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Abstract

This paper investigates the relationship among monotonicity conditions in IV models with

multiple choices and categorical instruments. The comparison between monotonicity conditions

of ordered and unordered choice models is central to our analysis. We show that these seem-

ingly unrelated conditions exhibit non-trivial symmetries that can be traced back to a weaker

condition called Minimal Monotonicity. This novel condition captures an essential property for

identifying causal parameters while being necessary for ascribing causal interpretation to Two-

Stage Least Squares (2SLS) estimands. We show that minimal monotonicity naturally arises

from a notion of rationality in revealed preference analysis. The condition enables to describe

non-standard choice behaviors and serves as a building block for a wide range of economically-

justified monotonicity conditions that do not fit the narrative dictated by either ordered or

unordered choice models.
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1 Introduction

In 1994, Guido Imbens and Joshua Angrist published a widely influential paper that investigates-

the nonparametric identification of causal parameters in a binary choice model with heterogeneous

treatment effects using instrumental variables (IV). To identify such parameters, the paper intro-

duces the monotonicity condition which states that a change in the instrument induces all agents

to shift their choice in the same direction. The monotonicity condition has several desirable prop-

erties. It is simple, intuitive, and renders the identification of the Local Average Treatment Effect

(LATE) via the Two-Stage Least Squares (2SLS) estimand. Thus monotonicity is also often con-

sidered the minimal criteria necessary to ascribe causal interpretation to 2SLS estimands under

binary treatment.1

Contrary to what one might expect, identification in IV models with multiple treatment choices is

not a direct extension of the binary choice case. Multiple choices allow for a range of distinct mono-

tonicity conditions. Notably, Angrist and Imbens (1995) directly apply the monotonicity of Imbens

and Angrist (1994) to the case of multiple treatments. Vytlacil (2006) shows that the condition is

equivalent to assuming an ordered choice model. In contrast, the unordered monotonicity of Heck-

man and Pinto (2018) applies to settings with unordered treatment choices; it neither implies nor

is implied by the monotonicity of Angrist and Imbens (1995). Despite their specific formulations,

both conditions are equivalent to the Imbens and Angrist (1994) monotonicity in the case of binary

choices and both allow for a causal interpretation of 2SLS estimands.

While the two ordered and unordered monotonicity criteria discussed above share these desirable

similarities, little is known about the relationship between them. The IV literature seldom considers

a meta-analysis across monotonicity conditions in settings with multiple treatments. This paper fills

this gap by considering two independent but linked inquiries. The first is on the relationship between

ordered and unordered monotonicity. The shared key properties that suggest a deeper connection

between the two criteria. We update the equivalence results of Vytlacil (2006) and Heckman

and Pinto (2018) to provide symmetric characterizations of ordered and unordered monotonicity.

These characterizations enable us to note some useful common properties of ordered and unordered

monotonicity and set the stage for joint analysis of the two conditions.

The second inquiry considered is whether these two monotonicity conditions can be subsumed by

a broader criterion that would still enable useful causal analysis. By leveraging their symmetric

characterizations, we show that both conditions share a common property which we term the

minimal monotonicity condition. This minimal monotonicity condition is precisely what is required

for the two stage least squares between any two instrument values to identify an interpretable

causal parameter; no weaker condition would allow for causal interpretability of such two stage

least squares estimands.2 We provide a characterization for minimal monotonicity that allows the

1Huber and Mellace (2012) is an example of a paper that considers identification of the LATE via 2SLS under
alternate conditions

2Indeed, in cases where treatment is binary, we show that minimal monotonicity reduces exactly to the mono-
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researcher to easily verify whether the condition holds.

In addition, we show that minimal monotonicity can be justified by a notion of choice rational-

ity significantly weaker than those displayed by agents in ordered and unordered choice models.

Settings where ordered and unordered monotonicity hold can thus be seen as particular instances

of a broad class of choice models described by the minimal monotonicity condition. By analyzing

the properties of minimal monotonicity, we thus hope to facilitate development of monotonicity

conditions that may be suitable in a range of economic settings that are not neatly described by

ordered or unordered choice models. We provide some natural economic examples where ordered

and unordered monotonicity fail, but where minimal monotonicity may still allow researchers to

conduct meaningful causal analysis.

This paper contributes to the theoretical literature on ordered and unordered choice models. It

adds to the literature that extends the understanding and usage of monotonicity conditions (Ka-

mat, 2021; Mogstad et al., 2018; Mogstad and Torgovitsky, 2018; Hull, 2018). Our analyses are

informative to a growing literature on empirical economics that examines non-standard monotonic-

ity conditions to aid the identification and evaluation of treatment effects (Pinto, 2021; Kline and

Walters, 2016; Mountjoy, 2021; Feller et al., 2016; Brinch et al., 2017; Kirkeboen et al., 2016).

We additionally contribute to the literature tying monotonicity criterion to particular structural

models (Vytlacil, 2002, 2006; Heckman and Pinto, 2018) by showing the minimal monotonicity is

implied by a basic model of rationality.

This paper proceeds as follows. Section 2 reviews the prior literature on monotonicity conditions.

Section 3 describes the IV model and introduces our notation. Section 4 discusses the content of

ordered and unordered monotonicity conditions and revisits the equivalence results for ordered and

unordered choice models. It explores the symmetry of equivalence results between these two mod-

els to motivate a novel monotonicity condition. Section 5 discusses the properties of the Minimal

Monotonicity Condition. Section 6 discusses the economic content of the minimal monotonicity con-

dition. Section 7 discuss some applications of monotonicity criteria that are economically justified.

Section 8 concludes.

2 Literature Review

Economists have long used instrumental variables (IV) to identify the causal effects. The traditional

approach to IV models employs structural equations to determining the agent’s choice (Goldberger,

1972; Heckman, 1976, 1979). In their seminal work, Imbens and Angrist (1994) departed from the

traditional IV literature based on structural equations. Using the language of potential outcomes

(Rubin, 1974, 1978a), they introduce the notion of monotonicity, which formalizes an intuitive

assumption stating that an IV change induces all agents toward choosing the same treatment

choice.3

tonicity of Imbens and Angrist (1994).
3See also Angrist et al. (1996).
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Angrist and Imbens (1995) extend this monotonicity condition to the case of multiple choices. They

show that their monotonicity provides a causal interpretation of the conventional Two-Stage Square

Least Squares (2SLS) estimand in models with endogenous choices and heterogeneous treatment

responses. Their work spiked a substantial literature on both empirical and theoretical aspects of

monotonicity conditions (Angrist et al., 2000; Barua and Lang, 2016; Dahl et al., 2017; Huber and

Mellace, 2012, 2015; Imbens and Rubin, 1997; Klein, 2010; Small and Tan, 2007; Aliprantis, 2012;

de Chaisemartin, 2017).4

Vytlacil (2002, 2006) bridge the gap between IV models that rely on monotonicity conditions and the

previous literature that invokes structural equations. Vytlacil (2002) shows that the monotonicity

condition of Imbens and Angrist (1994) is equivalent to the random threshold crossing model of

Heckman and Vytlacil (1999, 2005, 2007a). Vytlacil (2006) shows the monotonicity criterion of

Angrist and Imbens (1995) is equivalent to an ordered choice model with random thresholds. This

model is examined by Cameron and Heckman (1998) and further studied by Carneiro et al. (2003);

Cunha et al. (2007).

Unordered choice models have been studied mostly by literature on structural equations. A common

approach is to assume that the equations that govern the treatment are generated by additively

separable threshold-crossing models. Examples of this literature are Heckman and Vytlacil (2007b);

Heckman et al. (2006, 2008). A substantial contribution to this literature is due to Lee and Salanié

(2018), who studied the identification of causal effects for choice models defined by an arbitrary set

of threshold-crossing rules. Heckman and Pinto (2018) connect the structural and monotonicity

approaches. They present an economically motivated condition termed unordered monotonicity

which applies to treatment values that do not have a natural order. Building upon Vytlacil (2002),

they further show that unordered monotonicity can be equivalently expressed as a multivariate

choice model with latent crossing thresholds.

Little is known about the shared features of ordered and unordered choice models. The rationale

that generates an ordered choice model is considerably different from the motivation that justifies

unordered choices. Not surprisingly, each model often carries distinct mathematical formalizations.

A rare example of a comparative discussion between ordered and unordered choice models is Heck-

man et al. (2006). Their ordered choice model employs a partition of the real line by non-stochastic

thresholds. The treatment choice indicates the interval that the latent stochastic index lies in

this partition. In contrast, their unordered choice model employs a set of latent indexes that are

additive in the observed and unobserved characteristics of the agent.

As mentioned, we perform a comparative analysis between ordered and unordered monotonicities.

To do so, we revisit the monotonicity condition of Angrist and Imbens (1995) using new tools of

analysis developed in Heckman and Pinto (2018).

4Huber et al. (2017) consider weaker assumptions at the principal strata level, which are also employed by Frölich
(2007).
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3 Setup

Our IV model consists of three observed variables: a categorical instrument Z that takes NZ values

in Z = {z1, ..., zNZ
}; a multiple treatment choice T that takes NT values in T = {t1, ..., tNT

}; and a

real-valued outcome Y ∈ R.5 These variables belong to the probability space (I,F , P ) where i ∈ I
denotes an individual. Most of the IV literature describes model assumptions via the potential

outcome framework (Rubin, 1978b; Holland, 1986), where Yi(t, z) denotes the potential outcome

for individual i when Zi, Ti take values z, t and Ti(z) denotes the potential choice for i when the

instrument Zi is set to the value z. The assumptions that characterize the core properties of the

instrument are:

Exogeneity Condition: Zi ⊥⊥ (Ti(z), Yi(t)) for all (z, t, i) ∈ Z × T × I (1)

Exclusion Restriction: Yi(t, z) = Yi(t, z
′) for all z, z′ ∈ Z, and (t, i) ∈ T × I (2)

IV Relevance: T �⊥⊥ Z (Not statistically independent) (3)

The exogeneity assumption means that the instrument Z is as good as randomly assigned. The

exclusion restriction implies that Z dos not directly cause Y and the IV relevance states that T and

Z correlate. The IV model can be equivalently described by structural equations. The structural

approach enable us to represent the individual’s unobserved characteristics that generate selection

bias by an unobserved random vector V . The IV model is described by the following equations:

Choice Equation : T = fT (Z,V ), (4)

Outcome Equation : Y = fY (T,V , ε), (5)

Independence Condition: Z,V , ε are statistically independent (6)

The choice equation (4) means that T is cased by the instrument Z and unobserved characteristics

V , while the outcome equation (5) states that Y is caused by choice T, unobserved characteristics V

and an unobserved error term ε that is exogenous.6 Functions fT (·) and fY (·) are not observed and

can take arbitrary functional forms. The counterfactual (or potential) choice when the instrument

were fixed to a value z ∈ Z is given by T (z) ≡ fT (z,V ) and the counterfactual outcome generated

by fixing T to a value t, that is Y (t) ≡ fY (t,V , ε).7 The independence condition (6) states that Z

is statistically independent of the individual’s unobserved characteristics V and the error term ε.

The condition implies the exogeneity condition (1) of the potential outcome framework.8 It also

5We suppress pre-treatment variables X from the model for the sake of notational simplicity. The analysis can be
understood as conditioned on these variables.

6Error term ε is used so that Y conditioned on V and Z is not deterministic.
7See Heckman and Pinto (2014) and Pinto and Heckman (2021) for a discussion on causal models and the fixing

operator.
8Indeed, the counterfactuals Y (t), T (z) are a function of V and ε, which, according to (6), are statistically inde-

pendent of Z. The exclusion restriction (2) arises because Z is not an argument in the outcome equation (6). IV
relevance (3) corresponds to the assumption that Z causes T in the choice equation (4).
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implies the following matching (or unconfoundness) condition:9

Matching Condition: Y (t) ⊥⊥ T |V for all t ∈ T . (7)

Condition (7) states that Y (t) becomes statistically independent of T when conditioning for V . If

V were observable, we would be able to evaluate the counterfactual outcome Y (t) by conditioning

the outcome Y on T = t and V .

The primary lesson of the matching condition (7) is that the identification of causal effects hinges

on controlling for the unobserved characteristics V . Identification strategies of IV methods can be

understood as econometric procedures that seek to exploit the exogenous variation of Z to control

for V . Controlling for unobserved characteristics is a daunting task since V is unobserved and can

have an arbitrary dimension. The response vector S in (8) facilitates this task:

S = [T (z1), ..., T (zNZ
)]ᵀ, supp(S) ≡ {s1, . . . , sNS

} (8)

The response vector S is defined as the unobserved random vector of dimension NZ ×1 that stacks

the counterfactual choices T (z) across the IV-values z in Z. Elements of the support of the response

vector, s ∈ supp(S), are called response-types. Each element T (z) in S may take any of the NT

values in T . Thus, the number of possible response-types totals NNZ
T . The LATE model of Imbens

and Angrist (1994) investigates the case of a binary instrument Z = {z0, z1} and a binary treatment

T = {t0, t1}. The response vector S = [T (z0), T (z1)]ᵀ, admits four possible response-types: never-

takers snt = [t0, t0]ᵀ, compliers sc = [t0, t1]ᵀ, always-takers sat = [t1, t1]ᵀ, and defiers sd = [t1, t0]ᵀ.

Note that the choice T is fully determined by the instrument Z for any given response-type s. For

instance, compliers sc choose T = t1 for Z = z1 and T = t0 for Z = z0. We can express the

treatment choice as a function of S and Z as T =
[
1[Z = z1], ...,1[Z = zNZ

]
]
·S, where 1[·] denotes

then indicator function.

The response vector S simplifies the identification problem by playing the role of a balancing score

for V . This means that S is a function of V since each counterfactual T (z) is a function of V ,

and that S preserves the matching property (7). Indeed, Y (t) ⊥⊥ T |S holds because, given S, T

depends only on Z which is independent of Y (t). This matching property enables us to connect

observed expectations from data with the unobserved counterfactuals we seek to evaluate via the

following equation:10

E(Y |T = t, Z = z)P (T = t|Z = z)︸ ︷︷ ︸
Observed

=
∑

s∈supp(S)

1[T = t|S = s, Z = z]︸ ︷︷ ︸
Known

·E(Y (t)|S = s)P (S = s)︸ ︷︷ ︸
Unobserved

. (9)

The left-hand side of equation (9) comprises of the observed quantities, namely, the conditional

9The independence condition (6) implies that ε ⊥⊥ Z|V . Thereby fY (t,V , ε) ⊥⊥ fT (Z,V )|V ⇒ Y (t) ⊥⊥ T |V .
10See Heckman and Pinto (2018) for a proof.
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expectation E(Y |T = t, Z = z) and propensity score P (T = t|Z = z).11 The first term of the right-

hand side of the equation is nonrandom since T is a deterministic function of the instrument Z and

the response type S. The second term on the right-hand side is unobserved. It comprises expected

value of counterfactual outcomes conditioned on response-types E(Y (t)|S = s) and response-type

probabilities P (S = s).

Equation (9) characterizes the identification problem of IV models as the solution of a system of

linear equations. We seek to identify the unobserved quantities on the right-hand side of equation (9)

(outcome counterfactuals and response-type probabilities) using the observed quantities on the left-

hand side of equation (9) (outcome expectations and propensity scores). The general solution to

this problem requires some matrix notation.

