-splines which are orthonormalized regression splines. See De Boor (2001)

for an in-depth discussion or Newey (1997) for an application of B-splines to nonparametric

series regression.

These higher order splines can be defined recursively. For a given (weakly increasing) knot

sequence ℓ := (ℓ 𝑗)𝑡𝑗=1
we define the “first-order” B-splines denoted 𝐵1,1(𝑥), . . . , 𝐵𝑡 ,1(𝑥) using

(G.1), that is 𝐵 𝑗 ,1(𝑥) = 𝑝 𝑗(𝑥). On top of these functions, we can define higher order B-splines

via the recursive relation (De Boor (2001), p.90)

𝐵 𝑗 ,𝑑+1
:= 𝜔 𝑗 ,𝑑(𝑥)𝐵 𝑗 ,𝑑(𝑥) + [1 − 𝜔 𝑗+1,𝑑(𝑥)]𝐵 𝑗+1,𝑑(𝑥). (G.2)

where

𝜔 𝑗 ,𝑑(𝑥) :=


𝑥−ℓ 𝑗
ℓ 𝑗+𝑑−ℓ 𝑗 if ℓ 𝑗+𝑑 ≠ ℓ 𝑗

0 otherwise

.

If 𝑋 is continuously distributed on an open set containing the knots (ℓ 𝑗), De Boor (2001) shows

that the B-spline basis is almost surely positive. Moreover, B-splines is locally supported in the

sense each 𝐵 𝑗 ,𝑑 is positive on (ℓ 𝑗 , ℓ 𝑗+𝑑), zero off this support and for each 𝑑:

𝑡∑
𝑗=1

𝐵 𝑗 ,𝑑 = 1 on [0, 1].

where the summation is taken pointwise (see De Boor (2001), p.36). From the final property we

can see the B-spline basis using 𝑘 = 𝑡𝑑 basis terms, 𝑝𝑘(𝑥) = (𝐵 𝑗 ,𝑙(𝑥)) 𝑗=1,..,𝑡
𝑙=1,...,𝑑

are totally bounded

so that.

B-splines used directly in this manner, however, do not lead to a design matrix𝑄 = E[𝑝𝑘(𝑥)𝑝𝑘(𝑥)′]
with eigenvalues which are bounded away from zero. To achieve this, the basis fucntions must

be divided by their ℓ2 norm. In practice, this leads to b-spline terms who are grown at rate

𝜉𝑘,∞ ≲
√
𝑘. The pilot penalty constants can be chosen from a set whose bounds are on the order

of

√
𝑘 and the sparsity bounds of Assumption 3.1 reduce to

𝑠𝑘 𝑘
3/2

ln
5(𝑑𝑧𝑛)

𝑛
→ 0 and

𝑘2
ln

7(𝑑𝑧𝑘𝑛)
𝑛

→ 0
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while the bounds in (4.2) and (4.11) reduce respectively to

𝑠𝑘 𝑘
3/2

ln(𝑑𝑧)√
𝑛

→ 0 and

𝑠2

𝑘
𝑘7/2

ln(𝑑𝑧)
𝑛(𝑚−1)/𝑚 → 0.

G.1 Alternate Weighting

So long as the second stage basis 𝑝𝑘(𝑥) contains a constant term, it is possible to weight the

estimating equations (2.7)-(2.8) by some 𝑝𝑘(𝑥) = 𝑝𝑘(𝑥) + 𝑐𝑘 with minimal modification to the

model assisted estimator. The constants 𝑐𝑘 ∈ R can be allowed to grow with 𝑘 so long as we

replace 𝜉𝑘,∞ with the maximum of �̃�𝑘,∞ := sup𝑥∈𝒳 ∥ �̃�𝑘(𝑥)∥∞ and 𝜉𝑘,∞ in the sparsity bounds of

Section 4. Without loss of generality we will assume that the first basis term is a constant so

that 𝑝1(𝑥) ≡ 1

After estimating the models (�̂�1 , �̂�1), . . . , (�̂�𝑘 , �̂�𝑘)using (�̃�1(𝑥), . . . , �̃�𝑘(𝑥)) in place of (𝑝1(𝑥), . . . , 𝑝𝑘(𝑥))
in (2.7)-(2.8) we would construct the second stage estimate �̂�𝑘

�̃�𝑘 = 𝑄−1E𝑛


�̃�1(𝑥)𝑌(�̂�1 , �̂�1) − 𝑐𝑘𝑌(�̂�1 , �̂�1)
�̃�2(𝑥)𝑌(�̂�2 , �̂�2) − 𝑐𝑘𝑌(�̂�1 , �̂�1)

...

�̃�𝑘(𝑥)𝑌(�̂�𝑘 , �̂�𝑘) − 𝑐𝑘𝑌(�̂�1 , �̂�1)


.