The response matrix R is central to our analysis. It organizes the response-types in supp(S) into

a NZ × NS array where each column displays a response-type and each row corresponds to an

instrument value:

R ≡ [s1, . . . , sNS
] ∈ T NZ×NS . (10)

We use Bt = 1[R = t] for the NZ × NS binary matrix that takes value one if the respective

entry in R is t and zero otherwise. The value in the z-th row and s-th column of Bt is given by

Bt[z, s] = 1[T = t|S = s, Z = z]. The response matrix in the LATE model is given by:

R =

snt sc sat sd[ ]
t0 t0 t1 t1 z0
t0 t1 t1 t0 z1

∴ Bt0 =

snt sc sat sd[ ]
1 1 0 0
1 0 0 1

,Bt1 =

snt sc sat sd[ ]
0 0 1 1
0 1 1 0

. (11)

In this notation, we can rewrite equation (9) as:

QZ(t)� PZ(t) = Bt ·
(
QS(t)� PS

)
for all t ∈ T , (12)

where QZ(t) = [E(Y |T = t, Z = z1), ..., E(Y |T = t, Z = zNZ
)], PZ(t) = [P (T = t|Z =

z1), ..., P (T = t|Z = zNZ
)] are the observed vectors of outcome expectations and propensity scores.

QS(t) = [E(Y (t)|S = s1), ..., E(Y (t)|S = sNS
)], PS = [P (S = s1), ..., P (S = sNS

)] are the unob-

served vectors of counterfactual outcomes and response-type probabilities. The symbol � denotes

element-wise (Hadamard) multiplication.

Equation (12) serves two purposes in our analysis. Firstly, it establishes that the identification of

causal parameters stems from the rank properties of the binary matrices Bt. If Bt were a square

11Equation (9) holds for any real-valued function g : R→ R and for (z, t) ∈ Z × T , that is:

E(g(Y )|T = t, Z = z)P (T = t|Z = z) =
∑

s∈supp(S)

1[T = t|S = s, Z = z] · E(g(Y (t))|S = s)P (S = s).

Setting g(Y ) = 1[Y = y]; y ∈ R generates an equation for the probabilities of counterfactual outcomes. Setting
g(Y ) = 1 generates an equation that relates propensity scores and response-types probabilities.
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full-rank matrix, we would be able to identify counterfactual outcomes by inverting Bt, that is,

QS(t) = (B−1
t QZ(t)�PZ(t))÷(B−1

t PZ(t)), where ÷ denotes element-wise division. More broadly,

Heckman and Pinto (2018) show that, for any given subset of response-types S ⊂ supp(S),

E(Y (t)|S ∈ S) is identified if and only if b(S)′(I −B+
t Bt)b(S) = 0, (13)

where I is the identity matrix, B+
t is the Moore-Penrose pseudo-invesrse of Bt and b(S) = [1[s1 ∈

S], ...,1[sNS
∈ S]]′ is a binary vector that indicates which response-type belongs to S.12

Equation (12) also helps characterize how monotonicity conditions secure the identification of causal

parameters. The equation entails a fundamental identification problem. The number of known

parameters in its left-hand side totals NZ ·NT . The number of unknown parameters in the right-

hand side is proportional to the number response-types in S, which totals NNZ
T . An identification

problem arises since the number of known parameters grows linearly in NZ while the number of

unknowns grows exponentially in NZ . Monotonicity conditions solve this problem by assuming

choice restrictions that systematically eliminate potential response-types in S. They effectively

equate the growth rate of known and unknown parameters. For instance, the monotonicity condition

of Imbens and Angrist (1994) reduces the number of response-types of the binary choice model from

2NZ to NZ + 1.

4 Ordered and Unordered Monotonicity

Monotonicity conditions are choice restrictions that eliminate response-types systematically. As

discussed previously, Angrist and Imbens (1995) and Heckman and Pinto (2018) provide mono-

tonicity criterions for ordered and unordered choice models, respectively. We will refer to these

conditions as ordered monotonicity (14) and unordered monotonicity (15) for the sake of clarity:

Ordered Monotonicity (OM): For any z, z′ ∈ Z either,

Ti(z) ≥ Ti(z′) for all i ∈ I

or Ti(z) ≤ Ti(z′) for all i ∈ I.
(14)

Unordered Monotonicity (UM): For any z, z′ ∈ Z and any t ∈ T either,

1[Ti(z) = t] ≥ 1[Ti(z
′) = t] for all i ∈ I

or 1[Ti(z) = t] ≤ 1[Ti(z) = t] for all i ∈ I
(15)

OM (14) captures the notion that a change in instrumental values produces incentives that either

move all agents towards weakly“higher” treament values or move all agents towards weakly “lower”

treatment values. The condition can be understood as stating that an instrumental change that

12If E(Y (t)|S ∈ S) is identified, then it can be evaluated by the expression E(Y (t)|S ∈ S) =
b(S)′B+

t (QZ(t)�PZ(t))
b(S)′B+

t PZ(t)
.
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induces one agent to increase their treatment choice cannot cause another agent to decrease their

treatment choice. The condition requires an ordinal treatment, such as years of schooling.

UM (15) states that for each treatment, each instrumental change must either move all agents

weakly towards that treatment or weakly away from the treatment. This differs from OM (14) as

it compares the indicator function of the treatment instead of the treatment value itself. Because

of this, UM (15) does not require ordered treatments, making it relevant for settings where the

treatment has no natural ordering such as analysis of college major choice or neighborhood effects.13

Importantly, both OM (14) and UM (15) enable the researcher to identify a mixture of Local

Average Treatment Effects (LATEs) with identifiable weights and both conditions ascribe causal

interpretations to the estimands of Two-Stage Least Squares (2SLS) regressions.

4.1 Expressing Monotonicities as Sequences of Counterfactual Choices

Because the definition of OM (14) compares treatment values, it requires that T be an ordered set.

We propose a slightly more inclusive definition of ordered monotonicity that does not require an

ordered treatment. The central property of ordered monotonicity is a mapping between a sequence

of IV values and some sequence of treatment values in which higher rankings of Z correspond to

higher rankings of Z. The following formula expresses this criterion:

OM Sequence: There exist a sequencing of Z, (z1, . . . , zNZ
), and a strict ordering on T such

that:14

(Ti(z1), . . . , Ti(zNZ
)) is an increasing sequence in T for any i ∈ I. (16)

The OM sequential criteria (16) generates the OM condition (14) whenever the ordering T is

assumed, however it does not require a specific ordering on T a priori. In Section 7 we will

demonstrate the usefulness of this more inclusive definition with a plausible research design that

generates OM-Sequence (16) on a treatment space that has no natural ordering.

We can also characterize the UM condition in (15) in terms of a sequence of counterfactual choices:

UM Sequence: For each t ∈ T there exists a sequencing of Z, (z
(t)
1 , . . . , z

(t)
NZ

) such that:

(1[Ti(z
(t)
1 ) = t], . . . ,1[Ti(z

(t)
NZ

) = t]) is weakly increasing for any i ∈ I. (17)

UM Sequence (17) differs from OM Sequence (16) in two significant ways. First, the sequence of IV

values in the unordered case can differs across treatment values while the IV sequence of ordered

13Additionally, Heckman and Pinto (2018) show that UM occurs naturally in economic settings where choice
incentives weakly increase among all treatment choices as the instrument varies.Buchinsky and Pinto (2021) use
revealed preference analysis to show how choice incentives induced by the instrumental variable generate a range of
monotonicity conditions.

14A strict ordering is one such that for any t, t′ ∈ T with t 6= t′ exactly one of (t′ ≥ t) or (t ≥ t′) is true.
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case remains the same for all t ∈ T . Second, UM Sequence (17) utilizes treatment indicators, while

the OM Sequence (16) employs the treatment values themselves.

It is easy to see that the OM and UM sequence characterizations in (16) and (17) are equivalent for

a binary treatment. However, this equivalence between ordered and unordered monotonicity breaks

down for choice models with three or more treatment choices. In general, ordered monotonicity

does not imply unordered monotonicity nor vice versa. To partially demonstrate why this is the

case, consider an ordering on the treatments where t1 ≤ t2 ≤ t3 and the following two pairs of

treatment response patterns:

sa sb( )
t1 t2 z

t2 t3 z′

sc sd( )
t1 t3 z

t2 t2 z′
(18)

The treatment response patterns displayed by agents sa and sb are natural under ordered mono-

tonicity, they could can be rationalized by a research design where z′ provides uniformly greater

treatment incentives than z. However, they cannot both exist in a response matrix that satisfies

unordered monotonicity. By examining UM Sequence (17) we can see that there would be no

possible sequencing of the instruments that would allow the sequence of t2 indicators to be weakly

increasing for all agents.

Similarly, the treatment response patterns displayed by agents sc and sd in (18) are not prohibited

by unordered monotonicity; they can both be rationalized by a research design where instrument z′

explicitly incentivizes treatment t2. Despite this, they cannot both be present in a response matrix

that satisfies ordered monotonicity under the ordering on the treatments given above. Since the

switch from instrument z to instrument z′ induces agent sc to switch to a “lower” treatment while

inducing agent sd to switch to a “higher” treatment, there can be no sequencing on the instruments

satisfying OM Sequence (16).

The two conditions are also not mutually exclusive, it is possible for a response matrix to satsify

both ordered and unordered monotonicity, even when the treatment is multi-valued. Moreover,

the lack of nesting between ordered and unordered monotonicity does not change if we consider

all possible orderings on the treatment space. For a complete example of this and more in depth

discussion, refer to Appendix C.

4.2 Characterizations of Unordered and Ordered Monotonicity

We first present an updated version of the unordered equivalence result in Heckman and Pinto

(2018). This updated version is presented symmetrically to a later equivalence result for ordered

monotonicity and will facilitate comparasion of the two conditions.

Theorem 1 (Unordered Equivalence). The following statements are equivalent:
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(i). For each t ∈ T there is a sequence of instruments (z
(t)
1 , ..., z

(t)
NT

) such that UM Sequence (17)

holds.

(ii). Given any t ∈ T and any k ∈ {1, ..., NZ − 1}, we have that

1[Ti(z
(t)
k+1) = t] ≥ 1[Ti(z

(t)
k ) = t] for all i ∈ I..

(iii). For any t ∈ T and t′, t′′ 6= t there are no 2× 2 submatrices in R of the form: t t′′

t′ t

 or

t′ t

t t′′

 . (19)

(iv). For the unordered verification matrix ΨU defined below, ‖ΨU‖ = 0;

ΨU ≡
(
(1−U)ᵀU

)
�
(
(1−U)ᵀU

)ᵀ
. (20)

where 1 denotes a matrix of all ones, � denotes the Hadamard (element-wise) product and:

U ≡


B1 0 0 · · · 0

1 B2 0 · · · 0
...

. . .
. . .

. . .
...

1 1 1 · · · BNT

 . (21)

(v). For each t ∈ T , there are real-valued functions ϕ(·, t) and ζ(·, t) such that the treatment choice

T can be rationalized by:

1[T = t] = 1
[
ζ(Z, t) ≥ ϕ(V , t)

]
,

where ζ(z
(t)
k+1, t) > ζ(z

(t)
k , t) for k = 1, ..., NZ − 1 and any t.

Proof. See Appendix A.

The first two items of Theorem 1 reflect the discussion in Section 4 relating UM-Sequence (17) to

the classical definition of unordered monotonicity introduced in Heckman and Pinto (2018) and

restated in (14).

Item (iii) resembles the discussion above and states that unordered monotonicity can be verified

by individually checking each 2× 2 submatrix of R. We can see that the appearance of one of the

restricted submatrices in (19) prevents the existence of a sequence of instruments that would make

the sequence of treatment t indicators increasing for all agents. Unfortunately, this requirement

may be difficult to verify in practice, since the number of 2×2 submatices is growing exponentially

with the dimensions of the response matrix. Item (iv) of the theorem provides a practical method

11



of verifying the condition using matrix algebra. Item (v) is faimilar to the literature and provides

an equivalence between unordered monotonicity and separability conditions such as in Vytlacil

(2002). For further discussion, Heckman and Pinto (2018) describe other useful aspects of each of

the equivalent statements, (iii) and (v) above.

We next present an equivalence result for Ordered Monotonicity.

Theorem 2 (Ordered Equivalence). The following statements are equivalent:

(i). There is is a sequence on Z, (z1, . . . , zNZ
) and a strict ordering on T that satisfies the

requirement of OM-Sequence (16).

(ii). There is a strict ordering on T such that for any k ∈ {1, . . . , NZ − 1} and any t:

1[Ti(zk+1) ≥ t] ≥ 1[Ti(zk) ≥ t] for all i ∈ I.

(iii). There is a strict ordering on T such that for any t < t′′ and t′ > t′′′ there are no 2 × 2

submatrices of R of the form either t t′

t′′ t′′′

 or

 t′ t

t′′′ t′′

 ; (22)

(iv). There is a strict ordering on T such that for the ordered verification matrix ΨO defined below,

‖ΨO‖ = 0;

ΨO ≡
(
(1−O)ᵀO

)
�
(
(1−O)ᵀO

)ᵀ
, (23)

where 1 indicates a matrix of all ones, � represents the Hadamard (element-wise) product,

and:

O ≡
[
B∗t1 , . . . ,B

∗
tNT

]
;

(v). There is a strict ordering on T such that for some real-valued functions ϕ(·, t) and ζ(·, t) the

treatment choice can be rationalized by

1[T ≥ t] = 1[ζ(Z, t) ≥ ϕ(V , t)],

where ζ(zk+1, t) > ζ(zk, t) for k = 1, . . . , NZ − 1 and any t.

Proof. See Appendix A

Theorem 2 extends Vytlacil (2006) in a fashion that enables us to compare ordered and unordered

monotonicity conditions. The first and second items of the ordered equivalence result reconcile the

two notions of ordered monotonicity presented above. It shows that if OM-Sequence (16) holds,

12



we can find an ordering on T that satisfies the typical definition of ordered monotonicity and vice

versa; if there is an ordering on T that satisfies ordered monotonicity we can find a sequence on

Z to satisfy OM-Sequence (16).15 Item (iii) of Theorem 2 provides a similar insight to Item (iii)

of Theorem 1, namely that ordered monotonicity can be verified simply by looking at the 2 × 2

submatrices of the response matrix R. Item (iv) provides a tractable method for verifying this

property.

The final item of the theorem restates the equivalence result of Vytlacil (2006) and shows that

assuming ordered monotonicity is equivalent to taking an ordered choice behavioral model. While

this result is familar to the literature, we provide an alternative proof in Appendix A using properties

of lonesum binary matrices; a concept we borrow from the information theory literature (Ryser,

1957).

Symmetries between Ordered and Unordered Monotonicity

The characterizations of ordered monotonicity in Theorem 2 are symmetric to those of unordered

monotonicity in Theorem 1. We have already discussed the usefulness of some of these specific sym-

metries above. For example, the symmetry between the sequential characterizations of ordered and

unordered monotonicities provides an easy way of seeing that ordered and unordered monotonicity

are equivalent in the case of a binary treatment. Other symmetries are new to our discussion and

are worth briefly mentioning. The symmetric matrix verification characterizations provides an easy

way to verify if a response matrix satisfies both the ordered and unordered monotonicity conditions

by checking if ‖ΨU‖+ ‖ΨO‖ = 0. Verifying this allows researchers to take advantage of both sets

of identification results.

The symmetry between the restricted 2 × 2 submatrices in ordered and unordered monotonicity

provides insight on how a response matrix could satisfy ordered monotonicity but not unordered

monotonicity and vice versa. More importantly, however, the similarity between the two restricted

submatrices in Theorems 1 and 2 suggests a common condition shared by both criteria. In particu-

lar, note that both restricted patterns in (19) and (22) prevent any two agents from having exactly

opposite treatment responses for the same instrumental variable shift. We term this common

restriction the Minimal Monotonicity Condition and analyze its properties in Section 5.

5 The Minimal Monotonicity Condition

The minimal monotonicity (MM) condition (24) is a weak criteria shared by both ordered and

unordered conditions. It is determined by a symmetric restriction that is common to Theorems 1

and 2. Indeed, it turns out that minimal monotonicity is the core common property of ordered and

unordered monotonicity that enables the 2SLS estimand to achieve causal interpretability.

15In particular we can take the sequence that orders z′ after z if Ti(z
′) ≥ Ti(z) for all i ∈ I.
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Minimal Monotonicity (MM): For any pair of instruments z, z′ ∈ Z and any pair of treatments

t, t′ ∈ T either

1[Ti(z) = t]1[Ti(z
′) = t′] ≥ 1[Ti(z) = t′]1[Ti(z

′) = t] ∀i ∈ I

or 1[Ti(z) = t]1[Ti(z
′) = t′] ≤ 1[Ti(z) = t′]1[Ti(z

′) = t] ∀ i ∈ I.
(24)

The first row in (24) states that an instrumental change from z to z′ incentives all agents to shift

their choice away from t and towards t′. The second row in (24) describes the opposite behavior.

In summary, the MM condition states that an intrumental change that induces an agent to switch

their choice from t to t′ cannot induce another another agent to switch their choice from t′ to t.

Lemma 1 provides an equivalent characterization of the MM condition in terms of response-types.

Lemma 1. Minimal monotonicity MM holds if and only if for all distinct instruments z, z′ ∈ Z
and all distinct treatments t, t′ ∈ T , there are no response-types s, s′ ∈ supp(S) such that

( )
s[z] s′[z]

s[z′] s′[z′]
=

s s′( )
t t′ z

t′ t z′
(25)

Proof. See Appendix A

Lemma 1 presents the prohibited pattern of 2 × 2 submatrices of the response matrix R induced

by MM. The pattern is the common intersection between the submatrix characterizations in item

(iii) of Theorems 1 and 2. Lemma 2 establishes that MM is strictly weaker than MM and OM.

Lemma 2. The following relationships are true of ordered, unordered, and minimal monotonicity:

1. UM ⇒ MM, but MM ; UM

2. OM ⇒ MM, but MM ; OM

Proof. See Appendix A

To see why minimal monotonicity is crucial for the interpretability of 2SLS, it is useful to quickly

define and discuss interpretable causal parameters.

5.1 Interpretable Causal Parameters

We follow an established literature that defines a meaningful causal parameter τ as a weighted

average of local average treatment effects with positive weights:16

16For examples of works that adopt this criteria, see Angrist and Imbens (1995); Heckman and Urzúa (2010);
Kirkeboen et al. (2016); Mogstad et al. (2021).
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τ =
∑

{t,t′},t6=t′

ωt,t′E[Y (t)− Y (t′) | S ∈ St,t′ ] with ωt,t′ = 0 or ωt′,t = 0. (26)

Here St,t′ denotes a set of response types may vary according to the treatments being compared and

ωt,t′ ≥ 0 are positive weights. The defining idea is that each treatment pair is only represented once,

so we cannot have a positive weight on both E[Y (t)−Y (t′) | S ∈ St,t′ ] and E[Y (t′)−Y (t) | S ∈ St′,t].
The absence of negative weights allows this causal parameter to give us meaningful insight into the

direction of the treatment effects.

Angrist and Imbens (1995) demonstrate that, under ordered monotonicity, the 2SLS estimand

identifies such a meaningful causal parameter using a binary instrument with multiple treatments.

Heckman and Pinto (2018) show a similar result for unordered monotonicity using comparisons of

the outcome Y for any two instruments z, z′ ∈ Z. The equivalence result for minimal monotonicity

in Theorem 3 establishes that it is indeed MM that is the driving force behind both of these

identification results.

Lemma 2 provides some intuition for why this is the case. Consider the difference in average

outcome between two values of the instrument, as in the numerator of a 2SLS estimand. This dif-

ference always has a unique decomposition into a weighted average of treatment effects among all

the (ordered) pairs of possible treatment values.17 The restriction on the response matrix imposed

by minimal monotonicity (25) means that if one pair of treatment values, (t, t′), is represented in

this weighted sum, the opposite pair, (t′, t), cannot also be represented. So, minimal monotonicity

is sufficient for this difference to satisfy the condition for an interpretable causal parameter (26).

Moreover, because this decomposition is unique, we can show that minimal monotonicity is neces-

sary for interpretability as well.

5.2 Equivalence Results

We now provide a set of equivalent characterizations of the minimal monotonicity condition in the

spirit of the results for unordered and ordered monotonicity in Theorems 1 and 2.

Theorem 3 (Minimal Monotonicity Equivalence). The following statements are equivalent:

(i). For any distinct pair of instruments z, z′ ∈ Z and any pair of treatments, t, t′ ∈ T , we have

either:

1[Ti(z) = t]1[Ti(z
′) = t′] ≥ 1[Ti(z) = t′]1[Ti(z

′) = t] ∀i ∈ I

or 1[Ti(z) = t]1[Ti(z
′) = t′] ≤ 1[Ti(z) = t′]1[Ti(z

′) = t] ∀ i ∈ I.
(27)

(ii). There are no 2× 2 submatrices of R of the form in (25).

17See Appendix B for a discussion of the exact forms of this decomposition as well as the 2SLS estimands for
ordered and unordered monotonicity mentioned above.
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(iii). For the matrix ΨM defined below, ‖ΨM‖ = 0

ΨM ≡
∑
t6=t′

(
Bᵀ

tBt′
)
�
(
Bᵀ

tBt′
)ᵀ
. (28)

where � represents the Hadamard (element-wise) multiplication.18

(iv). For any pair of instruments z, z′ the 2SLS type estimand

βz,z′ = E[Y | Z = z]− E[Y | Z = z′]

identifies an interpretable causal parameter as described in (26).

Proof. See Appendix A

Many features of this equivalence result are symmetric to the unordered and ordered equivalence

results of Theorems 1 and 2. Item (i) defines the complete version of the MM condition. Items

(ii) and (iii) of Theorem 3 provide ways of verify the MM condition symmetric to counterparts for

unordered and ordered monotonicity in Theorems 1 and 2. Item (ii) presents a general response

matrix condition. It states that no 2×2 submatrix of the response-matrixR presents the prohibited

pattern in (25). Item (iii) provides a tractable method of verifying the MM condition. The

verification requires an order of T 2 matrix operations.

The last item of Theorem 3 is the empirically relevant feature of the MM condition. It provides

a solution to our initial inquiry on a weak mononocity criteria that ensures interpretable causal

parameters for the widely used method of 2SLS. Indeed, there can be no weaker monotonicity

criterion that guarantees such causal interpretability.

5.3 Relationship Between Monotonicity Criterion

The three monotonicity conditions are equivalent in the case of a binary treatment. In this special

case the definition of MM (24) reduces to:19

1[Ti(z) = t] ≥ 1[Ti(z
′) = t] for all i ∈ I

or 1[Ti(z) = t] ≤ 1[Ti(z
′) = t] for all i ∈ I,

which is exactly the requirement imposed by both ordered and unordered monotonicity. However,

as demonstrated by Lemma 2, when there are multiple treatments the three monotonicity criterion

are distinct.

18We use the short-hand notation
∑

t 6=t′ ξ(t, t
′) ≡

∑
t∈T

∑
t′∈T \{t} ξ(t, t

′).
19This is done by replacing 1[Ti(z

′) = t′] with (1 − 1[Ti(z) = t′]) on the left hand side and 1[Ti(z) = t′] with
(1− 1[Ti(z) = t]) on the right hand side. Afterwards, distribute and simplify.
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We can gain further interpretation of the monotonicity restrictions by examining the relation be-

tween the verification matrices ΨU ,ΨO, and ΨM of Theorems 1, 2 and 3. We express the verification

matrices in terms of a primitive component defined by:

Ψ(t, t′, t′′, t′′′) ≡
(
Bᵀ

tBt′
)
�
(
Bᵀ

t′′Bt′′′
)
. (29)

Ψ(t, t′, t′′, t′′′) is a function of four binary matrices (Bt,Bt′ ,Bt′′ ,Bt′′′) that returns a primitive

verification matrix of dimension NZ × NS whose elements are either zeros or natural numbers.20

Under this notation, the verification matrix ΨM can be expressed as:

ΨM =
∑
t6=t′

Ψ(t, t′, t′, t). (30)

Equation (30) explains the content of the verification matrix ΨM . Theorem 3 states that MM (24)

holds if and only if ‖ΨM‖ = 0. By definition the matrix ΨM is the sum of the primitive verification

matrices Ψ(t, t′, t′, t) across all NT · (NT − 1) binary combinations of two distinct treatment choices

t, t′ ∈ T . The elements of the primitive verification matrices are weakly positive and so ‖ΨM‖ = 0

if and only if ‖Ψ(t, t′, t′, t)‖ = 0 for all distinct treatment values t and t′. Thus a necessary and

sufficient condition for MM to hold is that each primitive verification matrix Ψ(t, t′, t′, t) contains

only zero elements for all t, t′ ∈ T such that t 6= t′. Indeed, ‖Ψ(t, t′, t′, t)‖ = 0 is a equivalent to the

nonexistence of any 2× 2 submatrix of the response matrix R is of the form
(

t t′

t′ t

)
.

Theorem 4 relates the UM verification matrix to the primitive verification matrices and the MM

verification matrix.

Theorem 4 (Decomposing Unordered Verification). The following relation holds for any response

matrix R ∈ T NZ×NS :

‖ΨU‖ = 0 ⇔ ‖ΨM‖+ ‖ΨU\M‖ = 0, (31)

where ΨU\M ≡
∑

t6=t′ 6=t′′

Ψ(t, t′, t′′, t). (32)

Proof. See Appendix A

Lemma 2 explains that UM imposes extra constraints in addition to those required for MM to hold.

Theorem 4 clarifies these additional constraints. Equation (31) decomposes the UM verification

(‖ΨU‖ = 0) into two verification requirements. The first verification criterion, ‖ΨM‖ = 0, means

that MM must hold. The additional constraint, ‖ΨU\M‖ = 0, means that the elements of the

matrix Ψ(t, t′, t′′, t) must be zero for any selection of three distinct treatment choices t, t′, t′′ ∈ T .
This additional criterion rules out violations of the prohibited pattern in item (iii) of Theorem 1

20The output of function Ψ remains the same if first two inputs can be switched by the last two inputs
Ψ(t, t′, t′′, t′′′) = Ψ(t′′, t′′′, t, t′). We also have that Ψ(t, t′, t′′, t′′′)ᵀ = Ψ(t′, t, t′′′, t′′), namely, the transpose of
Ψ(t, t′, t′′, t′′′) is equal to the matrix Ψ(t′, t, t′′′, t′′) in which we switch t by t′ and t′′ by t′′′.

17



that involve three distinct treatment values.

Theorem 4 offers a combinatorial interpretation of monotonicity conditions MM and UM. MM

imposes
(
NT
2

)
constraints on the primitive verification matrix Ψ(t, t′, t′, t) across the combination of

treatment choices taken two at a time. UM imposes an additional
(
NT
3

)
constraints on Ψ(t, t′, t′′, t)

across the combination of treatment choices taken three at a time.

Theorem 5 decomposes the verification criterion of ordered monotonicity (‖ΨO‖ = 0) into the

verification criterion of the MM condition, ‖ΨM‖ = 0, and two other criteria corresponding to

matrices Ψ
(1)
O\M and Ψ

(2)
O\M . The requirement that ‖ΨM‖ = 0 means that OM implies MM, as

in Lemma 2. Matrix Ψ
(1)
O\M contains a subset of the unordered monotonicity constrains in matrix

ΨU\M of Theorem 4. Matrix Ψ
(2)
O\M contains constrains that are not in ΨU\M . This is as expected

since OM does not imply nor is implied by UM.

Theorem 5 (Decomposing Ordered Verification). The following relation holds for any response

matrix R ∈ T NZ×NS :

‖ΨO‖ = 0 ⇔ ‖ΨM‖+ ‖Ψ(1)
O\M‖+ ‖Ψ(2)

O\M‖ = 0, (33)

where

Ψ
(1)
O\M ≡

∑
t1<min(t2,t3)

Ψ(t1, t2, t3, t1),

Ψ
(2)
O\M ≡

∑
t1<t2≤t3

Ψ(t1, t3, t2, t2) +
∑

t1<t2<t3

Ψ(t1, t3, t3, t2) +
∑

t4<t2,t1<t3

Ψ(t1, t2, t3, t4).

Proof. See Appendix A

6 An Economic Interpretation for Monotonicity Conditions

This section explores the economic content of the monotonicity criteria. We show that the minimal

monotonicity condition (24) can be linked to a broad notion of rationality regarding treatment

choices. This contrasts to ordered and unordered monotonicity, which as seen in Theorems 1 and 2

are equivalent to assuming particular ordered and unordered choice models.

Our analysis is based on the method of Pinto (2021); Buchinsky and Pinto (2021) who use revealed

preference analysis to ascribe economic interpretation to response matrices.21 The method uses the

concept of an incentive matrix L that characterizes the choice incentives (columns) generated by

the IV-values (rows). Each column L[·, t] displays the relative ranking of incentives towards choice

t ∈ supp(t) across the IV-values z ∈ Z. L[z′, t] < L[z, t] means that the IV-value z yields strictly

greater incentives towards t than IV-value z′. The matrix is ordinal, monotonic transformations

characterize equivalent choice incentives.

21This analysis is also similar to the encouragment designs proposed by Zelen (1979, 1990).
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To fix ideas, consider the binary LATE model of Sections 4 where T denotes college enrollment;

T = t1 for college enrollment and Ti = t0 otherwise. The instrument Z denotes a randomly assigned

tuition discount such that Z = z1 if the discount is granted and Z = z0 otherwise. Incentive

matrix (34) characterizes the choice incentives of the LATE model. L[z0, t0] = L[z1, t0] = 0 means

that the voucher offers no incentives for choice t0 (no college). L[z0, t1] < L[z1, t1] indicates that

the tuition discount z1 incentives college enrollment t1.