Via the same analysis of Sections 3 and 4 we will still be able to show that the bias passed

on from first stage estimation to the second stage parameter �̃�𝑘 remains negligible even under

misspecification of either first stage model. This is because Lemma 3.1 will establish that

max

1≤ 𝑗≤𝑘
|E𝑛[�̃� 𝑗(𝑥)𝑌(�̂� 𝑗 , �̂� 𝑗)] − E𝑛[�̃� 𝑗(𝑥)𝑌(�̄� 𝑗 , �̄� 𝑗)]| = 𝑜𝑝(𝑛−1/2𝑘−1/2) and

max

1≤ 𝑗≤𝑘
�̃�𝑘,∞ max

1≤ 𝑗≤𝑘
E𝑛[�̃� 𝑗(𝑥)2(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))2] = 𝑜𝑝(𝑘−2𝑛−1/𝑚)

.

Using the first statement, we can immediately establish via the triangle inequality that

max

1≤ 𝑗≤𝑘
|E𝑛[�̃� 𝑗(𝑥)𝑌(�̂� 𝑗 , �̂� 𝑗) − 𝑐𝑘𝑌(�̂�1 , �̂�1)] − E𝑛[�̃� 𝑗(𝑥)𝑌(�̄� 𝑗 , �̄� 𝑗) − 𝑐𝑘𝑌(�̄�1 , �̄�1)]| = 𝑜𝑝(𝑛−1/2𝑘−1/2)

which is the exact analog of Condition 1 needed to establish consistency at the nonparameteric

rate of the modified model assisted estimator. Similarly, using the second statement and

(𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2
we can immediately establish that

max

1≤ 𝑗≤𝑘
E𝑛[(�̃� 𝑗(𝑥)𝑌(�̂� 𝑗 , �̂� 𝑗) − 𝑐𝑌(�̂�1 , �̂�1) − �̃� 𝑗(𝑥)𝑌(�̄� 𝑗 , �̄� 𝑗) + 𝑐𝑌(�̄� 𝑗 , �̄� 𝑗))2] = 𝑜𝑝(𝑘−2𝑛−1/𝑚)

which is the exact analog of Condition 2 needed to establish a consistent variance estimator

when �̃�𝑘 is used instead of the �̂�𝑘 from (2.11).

This logic can be extended slightly if the researcher would like to weight the estimating equa-

tions (2.7)-(2.8) by some �̃�𝑘(𝑥) = 𝐺𝑘𝑝𝑘(𝑥) for an invertible and bounded sequence of linear
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operators 𝐺𝑘
: R𝑘 → R𝑘 . In this case, one would again use �̃�𝑘(𝑥) in place of 𝑝𝑘(𝑥) in (2.7)-(2.8)

and construct the second stage coeffecients via

�̃�𝑘 := 𝑄−1𝐺𝑘,−1E𝑛


�̃�1(𝑥)𝑌(�̂�1 , �̂�1)

...

�̃�𝑘(𝑥)𝑌(�̂�𝑘 , �̂�𝑘)


After constructing the second stage estimator using �̃�𝑘 , inference procedures would proceed

normally as described in Section 2.

H Alternative CV-Type Method for Penalty Parameter Selection

In this section we consider a procedure for penalty parameter selection where we use the pilot

penalty parameters described in (2.14) directly, after choosing constants 𝑐𝛾, 𝑗 and 𝑐𝛼, 𝑗 from a

(finite) set via cross validation. For each 𝑗 we will assume that

𝑐𝛾, 𝑗 , 𝑐𝛼, 𝑗 ∈ Λ𝑛 ⊆ [𝑐𝑛 , 𝑐𝑛] (H.1)

where |Λ𝑛 | can be fairly large (on the order of 𝑛2/𝑘).

H.1 Theory Overview

Let 𝑀5 , 𝑀6 , 𝑀7 , 𝑀
2

8
, 𝑀2

9
be constants that do not depend on 𝑘 as in Lemmas C.7–C.11. When-

ever

𝑐𝑛

√
ln

3(𝑑𝑧𝑛)
𝑛

≥ 𝜉𝑘,∞ max

{
𝑀5 , 𝑀6 , 𝑀7 , 𝑀

2

8
, 𝑀2

9

} √
ln(𝑑𝑧𝑛)
𝑛

. (H.2)

we will have that, under Assumption 3.1(i)-(iv) the event

⋂
7

𝑘=1
Ω𝑘,7 occurs with probability at

least 1 − 10𝑘/𝑛2
for the 2𝑘 pilot penalty parameters chosen with any values 𝑐𝛾, 𝑗 , 𝑐𝛼, 𝑗 ∈ Λ𝑛 and

�̄�𝑘 := 𝑐𝑛

√
ln

3(𝑑𝑧𝑛)
𝑛

.