LATE Incentive Matrix L =

t0 t1[ ]
0 0
0 1

z0

z1

(34)

Pinto (2021); Buchinsky and Pinto (2021) use revealed preference analysis to translate the incentive

matrix into choice restrictions. They invoke the Weak Axiom of Revealed Preferences (WARP) and

Choice Normality to generate the following choice rule:22

Choice Rule: Ti(z) = t and L[z′, t′]−L[z, t′] ≤ L[z′, t]−L[z, t]︸ ︷︷ ︸
Switch from z to z′ provides greater

incentives for t than t′

=⇒ Ti(z
′) 6= t′ (35)

Choice Rule (35) formalizes an intuitive behavioral restriction. If an agent i chooses t when exposed

to instrument z, and the IV-shift from z to z′ yields greater incentives towards t than t′, then agent

i does not choose t′ under z′. Otherwise stated, each instrumental value z is associated with an

incentive gap between t and t′. If an agent decides for choice t given z, then t is revealed preferred

to t′. The agent should t′ only if the incentive gap between t and t′ increases.

Applying choice rule (35) to the LATE incentive matrix (34) generates the following choice restric-

tion:

Ti(z0) = t1 and L[z1, t0]−L[z0, t0]︸ ︷︷ ︸
= 0

≤ L[z1, t1]−L[z0, t1]︸ ︷︷ ︸
= 1

=⇒ Ti(z1) 6= t0. (36)

Choice restriction (36) is summarized by Ti(z0) = t1 ⇒ Ti(z1) 6= t0. It states that if an agent chooses

to attend college when not offered any incentives (Ti(z0) = t1) they must also chooses choose to

attend college when offered the tuition discount (Ti(z1) = t1). The restriction is equivalent to the

monotonicity condition of Imbens and Angrist (1994), discussed in Section 3, which eliminates the

defiers and enables the identification of LATE.

Buchinsky and Pinto (2021) characterize the class of incentive matrices that produce OM and

UM conditions. For instance, they demonstrate that choice incentives characterized by lonesum

22[Define both] The choice rule would have a strict inequality if we were to assume WARP only.
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matrices produce unordered choice models while increasing incentives such as those described by a

Vandermonde matrix produce ordered choice models.

Incentives and Minimal Monotonicity

It is natural to inquire about which types of incentive designs ensure the MM condition. It turns

out that the Choice Rule (35) itself ensures the MM condition. Theorem 6 asserts that the MM

condition always arises whenever we apply the revealed preference analysis encoded by the choice

rule to any choice incentives.

Theorem 6. The minimal monotonicity condition (24) holds for all choice models generated by

applying Choice Rule (35) to an arbitrary Incentive Matrix L.

Theorem 6 draws a sharp distinction in the interpretation of the monotonicity conditions. In

essence, OM and UM can be interpreted as monotonicity conditions that arise when agents that

display a rational behavior face a particular a class of choice incentives. This paradigm does not

apply to MM, since MM is not a property ascribed to any particular pattern of incentives. Instead,

MM is a supra-condition that can be justified by a weak notion of rationality itself.

With this in mind, the MM condition can be seen not as a final goal, but rather a starting point

for generating and interpreting monotonicity criteria. To be more precise, minimal monotonicity

ensures that a range of monotonicity conditions obtained by combining a broad notion of choice ra-

tionality with specific choice incentives satisfy particular basic properties, including interpretability

of 2SLS-type estimands. Section 7 uses this insight to illustrate the flexibility of the MM condition

in empirical analysis.

7 Economic Examples of Monotonicity Conditions

We present several examples of response matrices generated by combining specific incentive struc-

tures with the choice rule (35) defined in Section 6. The first two examples demonstrate specific

incentive designs that generate response matrices satisfying unordered and ordered monotonicity,

respectively. Afterwards, we present some natrual research designs that generate response matri-

ces that do not comply with either ordered or unordered monotonicity. However, by Theorem 6,

these response matrices still satisfy the minimal monotonicity condition. We discuss how minimal

monotonicity may still enable the researcher to gain insight into causal effects under these research

designs. Our minimal monotonicity examples include the popular Extensive Margin Compliers

(EMCO) of Angrist and Imbens (1995) and a double RCT design. In all examples we consider

incentive designs for a three-valued treatment choice T = {t1, t2, t3} and four instrumental values

Z = {z1, z2, z3, z4}.
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7.1 A Case of Choice Incentives that Justify Unordered Monotonicity

In this example, let T denote the student’s decision among college majors: t1 for humanities, t2

for social sciences, and t3 for the STEM fields of science, technology, engineering, and math. The

instrumental variable Z represents a randomly assigned vouchers that offers a tuition discount that

may apply to one, several or none of the majors. For example, consider the social experiment that

randomly assigns one of the four vouchers z1, z2, z3, z4 to college students:

1. Voucher z1 offers no tuition discount.

2. Voucher z2 applies only to STEM (t3).

3. Voucher z3 applies to either STEM (t3) or social sciences (t2).

4. Voucher z4 applies to all majors.

Assuming that the voucher amount is always the same, this design is characterized by incentive

matrix L in (37).23

L =

t1 t2 t3


0 0 0
0 0 1
0 1 1
1 1 1

z1

z2

z3

z4

(37)

We use this first example to describe the machinery that translates choice incentives into mono-

tonicity conditions and identification results. We adopt a more parsimonious approach in the

subsequent examples. We place detailed derivations in Appendix D.

Choice rule (35) converts the Incentive Matrix (37) into choice restrictions that determine the model

response matrix R. The choice rule applies to any two instrument-treatment pairs; ((z, t), (z′, t′)) ∈
(Z × T )2 . To exemplify how this is done, Table 1 displays all the restrictions generated by applying

Choice Rule (35) to an agent who chooses a humanities major (t1) when offered no tuition discount

(z1). The first row of Table 1 applies the choice rule to the two instrument-treatment pairs, (z1, t1)

and (z2, t2). By applying the choice rule, we see that an agent i who chooses a humanties major

(t1) when offered no tuition discount (z1) would not chose treatment a social sciences major (t2)

when offered instrument a tuition discount only for STEM majors (z2). The incentives for choosing

either t1 or t2 remain the same when the IV switches from z1 to z2. The incentive inequality in (35)

is satisfied and the choice restriction Ti(z1) 6= t2 holds.

The other lines of Table 1 apply this same logic to all other instrument-treatment pairs. We can

see that, in total, under the incentive structure summarized in (37) the Choice Rule (35) places the

following restrictions on an agent who chooses a humanities major when offered no tuition discount

23Elements one indicate the presence of incentive (the tuition discount) while elements zero indicate the lack of it.
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Ti(z1) = t1 =⇒ Ti(z2) 6= t2 and Ti(z4) 6∈ {t2, t3}

This analysis can be repeated for all types of agents, the sum total of all choice restrictions generated

by applying the choice rule in this research design are presented in Table 2. All choice restrictions

of Table 2 eliminate a total of 74 out of 81 possible response-types. The seven response-types that

survive this elimination procedure are presented as columns of the following response matrix, R,

in (38):

Table 1: Applying Choice Rule (35) to Ti(z1) = t1 and Incentive Matrix (37)

Counterfactual Choice Incentive Condition Choice Restriction

T (z1) = t1 L[z2, t2]−L[z1, t2] = 0 ≤ 0 = L[z2, t1]−L[z1, t1] ⇒ T (z2) 6= t2
T (z1) = t1 L[z2, t3]−L[z1, t3] = 1 � 0 = L[z2, t1]−L[z1, t1] ⇒ No Restriction

T (z1) = t1 L[z3, t2]−L[z1, t2] = 1 � 0 = L[z3, t1]−L[z1, t1] ⇒ No Restriction
T (z1) = t1 L[z3, t3]−L[z1, t3] = 1 � 0 = L[z3, t1]−L[z1, t1] ⇒ No Restriction

T (z1) = t1 L[z4, t2]−L[z1, t2] = 1 ≤ 1 = L[z4, t1]−L[z1, t1] ⇒ T (z4) 6= t2
T (z1) = t1 L[z4, t3]−L[z1, t3] = 1 ≤ 1 = L[z4, t1]−L[z1, t1] ⇒ T (z4) 6= t3

This table presents all the choice restrictions generated by applying the choice rule (35) to each of the tuples ((z1, t1), (z′, t′))
where z′in{z2, z3, z4} and t′in{t2, t3, t4} according to the choice incentives displayed in the incentive matrix (37).

Table 2: Choice Restrictions generated by Incentive Matrix (37)

1 Ti(z1) = t1 ⇒ Ti(z2) 6= t2 and Ti(z4) /∈ {t2, t3}
2 Ti(z2) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z3) 6= t3 and Ti(z4) /∈ {t2, t3}
3 Ti(z3) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3} and Ti(z4) /∈ {t2, t3}
4 Ti(z4) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) 6= t2

5 Ti(z1) = t2 ⇒ Ti(z2) 6= t1 and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
6 Ti(z2) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
7 Ti(z3) = t2 ⇒ Ti(z1) 6= t3 and Ti(z4) 6= t3
8 Ti(z4) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z2) 6= t1 and Ti(z3) /∈ {t1, t3}

9 Ti(z1) = t3 ⇒ Ti(z2) /∈ {t1, t2} and Ti(z3) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
10 Ti(z2) = t3 ⇒ Ti(z3) 6= t1
11 Ti(z3) = t3 ⇒ Ti(z1) 6= t2 and Ti(z2) /∈ {t1, t2} and Ti(z4) 6= t2
12 Ti(z4) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z2) /∈ {t1, t2} and Ti(z3) /∈ {t1, t2}

This table presents all the choice restrictions generated by applying the choice rule (35) to each of the tuples
((z, t), (z′, t′)) ∈ ({t1, t2, t3} × {z1, z2, z3, z4})2. according to the incentive matrix (37).

R =

s1 s2 s3 s4 s5 s6 s7


t1 t1 t1 t1 t2 t2 t3
t1 t1 t3 t3 t2 t3 t3
t1 t2 t2 t3 t2 t2 t3
t1 t1 t1 t1 t2 t2 t3

z1

z2

z3

z4

(38)
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Using the characterizations in Theorem 1, we can verify that unordered monotonicity holds for the

response matrix R presented in (38). Notice that there is no 2 × 2 matrix of the matrix is of the

type of the form
(

t t′

t′′ t

)
where t′ 6= t, or t′′ 6= t. Appendix D.1 corroborates the UM property using

the verification matrix from item (iv) of Theorem 1.

While the incentive design described in (37) is plausible and the application of the choice rule a

minimal behavioral requirement on the agents, it is helpful to remark on how this specific incentive

structure generates unordered monotonicity. Note that the incentive structure increases in the

sense that each successive instrument provides weakly more incentives for all treatment choices.

No change in the instrument from z to z′ would strictly decrease incentives for one treatment while

strictly increasing incentives for another.

This property is crucial for generating unordered monotonicity. Under WARP, if an agent would

choose treatment t under instrument value z, they must also choose treatment t under instrument

value z′ whenever the switch from z to z′ weakly increases incentives for t relative to all other

incentives. Because of the increasing nature of the incentive structure, each switch in the instrument

value either increases the incentives for a choice t relative to all other treatments or decreases the

incentives for the choice t relative to all other treatments. This, along with the choice rule, prevents

an instrumental switch from moving one agent strictly towards choosing t while moving another

agent strictly away from choice t and towards another treatment t′.

7.2 A Case of Choice Incentives that Justify Ordered Monotonicity

In this example, suppose the CEO of a company is interested in whether higher health insurance

premiums lead to moral hazard in employees’ safety behavior. Employees decide among three

health insurance policies t1, t2, t3 that have increasing premiums. The co-pay of each policy off-sets

the increasing premium such that all policies cost the same.

To study this, the CEO randomly assigns agents to one of four groups, z1, z2, z3, z4, that incentivize

(say by offering an additional week of vacation) various insurance plan options. We consider the

following scheme of choice incentives:

1. Group z1 is incentivized to choose treatment t1.

2. Group z2 is offered no incentives.

3. Group z3 is offered incentives for all choices.

4. Group z4 is incentivized to choose treatment t3.

Equation (39) presents the incentive matrix L that characterizes the design of choice incentives.24

This incentive design is rather peculiar because it is tailored to generate the OM criteria. Equa-

24Elements one indicate the presence of incentive (an additional one week vacation) while elements zero indicate
the lack of it.

23



tion (39) also presents the corresponding response matrix R generated by the method of revealed

preference analysis described in Sections 6 and 7.1. Detailed derivations are presented in Ap-

pendix D.2.

L =

t1 t2 t3


1 0 0
0 0 0
1 1 1
0 0 1

z1

z2

z3

z4

⇒ R =

s1 s2 s3 s4 s5 s6 s7 s8


t1 t1 t1 t1 t1 t2 t2 t3
t1 t1 t2 t2 t3 t2 t2 t3
t1 t1 t2 t2 t3 t2 t2 t3
t1 t3 t2 t3 t3 t2 t3 t3

z1

z2

z3

z4

(39)

Using Theorem 2 it is easy to check that OM holds for response matrix (39). The indices of the

treatment choices weakly increase as the instrument ranges along z1 → z2 → z3 → z4. Ordered

monotonicity is satisfied by assigning treatment values that satisfy t1 ≤ t2 ≤ t3. By applying the

identification results of Angrist and Imbens (1995), one can verify that the 2SLS has the causal

interpretation of a weighted average of LATEs of the type E(Y (tk+1) − Y (tk)|S); k ∈ {1, 2}.
Similarly via Theorem 1 it is also easy to verify that UM does not hold for response matrix (39).

The 2×2 submatrix of rows (z1, z4) and columns (s3, s7) displays the values
(

t1 t2
t2 t3

)
which violates

item (iii) of Theorem 1; the shift of IV-values from z1 to z4 induces some agents towards choice t2

while inducing others away from t2.

Interestingly, the natural ranking on the treatment space is not important for generating ordered

monotonicity in this way. We could just as easily have considered a treatment space with no

natural ranking, such as the choice of neighborhood to live in. The incentive design summarized

by L in (39) would have still generated the response matrix R that satisfies ordered monotonicity.

This demonstrates the usefulness of considering the slightly broader characterization of ordered

monotonicity presented in OM Sequence (16). Had ordered monotonicity been ruled out a priori, the

researcher may not have been able to take advantage of the Angrist and Imbens (1995) identification

results.

7.3 Beyond Ordered or Unordered Monotonicity

The MM condition provides a theoretical foundation for a wide range choice behaviors that do not

exactly conform to the paradigm imposed by ordered or unordered choices. It offers the necessary

flexibility to examine economic settings that are not neatly described by ordered or unordered

monotonicity. We illustrate this fact in the following examples.

The Double Randomization Design

A basic inquiry in social science is to evaluate the causal effect of a treatment t1 versus its absence.

The standard IV experiment that would allow us to assess this effect is to randomly offer a voucher

that incentives a set of agents to choose a treatment choice t1. This experiment can be described

by the binary LATE model discussed in Section 3.
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A straightforward extension of this setup is to insert a second treatment t2 and randomize a second

voucher that incentives t2 for the same set of agents. The combination of the two randomization

runs generate four groups according to the voucher assignments. Notationally, our experiment

consists of three choices T ∈ {t0, t1, t2}, where t0 represents not choosing either treatment t1 or t2,

and four instrumental values {z1, z2, z3, z4} that classify the voucher recipients into:

1. Group z1 comprise agents that do not receive any voucher.

2. Group z2 comprise agents that receive a voucher that incentivizes choice (t2).

3. Group z3 comprise agents that receive a voucher that incentivizes choice (t1).

4. Group z4 are those that receive two vouchers, one for t1 and another for t2.

Equation (40) presents an incentive matrix corresponding to this research design and the corre-

sponding response matrix generated by the revealed preference analysis described in Section 7.1.

See Appendix D.3 for detailed derivations.

L =

t0 t1 t2


0 0 0
0 0 1
0 1 0
0 1 1

z1

z2

z3

z4

⇒ R =

s1 s2 s3 s4 s5 s6 s7 s8 s9


t0 t0 t0 t0 t0 t1 t1 t2 t2
t0 t0 t2 t2 t2 t1 t2 t2 t2
t0 t1 t0 t1 t1 t1 t1 t1 t2
t0 t1 t2 t1 t2 t1 t1 t2 t2

z1

z2

z3

z4

(40)

Response matrix (40) satisfies neither UM nor OM. UM does not hold because the 2× 2 submatrix

generated by rows (z2, z3) and columns (s2, s3) displays matrix
(

t0 t2
t1 t0

)
, which violates item (iii)

of Theorem 1. For the ordering t0 ≤ t1 ≤ t2 on T , columns (s2, s3) also preclude OM. Under this

ordering, no matter how we order the IV values, we cannot generate that the sequence of treatments

is increasing for both s2 and s3. In fact, no matter which ordering we take on T , we can always

find a pair of response types whose treatment uptake patterns violate OM Sequence.25

However, as guaranteed by Theorem 6, the response matrixR in (40) satisfies minimal monotonicity

(MM). This can be further verified via the minimal monotonicity characterization in Theorem 3

by checking that there is no 2× 2 submatrix in (40) of the form
(

t t′

t′ t

)
. Appendix D.3 additionally

corroborates this fact by evaluating the verification matrix ΨM from Theorem 3(iii).

Despite the fact that neither UM nor OM holds, we can still explore causal relationships in this

choice model. In particular, the response matrix still enables us to identify causal parameters using

2SLS type estimands. For example, if the researcher was interested in the effect of treatment t2

against alternate treatments, the 2SLS-type estimand

25Using the violation of unordered monotonicity with t0 we have that t0 cannot be ranked highest or lowest in any
ordering that satisfies OM; this would mean that some agents increase their treatment as the instrument ranges from
z2 to z3 while other agents decrease their treatment. We thus only have to consider the orderings t1 ≤ t0 ≤ t2 and
t2 ≤ t0 ≤ t1, which can both be eliminated by considering the alternating patterns displayed by response types s4

and s7.
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βz4,z3 ≡ E[Y | Z = z4]− E[Y | Z = z3].

recovers a weighted average of E[Y (t2) − Y (t1) | S ∈ S2,1] and E[Y (t2) − Y (t0) | S ∈ S2,0],

with positive weights, for some sets of response types S2,1 and S2,0 that can be found using the

decomposition in Appendix B. If one was alternatively interested in the effect of t1 against alternate

treatments, the 2SLS-type estimand

βz3,z1 ≡ E[Y | Z = z3]− E[Y | Z = z2]

recovers a weighted average of E[Y (t1)− Y (t0) | S ∈ S1,0] and E[Y (t1)− Y (t2) | S ∈ S1,2] for two

alternate sets of response types S1,0 and S1,2.

Incentives that Justify Extensive Margin Compliers Only

We next exemplify how the choice rationale can be used to justify monotonicity criteria that are

more restrictive than UM and OM. Consider a group of students of a technical college that decide

among three possible majors: computer science (t1), electrical engineering (t2), or mechanical

engineering (t3).

College administration perform a double randomization of two types of tuition vouchers. The first

voucher offers a tuition discount for computer science (t1) while the other for the engineering courses

(t2 or t3). Students can be divided into four groups according to the voucher assignment:

1. Group z1 receives no voucher;

2. Group z2 receives the voucher for computer science (t1) only;

3. Group z3 receives the voucher that incentivizes electrical (t2) or mechanical (t3) engineering.

4. Group z4 receives both vouchers which offers incentives to all three choices.

Equation (41) presents the incentive matrix associated with this experimental design and its cor-

responding response matrix. See Appendix D.4 for derivation details.

L =

t1 t2 t3


0 0 0
1 0 0
0 1 1
1 1 1

z1

z2

z3

z4

⇒ R =

s1 s2 s3 s4 s5 s6 s7


t1 t1 t1 t2 t2 t3 t3
t1 t1 t1 t1 t2 t1 t3
t1 t2 t3 t2 t2 t3 t3
t1 t1 t1 t2 t2 t3 t3

z1

z2

z3

z4

(41)

Response matrix (41) is an example where both OM and UM are satisfied. We can check that OM

holds by assigning values (1, 2, 3) to (t1, t2, t3) and reordering the IV-values from z1, z2, z3, z4 to

z2, z1, z4, z3. The resulting response matrix is presented in (42) which shows that treatment values

weakly increase as Z ranges along its values. It is easy to check that each of the binary matrices

Bt = 1[R = t]; t ∈ {1, 2, 3} that indicate the treatment choices of response matrix (42) is triangular

(i.e. lonesum). This implies that UM holds by item (iv) of Theorem 1.
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Reordered R =

s1 s2 s3 s4 s5 s6 s7


1 1 1 1 2 1 3
1 1 1 2 2 3 3
1 1 1 2 2 3 3
1 2 3 2 2 3 3

z2

z1

z4

z3

(42)

Response matrix (41) has a special property beyond UM and OM: each of its compliers takes only

two treatment values, one of them being t1. Specifically, the matrix has four response-types that

display a variation of treatment choice, these are the compliers (s2, s3, s4, s6). The choice values of

response-types s2, s4 are t1 or t2 and the choice values of s3, s6 are t1 or t3 This special property

is called Extensive Margin Compliers Only (EMCO) which is formalized in (43).26

EMCO: There exists a treatment choice t1 ∈ T such that for any z, z′ ∈ supp(Z) we have that

Ti(z) 6= Ti(z
′)⇒ Ti(z) = t1 or Ti(z

′) = t1 for all i ∈ I (43)

EMCO (43) simplifies the multiple-choice decision of compliers into a binary decision that debates

between choosing t1 or not. In our example, compliers s2, s4 debate between choosing computer

science t1 or electrical engineering t2 while compliers s3, s6 debate between computer science t1 or

mechanical engineering t3. None of the compliers debate between electrical or mechanical engen-

dering. Instead, they decide between choosing computer science or not.

EMCO (43) enables us to recode the multiple choice Ti ∈ {t1, t2, t3} into a binary choice Di = 1[Ti =

t1] that indicates if the agent i chooses t1. The 2SLS regression that uses the binary indicator as

the endogenous treatment evaluates a weighted average of LATE-type effects between choosing t1

and not across compliers.

In particular, the comparison between two IV-values identifies the causal effect for of choosing t1
versus not choosing t1 for a sub-set of compliers. For instance, consider the IV-values z1 and z2.

We can use equation (9) to obtain the following identification result:

E(Y |Z = z2)− E(Y |Z = z1)

P (T = t2|Z = z2)− P (T = t2|Z = z1)
= (44)

E(Y (t1)− Y (t2)|S = s4)P (S = s4) + E(Y (t1)− Y (t3)|S = s6)P (S = s6)

P (S = s4) + P (S = s6)
. (45)

Equations (44)–(45) show that the comparison between IV-values z1 and z2 identifies the causal

effect of choosing t1 versus not choosing t1 conditional on response-types s4, s6. The equations are

similar to the LATE identification equation of Imbens and Angrist (1994). They imply that we can

evaluate the causal effect via the 2SLS regression that uses the sub-sample of agents assigned to z1

and z2.

26See Rose and Shem-Tov (2021); Angrist and Imbens (1995).
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Orthogonal Array Design

We additionally examine an IV choice model based on the orthogonal array experimental design.

Orthogonal arrays are a widely popular experimental design developed by C.D. Rao (Rao, 1946a,b,

1947, 1949). Orthogonal arrays are widely used in Agricultural and Industrial sciences to determine

the optimum mix of treatments that maximize production yield. The method is based on the

random assignment of a combinatorial arrangements of treatments for each randomization arm.

We adapt this setup to an instrumental variable setting by exogenously providing incentives for

one or more treatments instead of directly assigning agents to treatment arms. Below, we will see

that this incentive structure allows for a broad range of identification results.

Formally, a binary orthogonal array is a matrix of zeros and ones such that any two-column sub-

matrix displays all possible combinations of zeros and ones. In other words, the tuples

{(0, 0), (0, 1), (1, 0), (1, 1)}

are all rows in any two-column submatrix. An orthogonal array incentive design if its associated

incentive matrix is a binary orthogonal array. The incentive matrix in (46) displays an example of

an orthogonal array incentive design and the corresponding response matrix generated by applying

Choice Rule (35).

L =

t1 t2 t3


0 1 1
0 0 0
1 1 0
1 0 1

z1

z2

z3

z4

⇒ R =

s1 s2 s3 s4 s5 s6 s7 s8 s9


t1 t2 t2 t2 t2 t3 t3 t3 t3
t1 t1 t2 t2 t2 t1 t3 t3 t3
t1 t1 t2 t2 t2 t1 t1 t2 t3
t1 t1 t1 t2 t3 t1 t3 t3 t3

z1

z2

z3

z4

(46)

This response matrix satisfies neither unordered nor ordered monotonicity. When the instrument

switches from z1 to z4, agents in response type s5 move from treatment t2 to treatment t3 while

agents in response type s6 move away from t3 and towards t1. This represents a violation of ordered

monotonicity and also prevents t3 from being ordered the highest or lowest in any ordering on T that

would satisfy ordered monotonicity.27 Similarly we can see a switch from z3 to z4 induces agents in

response type s3 to move from treatment t2 to treatment t1 while inducing agents in response type

s7 to move away from treatment t1 and towards treatment t3. This again represents a violation of

unordered monotonicity and prevents t1 from being ordered either the highest or the lowest in any

ordering T that would satisfy ordered monotonicity. Since all orderings on T = {t1, t2, t3} must

have either t1 or t3 as the largest or smallest element, this means there is no ordering on T that

satisfies ordered monotonicity.

27If t3 is ranked highest a movement away from t3 represents moving towards a lower treatment while a towards t3
represents moving towards a higher treatment. Vice versa, if t3 is ranked lowest a movement towards t3 represents
moving towards a lower treatment while a movement away from t3 represents moving towards a higher treatment.

28



Again, however, Theorem 6 guarantees that the response matrix satisfies minimal monotonic-

ity (MM). Any simple 2SLS estimands exploiting the variation between any two instruments

(as in Theorem 3) identifies an interpretable causal parameter. For example, if the researcher

was interested in the effect of treatment t1 against alternative treatments, the 2SLS estimand

βz1,z2 = E[Y | Z = z1] − E[Y | Z = z2] recovers a weighted average of E[Y (t1) − Y (t2) | S = s2]

and E[Y (t1)− Y (t3) | S = s6].

Interestingly, the response matrix R in (46) also satisfies the extensive margin compliers only

(EMCO) condition of (41) when considering any three instruments at a time. As in the last

example, this allows for 2SLS estimands to additionally be interpreted as recovering the causal

effect of one treatment against another.

8 Conclusion

Analysis of ordered and unordered IV choice models has largely been conducted in parallel, with

little overlap between the two strands of the literature. Ordered choice models are commonly ana-

lyzed using ordered monotonicity (OM), introduced by Angrist and Imbens (1995), while unordered

choice models are commonly analyzed using the unordered monotonicity (UM) of Heckman and

Pinto (2018).

This paper bridges the gap between analysis of ordered and unordered IV choice models. We note

symmetric features of ordered and unordered monotonicity and use them to derive symmetric char-

acterizations of the two. The symmetric characterizations offer deep insights into the relationship

between the two monotonicity criterion. Moreover they provide computationally tractable ways to

verify the two monotonicity criterion, which may be useful to researchers who wish to utilize both

sets of identification results.

The symmetric characterizations illuminate a shared monotonicity property, which we term the

minimal monotonicity (MM) condition. We characterize this novel criterion and show it is the

minimal requirement needed to identify interpretable causal parameters using 2SLS type estimands.

Moreover, minimal monotonicity can be associated with a notion of rationality that enables the

investigation of a range of economic choice models that do not comply with ordered or unordered

monotonicity.
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A Proofs of Main Results

A.1 Lonesum Matrix Characterizations

Using the characterization of unordered monotonicity in UM-Sequence (17), unordered monotonic-

ity is equivalent to there being a permutation of the rows of Bt such that each column of Bt is

weakly increasing.1 Existence of such a reordering characterizes a class of binary matrices known

as lonesum matrices, which are a generalization of lower triangular binary matrices. The lonesum

property, and various characterizations of it, end up forming the basis of much of our proof strategy.

We discuss the property breifly below and note a useful characterization of the property.

Lonesum Matrices

Following Ryser (1957), a binary matrix A is lonesum if each of its entries is uniquely determined

by its column and row sums. Matrix A below is an example of such a lonesum matrix:

A =

column

column-sum

[ ]
0 1 0 1 0
0 1 1 1 1
0 1 0 0 0
c1 c2 c3 c4 c5
0 3 1 2 1

row

r1
r2
r3

︸ ︷︷ ︸
Original Matrix

row-sum

2
4
1

⇒
[ ]0 0 0 0 1

0 0 0 1 1
0 1 1 1 1
c1 c3 c5 c4 c2
0 1 1 2 3

row

r3
r1
r2

︸ ︷︷ ︸
Reordered Matrix

row-sum

1
2
4

We can reorder the rows of the matrix A such that the elements of each column are weaklly

increasing. We can also reorder the columns so that the matrix A is lower triangular, which is

why the lonesum property is considered a generalization of binary lower triangular matrices. The

lonesum matrix property can also be productively characterized in the following ways:

Lemma 3 (Lonesum Matrices). A binary matrix A ∈ {0, 1}m×n is lonesum if and only if:

(i). Matrix A is lower-triangular under column and row permutations.

(ii). There are no 2× 2 submatrix in A of the form either:[
1 0
0 1

]
or

[
0 1
1 0

]
. (A.1)

(iii). ιᵀ
(
(1 −A)ᵀA

)
�
(
(1 −A)ᵀA

)ᵀ
ι = 0, where ι is a n-dimensional vector of elements ones

and 1 is a m× n matrix of element ones.

(iv). Let ri(A) and cj(A) represent the row sum of row i and the column sum of column j,

1This permutation can differ for each Bt, but there must be such a permutation for each t ∈ T .
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respectively. Each entry A[i, j], for 1 ≤ i ≤ m and 1 ≤ i ≤ n, can be expressed as:

A[i, j] = 1

[
ri(A) ≥

n∑
j′=1

1
[
cj′(A) ≥ cj(A)

] ]
(A.2)

The sum
∑n

j′=1 1
[
cj′(A) ≥ cj(A)

]
represents the number of columns of A with a weakly

larger column sum than column j

Proof. The second item comes from Ryser (1957). We next show a series of equivalences.