In this event, apply Lemmas C.1 and C.2 to obtain the following finte sample bounds for the

parameter estimates

max

1≤ 𝑗≤𝑘
𝐷

‡
𝛾, 𝑗(�̂�𝑗 , �̄�𝑗) ≤ 𝑀0

𝑠𝑘𝑐
2

𝑛 ln
3(𝑑𝑧𝑛)
𝑛

and max

1≤ 𝑗≤𝑘
∥�̂�𝑗 − �̄�𝑗 ∥1 ≤ 𝑀0𝑠𝑘𝑐𝑛

√
ln

3(𝑑𝑧𝑛)
𝑛

max

1≤ 𝑗≤𝑘
𝐷

‡
𝛼, 𝑗(�̂� 𝑗 , �̄� 𝑗 ; �̄�𝑗) ≤ 𝑀1

𝑠𝑘𝑐
2

𝑛 ln
3(𝑑𝑧𝑛)
𝑛

and max

1≤ 𝑗≤𝑙
∥�̂� 𝑗 − �̄� 𝑗 ∥1 ≤ 𝑀1𝑠𝑘𝑐𝑛

√
ln

3(𝑑𝑧𝑛)
𝑛
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and Lemma A.1 to obtain the following finite sample bound for the weighted means:

max

1≤ 𝑗≤𝑘
|E𝑛[𝑝 𝑗(𝑋)(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))]| ≤ 𝑀2

𝑐2

𝑛𝑠𝑘 ln
3(𝑑𝑧𝑛)
𝑛

(H.3)

max

1≤ 𝑗≤𝑘
|E𝑛[𝑝2

𝑗 (𝑋)(𝑌(𝜋 𝑗 , 𝑚 𝑗) − 𝑌(�̄� 𝑗 , �̄� 𝑗))2] ≤ 𝑀3

𝜉2

𝑘,∞𝑐
2

𝑛𝑠
2

𝑘
ln

3(𝑑𝑧𝑛)
𝑛

(H.4)

Combining (H.2) and (H.3) we can see that Condition 1 can be obtained under Assump-

tion 3.1(i)-(iv) and the following modified sparsity bounds

𝑘 |Λ𝑛 |
𝑛2

→ 0,
𝑐−1

𝑛 𝜉𝑘,∞
ln(𝑑𝑧𝑛)

→ 0 and

𝑐2

𝑛𝑠𝑘 𝑘
1/2

ln
3(𝑑𝑧𝑛)√

𝑛
→ 0. (H.5)

Simlarly combining (H.2) and (H.4), Condition 2 can additionally be obtained by strengthening

the rates in (H.5) to include

𝜉2

𝑘,∞𝑐
2

𝑛𝑠𝑘 𝑘
2

ln
3(𝑑𝑧𝑛)

𝑛(𝑚−1)/𝑚 → 0 (H.6)

for 𝑚 > 2 as in Assumption 4.2. These rates are comparable and in certain cases may be more

palatable than those presented in the main text, Assumption 3.1(vi). They come at the cost of

slower rates of convergence for the weighted means as seen by comparing eqs. (H.3)–(H.4) to

eqs. (3.1) and (3.2).

H.2 Practical Implementation

In practice, the constants 𝑀5 , 𝑀6 , 𝑀7 , 𝑀
2

8
, 𝑀2

9
from Lemmas C.7–C.11 are roughly on the order

of ∥𝑍∥∞. We therefore reccomend setting

𝑐𝑛 =
1

2 log
1/2(𝑑𝑧𝑛)

max

1≤𝑖≤𝑛
∥𝑝𝑘(𝑋𝑖)∥∞ max

1≤𝑖≤𝑛
∥𝑍𝑖 ∥∞

𝑐𝑛 =
3 log

1/2(𝑑𝑧𝑛)
2

max

1≤𝑖≤𝑛
∥𝑝𝑘(𝑋𝑖)∥∞ max

1≤𝑖≤𝑛
∥𝑍𝑖 ∥∞

and letting Λ𝑛 be a set of points evenly spaced between 𝑐𝑛 and 𝑐𝑛 . The cross validation

procedure then can be implemented in the following steps.

1. Split the sample into 𝐾 folds.

2. Consider a single pair of values for 𝑐𝛼 , 𝑐𝛾 and designate a fold to hold out.

3. Estimate nuisance model parameters using 𝜆pilot𝛾, 𝑗 and 𝜆pilot𝛼, 𝑗 on the remaining folds.

4. Evaluate the resulting models on held out fold using non-penalized loss functions.

5. Repeat 𝐾 times and record average loss over all folds.

6. Choose values of 𝑐𝛾, 𝑗 and 𝑐𝛼, 𝑗 with the lowest average loss.

In practice we find this procedure works well with small 𝐾, around 𝐾 = 5 and with |Λ𝑛 | on the

order of about 10-20.
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