(iii)⇐⇒ (ii). Notice that (iii) is equivalent to the matrix

(1−A)ᵀA�Aᵀ(1−A)

being a matrix of all zeros. By direct calculation, the ijth element of (1−A)ᵀA is given

m∑
k=1

A[k, i]−A[k, j]A[k, i] =

m∑
k=1

A[k, i](1−A[k, j]).

This is non-zero if and only if A[k, i] = 1 and A[k, j] = 0 for some k. Conversely, the ijth element

of Aᵀ(1−A) can be expressed

m∑
k=1

A[k, j]−A[k, i]A[k, j] =

m∑
k=1

A[k, j](1−A[k, i]).

This is non-zero if and only if A[k, i] = 0 and A[k, j] = 1 for some k. The ijth element of

(1 −A)ᵀA �Aᵀ(1 −A) is non-zero if and only if each of the terms above are nonzero, which in

turn is equivalent to their existing two rows k, k′ such thatA[k, i] A[k, j]

A[k′, i] A[k′, j]

 =

1 0

0 1


which is equivalent to one of the restricted submatrices in item (ii) up to a relabeling of k and k′.

(iv)⇐⇒ (ii). For the forward direction, notice that if (iv) holds, then the matrix A can clearly be

reproduced uniquely from its row and column sums, so it is lonesum and thus (ii) holds. We then

want to show that (ii) =⇒ (iv). Consider the contrapositive. First, suppose that there is some

element A[i, j] such that A[i, j] = 1 but

ri(A) <

n∑
j′=1

1[cj′(A) ≥ cj(A)]. (A.3)

That is, the row sum of row i is less than the number of columns j′ with column sum larger
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than column j. For this to be the case, there must be some column j′ such that A[i, j′] = 0 but

cj′(A) ≥ cj(A).2 Because A[i, j′] = 0 we know that j 6= j′.

Because A[i, j] = 1 but A[i, j′] = 0, for the column sum of j′ to be weakly larger than the column

sum of j, there must be some other row i′ 6= i such that A[i′, j] = 0 but A[i′, j′] = 1. This generates

the restricted pattern which violates (ii) (up to a relabeling of columns j and j′).A[i, j] A[i, j′]

A[i′, j] A[i′, j′]

 =

1 0

0 1

 .

Conversely, suppose that A[i, j] = 0 but

ri(A) ≥
n∑

j′=1

1[cj′(A) ≥ cj(A)] (A.4)

By similar logic as the previous case, this means that there must be some column j′ such that

A[i, j′] = 1 but cj′(A) < cj(A). Since column j does not contribute to the row sum on the right

hand side of (A.4) but does contribute to the column sum on the right hand side, there must be

some other column that does the opposite in order for (A.4) to hold.

Because A[i, j′] = 1 and A[i, j] = 0 but cj′(A) < cj(A), there must be some other row i′ 6= i such

that A[i, j′] = 1 but A[i′, j′] = 0. As before, we can show that this generates the restricted pattern

which violates (ii) (up to a relabeling of columns j and j′).

(i)⇐⇒ (ii). That (i) =⇒ (ii) is clear, since the existence of the restricted pattern is stable under

row and column permutations and the existence of such a restricted pattern prevents a matrix

from being lower triangular. To see that (ii) =⇒ (i), suppose that A is lonesum and let Ã be

the matrix generated by ordering the rows of A is increasing row-sum and the colums of A in

decreasing column sum. Now, notice that Ã must also be lonesum, since if the restricted pattern

appears in Ã it must also appear in A; we cannot generate the restricted pattern using row and

column permutations of a lonesum matrix. If Ã is lonesum, then (iv) must hold, that is

Ã[i, j] = 1

[
ri(Ã) ≥

n∑
j′=1

1
[
cj′(Ã) ≥ cj(Ã)

] ]
. (A.5)

Since the columns of Ã are ordered in increasing column sum, we must have by (A.5) that Ã[i, j] ≤
Ã[i, j′] for j′ > j. Similarly, since the rows are ordered in decreasing row sum, (A.5) implies that

Ã[i, j] ≤ Ã[i′, j] for i′ < i. Together, these imply that Ã is lower triangular.

2There must be some column j′ that contributes to the right hand side of (A.3) but not to the row sum on the
left hand side.
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A.2 Proofs of Results in Section 4

A.2.1 Proof of Theorem 1

We prove Theorem 1 via a series of implications:

(i) =⇒ (ii). If there is a response type s and a treatment t for which (ii) is not true, then the

sequence (
1[s[z

(t)
1 ] = t], . . . ,1[s[z

(t)
NZ

] = t]
)

is not increasing.

(ii) =⇒ (iii). If there is a 2× 2 matrix of R of the form

s s′( )
t t′ z

t′′ t z′

then we have 1[s[z] = t] > 1[s[z′] = t] while 1[s′[z] = t] < 1[s′[z′] = t], a violation of (ii). A

symmetric argument holds for the other restricted submatrix of R.

(iii) =⇒ (iv). First notice that (iv) is equivalent to the matrix U being lonesum by part three of

Lemma 3. Further notice that the matrix U is lonesum if and only if each Bt is lonesum. Because

there are no restricted submatrices of R of the form in (iii) there are no submatrices of any Bt of

the form either 1 0

0 1

 or

0 1

1 0

 .

By part (ii) of Lemma 3, this is equivalent to each Bt being lonesum.

(iv) =⇒ (v). Item (iv) is equivalent to each Bt being lonesum. We seek to use the fourth item of

Lemma 3. With this in mind, define the functions

ζ(z, t) ≡ row sum of the zth row of the matrix Bt

ϕ(s, t) ≡ # of columns of Bt with a larger column sum than that of its sth column.

Because S is implicitly a function of unobserved confounders V , we can also write ϕ(·, t) as a

function of V . By the definition of Bt = 1[R = t] and the fourth item of Lemma 3, we can then

write

1[T = t] = 1[ζ(Z, t) ≥ ϕ(V , t)].

By the first item of Lemma 3, there is a reordering of the rows and columns of Bt such that Bt is

lower triangular. Let z
(t)
1 denote the instrument associated with the “top” row of this matrix, z

(t)
2

denote the second row of this matrix, and so on till z
(t)
NZ

.
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Then, the function ζ satisfies ζ(z
(t)
k+1, t) ≥ ζ(z

(t)
k , t) for k = 1, ..., NZ−1, by definition of the sequence

(z
(t)
1 , . . . , z

(t)
NZ

); weakly more response types must be taking up treatment t for each successive value

of this sequence.

(v) =⇒ (i). Since ζ(z
(t)
k+1, t) > ζ(z

(t)
k , t) for k = 1, ..., NZ − 1, if (v) holds we must have that

(1[Ti(z
(t)
1 ) = t], . . . ,1[Ti(z

(t)
NZ

) = t])

is a weakly increasing sequence in {0, 1} for all i ∈ I.

A.2.2 Proof of Theorem 2

We prove Theorem 2 via a series of implications:

(i) =⇒ (ii). Take any strict ordering on T . Suppose there is a violation of (ii) for some i ∈ I.

Then for that particular i ∈ I the sequence

(Ti(z1), . . . , Ti(zNZ
))

is not increasing with respect to the ordering on T . If there is no such ordering satisfying (ii), then

(i) cannot be satisfied.

(ii) =⇒ (iii). Suppose there is a 2× 2 submatrix of R of the form:

s s′( )
t t′ z

t′′ t′′′ z′

for some t′′ > t and t′′′ < t′. This means that s[z′] > s[z] while s′[z] > s′[z′]. These two

statememnts cannot both be true under (ii). A symmetric argument applies for the other 2 × 2

restricted submatrix.

(iii) =⇒ (iv). Notice that by part 3 of Lemma 3 that (iv) is equivalent to O being lonesum.

Suppose that O = [B∗t1 , . . . ,B
∗
tNT

] is not lonesum. That is, by the lonesum characterization (A.1)

there is a 2× 2 submatrix of O of the form

s s̃( )
1 0 z

0 1 z′
or

s s̃( )
0 1 z

1 0 z′
.

WLOG suppose there is a 2×2 submatrix of O of the first form. This indicates that for some t ∈ T ,

the instrumental switch from z to z′ induces agents of response type s to switch from a treatment

weakly below t to a treatment strictly greater than t. That is s[z] < s[z′]. Conversely, for some
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treatment t′ ∈ T the instrumental switch from z to z′ induces agents of response s̃ to switch from

a treatment strictly greater than t′ to a treatment weakly lower than t′. That is s̃[z] < s̃[z′].

These two statements are incompatible with each other, so we cannot have that s = s̃. Leting

t = s[z], t′ = s̃[z], t′′ = s[z′], and t′′′ = s̃[z′], this implies a 2× 2 submatrix of R of the form

s s̃( )
t t′ z

t′′ t′′′ z′

with t < t′′ and t′ > t′′′. This is a violation of (iii). Similarly, considering 2 × 2 submatrices of O

of the second form, we can find a violation of the other pattern restricted by (iii).

(iv) =⇒ (v). Item (iv) is equivalent to O being lonesum. This in turn implies that B∗t = 1[R ≥ t]
is lonesum for each t ∈ T . With this in mind, define the functions

ζ(z, t) ≡ row sum of the zth row of the matrix B∗t

ϕ(s, t) ≡ # of columns of B∗t with a larger column sum than that of its sth column.

By the first item of Lemma 3, there is a reordering of the rows and columns of O such that O is

lower triangular. Let z
(t)
1 denote the instrument associated with the “top” row of this matrix, z

(t)
2

denote the second row of this matrix, and so on till z
(t)
NZ

.

Because S is implicity a function of unobserved confounders V , we can also write ϕ(·, t) as a

function of V . By the definition of B∗t = 1[R ≥ t] and the fourth item of Lemma 3, we can then

write

1[T ≥ t] = 1[ζ(Z, t) ≥ ϕ(V , t)]

for each t. Moreover, by definition of the sequence (z1, . . . , zNZ
) we know that, for each treatment

t ∈ T , weakly more response types take up treatments larger than t as the instrument cycles

through the sequence (z1, . . . , zNZ
). By definition of the ζ(·, ·) function then, ζ(zk+1, t) > ζ(zk, t)

for k = 1, . . . , NZ − 1 and all t.

(v) =⇒ (i). Since ζ(zk+1, t) > ζ(zk, t) for k = 1, . . . , NZ − 1 and all t, if holds (v) we must have

that, for all t

(1[Ti(z1) ≥ t], . . . ,1[Ti(zNZ
) ≥ t])

is a weakly increasing sequence in {0, 1} for all i ∈ I. This implies that

(Ti(z1), . . . , Ti(zNZ
))

must be a weakly increasing sequence with respect to the ordering on T for all i ∈ I.
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A.3 Proofs of Results in Section 5

A.3.1 Proof of Theorem 3

We show a system of implications.

(i) ⇐⇒ (ii). This is provided by Lemma 1.

(ii) ⇐⇒ (iv). This follows from the discussion in Appendix B, namely the decomposition of βz,z′ in

equation (B.6), and the definition of an interpretable causal parameter in (26). The decomposition

of βz,z′ gives the forward direction. The definition of an interpretable causal parameter gives the

backwards direction: if there is a negative weight there must be a pair of treatments t, t′ such that

some agents that are switching from t to t′ as the instrument ranges from z to z′ whereas that same

instrumental switch moves other agents from t′ to t.

(iii) =⇒ (ii). We consider the contrapositive. Suppose there is no binary matrix B element-wise

less than or equal to
∑

t′′ 6=t,t′Bt′′ such that Bt +B is lonesum. This means that Bt is lonesum, so

that by Theorem 1 there is a 2× 2 submatrix R of either the form t t′′′

t′′ t

 or

t′′ t

t t′′′

 ,

for some t′′, t′′′ 6= t. If either t′′ 6= t′ or t′′′ 6= t′, then we can find a binary matrix that is element

wise less than
∑

t′′ 6=t,t′Bt′′′ to “fill in the gap” and get rid of the restricted pattern. In particular

we can take B̃ to be the matrix that is equal to one at the position of either t′′ or t′′′ and zero

everywhere else. If there is no such matrix that eliminates the restricted pattern then both t′′ = t′

and t′′′ = t′. So we have the restricted pattern (25) in R.

(ii) ⇐⇒ (iii). The ijth element of Bᵀ
tBt′ is given

NZ∑
z=z1

1[si[z] = t]1[sj [z] = t′],

this is nonzero if and only if we have si[z] = t and sj [z] = t′ for some instrument value z. Similarly,

the ijth element of (Bᵀ
tBt′)

ᵀ = Bᵀ
t′Bt is given

NZ∑
z=z1

1[si[z] = t′]1[sj [z] = t].

This is non-zero if and only if we have si[z
′] = t′ and sj [z

′] = t for some insrument value z′.

Then, the ijth element of the Hadamard product (Bᵀ
tBt′) � (Bᵀ

tBt′)
ᵀ is non-zero if and only if

the ijth elements of both (Bᵀ
tBt′) and (Bᵀ

tBt′)
ᵀ are non-zero. By the characterizations above and

because each response type is a well defined function, this is equivalent to si[z] = t, si[z
′] = t′ but
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sj [z] = t′, sj [z
′] = t for some z′ 6= z. This is equivalent to the restricted pattern (25) existing

between si and sj for instrument values z, z′ and the specific treatment values t and t′.

All elements of (Bᵀ
tBt′)�(Bᵀ

tBt′)
ᵀ being equal to zero is then equivalent to their being no restricted

patterns (25) between the specific treatment values t and t′ in the response matrix R.

Because each (Bᵀ
tBt′)� (Bᵀ

tBt′)
ᵀ has weakly positive entries, checking whether

ιᵀ

 ∑
(t,t′)∈C2(T )

(Bᵀ
tBt′)� (Bᵀ

tBt′)
ᵀ

 ι = 0

is equivalent to checking whether each (Bᵀ
tBt′) � (Bᵀ

tBt′)
ᵀ is equal to the zero matrix. By the

discussion above, this is equivalent to checking whether there are no matrices of the form (25) for

any t, t′ ∈ T .

A.3.2 Proof of Theorem 4

Let ΨU (t) =
(
(1̃−Bt)

ᵀBt

)
�
(
(1−Bt)

ᵀBt

)ᵀ
, where 1̃ is a NZ×NS matrix of element ones. Using

this notation, we can rewrite the UM verification in Item (iv) of Theorem 1 as the following sum:

‖ΨU‖ = ‖
(
(1−U)ᵀU

)
�
(
(1−U)ᵀU

)ᵀ‖
= ‖

∑
t∈T

(
(1̃−Bt)

ᵀBt

)
�
(
(1̃−Bt)

ᵀBt

)ᵀ‖
=
∑
t∈T
‖
(
(1̃−Bt)

ᵀBt

)
�
(
(1̃−Bt)

ᵀBt

)ᵀ‖
=
∑
t∈T
‖ΨU (t)‖

The first equality is from the definition of the verification in Theorem 1. The second equality arises

from the construction of matrix U . The third equality is due to the fact that all elements of ΨU (t)

are either zero or a natural number.

We can use the fact that
∑

t∈T Bt = 1̃ to express matrix ΨU (t) as:

ΨU (t) =
(

(1̃−Bt)
ᵀBt

)
�
(

(1̃−Bt)
ᵀBt

)ᵀ
=



∑

t′∈T
Bt′

−Bt


ᵀ

Bt

 �


∑

t′∈T
Bt′

−Bt


ᵀ

Bt


ᵀ

=


 ∑

t′∈T \{t}

Bt′

ᵀ

Bt

 �

 ∑

t′∈T \{t}

Bt′

ᵀ

Bt


ᵀ
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=

 ∑
t′∈T \{t}

Bᵀ
t′Bt

 �
 ∑

t′∈T \{t}

Bᵀ
t′Bt

ᵀ

=

 ∑
t′∈T \{t}

Bᵀ
t′Bt

 �
 ∑

t′∈T \{t}

Bᵀ
tBt′


=

∑
t′∈T \{t}

(
Bᵀ

t′Bt

)
�
(
Bᵀ

t′Bt

)ᵀ
+ 2

∑
t′,t′′∈T \{t}

(
Bᵀ

t′Bt

)
�
(
Bᵀ

tBt′′
)ᵀ

=
∑

t′∈T \{t}

Ψ(t′, t, t, t′) + 2
∑

t′,t′′∈T \{t}

Ψ(t′, t, t, t′′)

The derivation above use simple rules of matrix algebra and the formula for the product of sums.

We use the fact that Ψ(t′, t, t, t′′)ᵀ = Ψ(t, t′, t′′, t) and express the transpose of ΨU (t) as:

ΨU (t)ᵀ =
∑

t′∈T \{t}

Ψ(t, t′, t′, t) + 2
∑

(t′,t′′)∈C2(T \{t})

Ψ(t, t′, t′′, t) (A.6)

Recall that the elements of matrix Ψ(t, t′, t′′, t′′′) are either zero or natural numbers. Thus, equa-

tion (A.6) implies that ‖ΨU (t)‖ = 0 (or equivalently ‖ΨU (t)ᵀ‖ = 0) if and only if:

‖Ψ(t, t′, t′, t)‖ = 0 for all t′ ∈ T \ {t} (A.7)

and ‖Ψ(t, t′, t′′, t)‖ = 0 for all combinations of t′, t′′ ∈ T \ {t}. (A.8)

Now ‖ΨU‖ = 0 only and only if ‖ΨU (t)‖ = 0 for all t ∈ T , which completes the proof.

A.4 Proof of Theorem 5

A.4.1 Lemmas

Proof of Lemma 1. Suppose there is a violation of MM (24). This is equivalent to there being

pair of response types s, s′, a pair of treatments z, z′, and a pair of treatments t, t′ such that

1[s[z] = t]1[s′[z′] = t′] > 1[s[z] = t′]1[s′[z′] = t]

and 1[s′[z] = t]1[s[z′] = t′] < 1[s′[z] = t′]1[s[z′] = t].

This is in turn equivalent to s[z] = t, s[z′] = t′ and s′[z] = t′, s′[z′] = t, which is equivalent (up to

a relabeling of s and s′) to the restricted pattern (25) appearing in the response matrix R.

Proof of Lemma 2. Follows from Theorems 4 and 5. That MM holds when OM and UM fail

can be seen via examples in Section 7.
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A.5 Proof of Results in Section 6

A.5.1 Proof of Theorem 6

Consider any pair of instrument values z, z′ ∈ Z and any pair of treatments t, t′ ∈ T . Without loss

of generality, it is enough show there are no 2× 2 submatrices of the form

s s′( )
t t′ z

t′ t z′
.

Define ∆t ≡ L[z′, t]−L[z, t] and ∆t′ ≡ L[z′, t′]−L[z, t′]. There are two scenarios. Either ∆t ≤ ∆t′

or ∆t ≥ ∆t′ . In each case, we have the following behavioral restrictions from the Choice Rule (35).

If ∆t ≤ ∆t′ then Ti(z) = t′ =⇒ Ti(z
′) 6= t

If ∆t′ ≤ ∆t then Ti(z) = t =⇒ Ti(z
′) 6= t′

The first restriction would eliminate the response type s′ from the matrix R while the second

restriction would eliminate the response type s from the response matrix R. In either case, we

cannot have the restricted 2× 2 submatrix displayed at the top of the proof.

B 2SLS Analysis

B.1 Interpretation of 2SLS under Ordered and Unordered Monotonicity

Under ordered monotonicity and a binary instruments, Angrist and Imbens (1995) show that the

2SLS estimand identifies the following:

β2SLS =
E[Y | Z = z1]− E[Y | Z = z0]

E[T | Z = z1]− E[T | Z = z0]
(B.1)

=

NT∑
j=1

ωtj ,tj−1E[Y (tj)− Y (tj−1) | S ∈ Stj ,tj−1 ]

where Stj ,tj−1 ≡ {s ∈ S; s[z1] ≥ tj > s[z0]}, that is the sets of response types for whom a change in

instrument receipt from z0 to z1 induces a change in treatment from strictly “below” tj to weakly

“above” tj . The weights ωtj ,tj−1 are positive and given:

ωtj ,tj−1 =
Pr(S ∈ Stj ,tj−1)∑NT
j=1 Pr(S ∈ Stj ,tj−1)

. (B.2)
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Unordered monotonicity also allows 2SLS type estimands to be expressed in terms of a weighted

average of LATE parameters with positive weights.3 In this setting the 2SLS numerator can be

decomposed

βu2SLS(z, z′) = E[Y | Z = z]− E[Y | Z = z′]

=
∑

{t,t′},t6=t′

ωu
t,t′E[Y (t)− Y (t′) | S ∈ St,t′(z, z′)] (B.3)

where St,t′(z, z′) ≡ {s : s[z] = t, s[z′] = t′} is the set of response types that switch treatments from

t to t′ as the instrument varies from z to z′. Under unordered monotonicity, the same instrument

switch cannot induce some agents to switch towards choice t while inducing others to switch away

from choice t. So, we must have either St,t′(z, z′) = ∅ or St′,t(z, z′) = ∅ (or both). The weights ωu
t,t′

are weakly positive and given ωu
t,t′ = Pr(S ∈ St,t′).

B.2 General Unique Decomposition

Using the identification equality in (9) we can rewrite

E[Y | Z = z] =
∑

s∈supp(S)

∑
t∈T

1[s[z] = t]E[Y (t) | S = s] Pr(S = s)

E[Y | Z = z′] =
∑

s∈supp(S)

∑
t∈T

1[s[z′] = t]E[Y (t) | S = s] Pr(S = s)

Using these, we can express the quasi-2SLS estimand as the following

βz,z′ ≡ E[Y | Z = z]− E[Y | Z = z′] (B.4)

=
∑

s∈supp(S)

∑
t∈T

(
1[s[z] = t]− 1[s[z′] = t]

)
E[Y (t) | S = s] Pr(S = s) (B.5)

=
∑

{t,t′},t6=t′

E[Y (t)− Y (t′) | S ∈ St,t′(z, z′)] Pr(S ∈ St,t′(z, z′)), (B.6)

where the last equality is due to the fact that sets St,t′(z, z′), defined below (B.3), form a partition

of supp(S) as t, t′ ranges in T . Equation (B.6) holds regardless of any monotonicity assumption.

That is, no matter what the restriction is on the support of S, we will always be able to rewrite

the 2SLS numerator as in (B.6).

In view of Lemma 1, a violation of MM is equivalent to there being a pair of treatments t, t′ such

3In addition, Buchinsky and Pinto (2021) show that any variation in the instrumental variable can be used to
identify a meaningful counterfactual outcome mean. For instance, the 2SLS estimate that uses a choice indicator for
t and any IV-values z, z′ ∈ Z, such that P (T = t|Z = z) > (T = t′|Z = z), identifies the following parameter:

βt
2SLS(z, z′) =

E[Y 1[T = t] | Z = z]− E[Y 1[T = t] | Z = z′]

Pr(T = t | Z = z)− Pr(T = t | Z = z′)
= E(Y (t)|S ∈ St

z,z′),

where St
z,z′ = {s : s[z] = t, s[z′] 6= t} is the set of response types that switch from treatment choice t to any other

treatment choice as the instrument varies from z to z′.
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that the sets St,t′(z, z′) and St′,t(z, z′) are both nonempty. This induces negative weights in the 2SLS

estimand; both E[Y (t) − Y (t′) | St,t′(z, z′)] and E[Y (t′) − Y (t) | St′,t(z, z′)] are represented in the

decomposition (B.6). This in turn limits our ability to use the 2SLS estimand to gain useful insight

into the direction of causal effects. The partial minimal monotonicity criterion is then crucial for

interpreting βz,z′ as a type of interpretable causal parameter defined in (26).

C Ordered vs. Unordered Example

We consider a setup with three treatments, T = {t1, t2, t3}, and three instruments, Z = {z1, z2, z3}.
Response matrices (C.1)–(C.2) below are useful to understand the difference between ordered and

unordered monotonicity conditions:

R1 =

Ordered but NOT Unordered︷ ︸︸ ︷
s1 s2 s3 s4 s5 s6t1 t2 t3 t1 t1 t2
t1 t2 t3 t2 t3 t2

t1 t2 t3 t3 t3 t3︸ ︷︷ ︸
Ordered AND Unordered

s7 t1
t1

t2

z1
z2
z3

(C.1)

R2 =

︷ ︸︸ ︷
s1 s2 s3 s4 s5 s6[t1 t2 t3 t1 t1 t2
t1 t2 t3 t2 t3 t2
t1 t2 t3 t3 t3 t3

s∗7 t1
t2

t1︸ ︷︷ ︸
Unordered but NOT Ordered

z1
z2
z3

(C.2)

Columns s1, ..., s7 of response matrix R1 (C.1) denote response-types. Each column describes the

sequence of counterfactual choices, (Ti(z1), Ti(z2), Ti(z3)), for an agent in that column’s response

type. The counterfactual treatment in each of these sequences is weakly increasing with respect to

the ordering t1 ≤ t2 ≤ t3; for any agent i ∈ I, Ti(z1) ≤ Ti(z2) ≤ Ti(z3). Thus OM-Sequence (16)

holds.

However, response types s6, s7 in R1 violate the sequential representation of unordered monotonic-

ity in (17) for choice t2. Consider two agents i, i′ ∈ I such that Si = s6 and Si′ = s7. The sequence

of t2-indicators for agent i is weakly decreasing while the sequence for agent i′ is weakly increasing

(
1[Ti(z1) = t2],1[Ti(z2) = t2],1[Ti(z3) = t2]

)
= (1, 1, 0)(

1[Ti′(z1) = t2],1[Ti′(z2) = t2],1[Ti′(z3) = t]
)

= (0, 0, 1).

This represents a violation of UM-Sequence (17) for the sequencing of Z, (z1, z2, z3). Moreover,

because the switch from z2 to z3 induces agent i to move strictly away from treatment choice t2

while moving agent i′ strictly towards treatment choice t2, there is no other sequencing of Z that
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would satisfy the requirement of UM Sequence (17). We can conclude that the response matrix R1

does not satisfy unordered monotonicity.

Response matrix R2 (C.2) replaces s7 in R1 with s∗7. The treatment indexes in s∗7 are not weakly

increasing with respect to the ordering t1 ≤ t2 ≤ t3. Thus the ordered monotonicity that held for

R1 does not hold for R2. Indeed, the reader can confirm that there is no ordering T that satisfies

OM-Sequence (16). In this case, though, the response matrix R2 satisfies unordered monotonicity.

Equations (C.3)–(C.5) are instructive in establishing this fact.

Reordered rows of R2 for t1 =

s1 s2 s3 s4 s5 s6 s∗7 t1 t2 t3 t2 t3 t2 t2

t1 t2 t3 t3 t3 t3 t1

t1 t2 t3 t1 t1 t2 t1

z2
z3
z1

, (C.3)

Reordered rows of R2 for t2 =

s1 s2 s3 s4 s5 s6 s∗7 t1 t2 t3 t3 t3 t3 t1

t1 t2 t3 t1 t1 t2 t1

t1 t2 t3 t2 t3 t2 t2

z3
z1
z2

, (C.4)

Reordered rows of R2 for t3 =

s1 s2 s3 s4 s5 s6 s∗7 t1 t2 t3 t1 t1 t2 t1

t1 t2 t3 t2 t3 t2 t2

t1 t2 t3 t3 t3 t3 t1

z1
z2
z3

. (C.5)

Equation (C.3) reorders the rows of R2 in (C.2) from (z1, z2, z3) to (z2, z3, z1). At each move along

the sequence (z2, z3, z1), additional response types switch to treatment t1 and no response types

switch away from t1. This means that

1[Ti(z2) = t1] ≤ 1[Ti(z3) = t1] ≤ 1[Ti(z1) = t1]

holds for all agents i ∈ I, regardless of response type. Thus UM Sequence (17) holds for t1.

By symmetric logic, equation (C.4) demonstrates that UM Sequence (17) holds for t2 using the

IV sequence (z3, z1, z2) and equation (C.5) shows that UM Sequence holds for t3 using sequence

(z1, z2, z3). We conclude that unordered monotonicity holds.

Response matrices R1 and R2 in (C.1)–(C.2) show that ordered monotonicity does not imply

unordered monotonicity nor vice-versa. Ordered monotoncity holds for R1 but not for R2 while

unordered monotonicity holds forR2 but not forR1. The two monotonicity conditions can intersect,

both ordered and unordered monotonicity hold for the submatrix generated by response-types s1

to s6.
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D Additional Information Regarding the Examples of Section 7

D.1 Verifying Unordered Monotonicity

We seek to show that the response matrix 38 is a case of UM (17) using the verification matrix of

item (iv) of Theorem 1. The matrix is presented below for convenience.

R =

s1 s2 s3 s4 s5 s6 s7


t1 t1 t1 t1 t2 t2 t3
t1 t1 t3 t3 t2 t3 t3
t1 t2 t2 t3 t2 t2 t3
t1 t1 t1 t1 t2 t2 t3

z1

z2

z3

z4

Let Bt = 1[R = t]; t ∈ {t1, t2, t3} denote the binary matrices corresponding to response matrix

(38). Those are displayed below:

Bt1 =

s1 s2 s3 s4 s5 s6 s7


1 1 1 1 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 1 1 0 0 0

z1
z2
z3
z4

Bt2 =

s1 s2 s3 s4 s5 s6 s7


0 0 0 0 1 1 0
0 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 0 0 1 1 0

z1
z2
z3
z4

Bt3 =

s1 s2 s3 s4 s5 s6 s7


0 0 0 0 0 0 1
0 0 1 1 0 1 1
0 0 0 1 0 0 1
0 0 0 0 0 0 1

z1
z2
z3
z4

Unordered monotonicity holds if and only if the binary matrices Bt1 ,Bt2 ,Bt3 are lonesum. For

item (iv) of Theorem 1 to hold, it suffices to show that ‖ΨU (t)‖ = 0 for all t ∈ {t1, t2, t3} where

ΨU (t) is given by ΨU (t) ≡
(
(1 − Bt)

ᵀBt

)
�
(
(1 − Bt)

ᵀBt

)ᵀ
. It is useful to express ΨU (t1) as

ΨU (t) = Ψ̃U (t) � Ψ̃U (t)ᵀ where Ψ̃U (t) =
(
(1−Bt)

ᵀBt

)
.

The matrices Ψ̃U (t1), Ψ̃U (t2), Ψ̃U (t3) are computed below:

Note that ‖ΨU (t)‖ = 0 if Ψ̃U (t) is a triangular matrix with a zero diagonal. Thus it suffices to

evaluate matrix Ψ̃U (t) for t ∈ {t1, t2, t3}.

Ψ̃U (t1) =




0 0 0 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 0 0 0 1 1 1

ᵀ

︸ ︷︷ ︸
(1−Bt1

)ᵀ




1 1 1 1 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 1 1 0 0 0

︸ ︷︷ ︸
Bt1

=





0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 1 0 0 0 0 0
2 1 0 0 0 0 0
4 3 2 2 0 0 0
4 3 2 2 0 0 0
4 3 2 2 0 0 0
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Ψ̃U (t2) =




1 1 1 1 0 0 1
1 1 1 1 0 1 1
1 0 0 1 0 0 1
1 1 1 1 0 0 1

ᵀ

︸ ︷︷ ︸
(1−Bt2

)ᵀ




0 0 0 0 1 1 0
0 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 0 0 1 1 0

︸ ︷︷ ︸
Bt2

=





0 1 1 0 4 3 0
0 0 0 0 3 2 0
0 0 0 0 3 2 0
0 1 1 0 4 3 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 1 0 4 3 0

Ψ̃U (t3) =




1 1 1 1 1 1 0
1 1 0 0 1 0 0
1 1 1 0 1 1 0
1 1 1 1 1 1 0

ᵀ

︸ ︷︷ ︸
(1−Bt3

)ᵀ




0 0 0 0 0 0 1
0 0 1 1 0 1 1
0 0 0 1 0 0 1
0 0 0 0 0 0 1

︸ ︷︷ ︸
Bt3

=





0 0 1 2 0 1 4
0 0 1 2 0 1 4
0 0 0 1 0 0 3
0 0 0 0 0 0 2
0 0 1 2 0 1 4
0 0 0 1 0 0 3
0 0 0 0 0 0 0

It is easy to see that in Ψ̃U (t1)�Ψ̃U (t1)ᵀ is equal to a matrix of zeros. Indeed, the matrix Ψ̃U (t1) is

triangular with a zero diagonal. Thus, when we perform the element wise multiplication of Ψ̃U (t1)

and its transpose, at least one of the elements of the multiplication will be zero. The same occurs

for matrices Ψ̃U (t2) and Ψ̃U (t3).

D.2 A Case of Choice Incentives for Ordered Monotonicity

The can summarize the above incentive structure the binary incentive matrix given below:

L =

t1 t2 t3


1 0 0
0 0 0
1 1 1
0 0 1

z1

z2

z3

z4

(D.1)

We use this first example to describe the machinery that translates choice incentives into mono-

tonicity conditions and identification results. We adopt a more parsimonious approach in the

subsequent examples.

Choice rule (35) converts the Incentive Matrix (D.1) into choice restrictions that determine the

model response matrix R. These choice restrictions are displayed in Table 3. Choice restrictions in

Table 3 are in turn used to eliminate the response-types that are not economically justifiable.

Each counterfactual choice T (z) of the response vector S = [T (z1), T (z2), T (z3), T (z4)]′ takes up

to three values in {t1, t2, t3}. Thus, there are 34 = 81 potential response types. The combination

of all choice restrictions of Table 3 eliminate a total of 74 out of the 81 potential response-types.

Response matrix R in (D.2) displays the resulting seven response-types that survive the elimination

process.
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Table 3: Choice Restrictions generated by Incentive Matrix (D.1)

1 Ti(z1) = t1 ⇒ ∅
2 Ti(z2) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z3) /∈ {t2, t3} and Ti(z4) 6= t2
3 Ti(z3) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3} and Ti(z4) 6= t2
4 Ti(z4) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3} and Ti(z3) /∈ {t2, t3}

5 Ti(z1) = t2 ⇒ Ti(z2) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3} and Ti(z4) 6= t1
6 Ti(z2) = t2 ⇒ Ti(z1) 6= t3 and Ti(z3) /∈ {t1, t3} and Ti(z4) 6= t1
7 Ti(z3) = t2 ⇒ Ti(z1) 6= t3 and Ti(z2) /∈ {t1, t3} and Ti(z4) 6= t1
8 Ti(z4) = t2 ⇒ Ti(z1) 6= t3 and Ti(z2) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3}

9 Ti(z1) = t3 ⇒ Ti(z2) /∈ {t1, t2} and Ti(z3) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
10 Ti(z2) = t3 ⇒ Ti(z1) 6= t2 and Ti(z3) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
11 Ti(z3) = t3 ⇒ Ti(z1) 6= t2 and Ti(z2) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
12 Ti(z4) = t3 ⇒ ∅

This table presents all the choice restrictions generated by applying the choice rule (35) to each of the combination of choices
(t, t′) ∈ {t1, t2, t3} and instrumental values (z, z′) ∈ {z1, z2, z3, z4} of the incentive matrix (D.1).

R =

s1 s2 s3 s4 s5 s6 s7 s8


t1 t1 t1 t1 t1 t2 t2 t3
t1 t1 t2 t2 t3 t2 t2 t3
t1 t1 t2 t2 t3 t2 t2 t3
t1 t3 t2 t3 t3 t2 t1 t3

z1

z2

z3

z4

(D.2)

We use equations (12)–(13) to evaluate the causal parameters identified by response matrix (39).

The response-matrix (39) enables the identification of eight response-type probabilities:

Point Identified P (S = s1), P (S = s2), P (S = s5), P (S = s8).

Partially Identified P (S ∈ {s3, s4}), P (S ∈ {s3, s6}), P (S ∈ {s4, s7}), P (S ∈ {s6, s7}).

as well as the following counterfactual outcomes.

Always-takers E(Y (t1)|S = s1) - E(Y (t3)|S = s8)

Switchers E(Y (t1)|S = s2) - E(Y (t3)|S = s5)

Partially Identified E(Y (t1)|S ∈ {s3, s4, s5}) E(Y (t2)|S ∈ {s4, s7}) E(Y (t3)|S ∈ {s2, s4, s7})
E(Y (t2)|S ∈ {s6, s7})
E(Y (t2)|S ∈ {s3, s6})
E(Y (t2)|S ∈ {s3, s4})

The identification results above state that only four out of nine response-type probabilities are point-

identified. Most of the counterfactual outcomes are partially identified. Only four counterfactual

outcome means are point-identified, none of these for choice t2. In contrast, the unordered response

matrix (38) in Lemma ?? secures the point-identification of all response-type probabilities and most

of the counterfactual outcome means.
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D.3 MM under the Double Randomization Design

We consider the emergence of MM in a “Double Randomization” design in which two vouchers are

randomly assigned to the same sample of prospective students. The first voucher offers a tuition

discount that applies to a natural science major. The second one applies to social science majors.

We can divide the students into four groups:

1. Group z1 does not receive any voucher.

2. Group z2 receives only the social sciences voucher (t3).

3. Group z3 receives only the natural sciences voucher (t2).

4. Group z4 receives both the social sciences and natural sciences voucher.

Assuming the social sciences and natural sciences vouchers are of the same amount and that students

cannot double major (so that they can only apply one voucher at a time), the IV design described

above can be summarized by the incentive matrix in (D.3).

L =

t1 t2 t3


0 0 0
0 0 1
0 1 0
0 1 1

z1

z2

z3

z4

(D.3)

Table 4: Choice Restrictions generated by Incentive Matrix (40)

1 Ti(z1) = t1 ⇒ Ti(z2) 6= t2 and Ti(z3) 6= t3
2 Ti(z2) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z3) 6= t3 and Ti(z4) 6= t3
3 Ti(z3) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) 6= t2 and Ti(z4) 6= t2
4 Ti(z4) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3} and Ti(z3) /∈ {t2, t3}

5 Ti(z1) = t2 ⇒ Ti(z2) 6= t1 and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
6 Ti(z2) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
7 Ti(z3) = t2 ⇒ Ti(z4) 6= t1
8 Ti(z4) = t2 ⇒ Ti(z1) 6= t3 and Ti(z3) /∈ {t1, t3}

9 Ti(z1) = t3 ⇒ Ti(z2) /∈ {t1, t2} and Ti(z3) 6= t1 and Ti(z4) /∈ {t1, t2}
10 Ti(z2) = t3 ⇒ Ti(z4) 6= t1
11 Ti(z3) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z2) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
12 Ti(z4) = t3 ⇒ Ti(z1) 6= t2 and Ti(z2) /∈ {t1, t2}

This table presents all the choice restrictions generated by applying the choice rule (35) to each of the combination of choices
(t, t′) ∈ {t1, t2, t3} and instrumental values (z, z′) ∈ {z1, z2, z3, z4} of the incentive matrix (40).

Applying the Choice Rule (35) from above generates the choice restrictions of Table 4. These in
turn generate the response matrix R in (D.4).
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R =

s1 s2 s3 s4 s5 s6 s7 s8 s9


t1 t1 t1 t1 t1 t2 t2 t3 t3 z1

t1 t1 t3 t3 t3 t2 t3 t3 t3 z2

t1 t2 t1 t2 t2 t2 t2 t2 t3 z3

t1 t2 t3 t2 t3 t2 t2 t3 t3 z4

(D.4)

Applying equations (12)–(13) to response-matrix (D.4) gives that all response-type probabilities

are identified, P (S = sj); j = 1, ..., 9, as well as the following counterfactual outcomes:

Always-takers E(Y (t0)|S = s1) E(Y (t1)|S = s6) E(Y (t2)|S = s9)

Switchers E(Y (t0)|S = s2) E(Y (t1)|S = s7) E(Y (t2)|S = s8)

E(Y (t0)|S = s3)

Partially Identified E(Y (t0)|S ∈ {s4, s5}) E(Y (t1)|S ∈ {s2, s4}) E(Y (t2)|S ∈ {s3, s5})
E(Y (t1)|S ∈ {s5, s8}) E(Y (t2)|S ∈ {s4, s7})

D.4 MM under the Extensive Margin Compliers Only (EMCO) Design

We revisit the incentive design described in (41), presented again in L (D.5) below

L =

t0 t1 t2


0 0 0
1 0 0
0 1 1
1 1 1

z1

z2

z3

z4

(D.5)

Applying the Choice Rule (35) to the incentive design summarized in (D.5) we generate the

following choice restrictions. These choice restrictions will in turn be used to eliminate response

types, i.e restrict supp(S).

After exhausting the choice restrictions in Table 5 we are left with 7 out of a possible 81 response

types. These response types are consolidated and displayed in the response matrix R (D.6) below.

R =

s1 s2 s3 s4 s5 s6 s7


t1 t1 t1 t2 t2 t3 t3
t1 t1 t1 t1 t2 t1 t3
t1 t2 t3 t2 t2 t3 t3
t1 t1 t1 t2 t2 t3 t3

z1

z2

z3

z4

(D.6)

We can apply the identification results of Heckman and Pinto (2018) to response-matrix (D.6) in

order to identify all the response-type probabilities P (S = sj); j = 1, ..., 7 as well as the following

counterfactual outcomes:
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Table 5: Choice Restrictions generated by Incentive Matrix (D.5)

1 Ti(z1) = t1 ⇒ Ti(z2) /∈ {t2, t3} and Ti(z4) /∈ {t2, t3}
2 Ti(z2) = t1 ⇒ ∅
3 Ti(z3) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3} and Ti(z4) /∈ {t2, t3}
4 Ti(z4) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3}

5 Ti(z1) = t2 ⇒ Ti(z2) 6= t3 and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
6 Ti(z2) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
7 Ti(z3) = t2 ⇒ Ti(z1) 6= t3 and Ti(z2) 6= t3 and Ti(z4) 6= t3
8 Ti(z4) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z2) 6= t3 and Ti(z3) /∈ {t1, t3}

9 Ti(z1) = t3 ⇒ Ti(z2) 6= t2 and Ti(z3) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
10 Ti(z2) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z3) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
11 Ti(z3) = t3 ⇒ Ti(z1) 6= t2 and Ti(z2) 6= t2 and Ti(z4) 6= t2
12 Ti(z4) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z2) 6= t2 and Ti(z3) /∈ {t1, t2}

This table presents all the choice restrictions generated by applying the choice rule (35) to each of the combination of choices
(t, t′) ∈ {t1, t2, t3} and instrumental values (z, z′) ∈ {z1, z2, z3, z4} of the incentive matrix (D.5).

Always-takers E(Y (t1)|S = s1) E(Y (t2)|S = s5) E(Y (t3)|S = s7)

Switchers E(Y (t2)|S = s2) E(Y (t3)|S = s3)

E(Y (t2)|S = s4) E(Y (t3)|S = s6)

Partially Identified E(Y (t1)|S ∈ {s2, s3})
E(Y (t1)|S ∈ {s4, s6})

D.5 MM under Orthogonal Array Design

We additionally examine an IV choice model based on the popular orthogonal array experimental

design. Orthogonal arrays are a widely popular experimental design developed by CD Rao (Rao,

1946a,b, 1947, 1949). Orthogonal arrays are widely used in Agricultural and Industrial sciences to

determine the optimum mix of treatments that maximize production yield. The method is based

on the random assignment of a combinatorial arrangements of treatments for each randomization

arm. We adapt this setup to an instrumental variable setting by exogenously providing incentives

for one or more treatments instead of directly assigning agents to treatment arms. Below, we will

see that this incentive structure allows for a broad range of identification results.

Formally, a binary orthogonal array is a matrix of zeros and ones such that any two-column sub-

matrix displays all possible combinations of zeros and ones. In other words, the tuples

{(0, 0), (0, 1), (1, 0), (1, 1)}

are all rows in any two-column submatrix. An orthogonal array incentive design if its associated

incentive matrix is a binary orthogonal array. The incentive matrix in (46) displays an example of

an orthogonal array incentive design. In context of the college choice example, we can rationalize
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the orthogonal array incentive design (46) with the following research design:

1. Group z1 receives a cash voucher if they choose to major in the natural sciences (t2) or the

social sciences (t3).

2. Group z2 receives no cash voucher.

3. Group z3 receives a cash voucher if they do not go to college (t1) or if they major in the

natural sciences (t2).

4. Group z3 receives a cash voucher if they do not go to college (t1) or if they major in the social

sciences (t3).

Table 6 displays the choice restrictions generated by applying the Choice Rule (35) to the orthogonal

array incentive design (46). After using these choice restrictions to eliminate response types, we

are left with nine total response types summarized in the response matrix (D.7).

Table 6: Choice Restrictions generated by Incentive Matrix (46)

1 Ti(z1) = t1 ⇒ Ti(z2) /∈ {t2, t3} and Ti(z3) /∈ {t2, t3} and Ti(z4) /∈ {t2, t3}
2 Ti(z2) = t1 ⇒ Ti(z3) /∈ {t2, t3} and Ti(z4) /∈ {t2, t3}
3 Ti(z3) = t1 ⇒ Ti(z2) 6= t2 and Ti(z4) 6= t2
4 Ti(z4) = t1 ⇒ Ti(z2) 6= t3 and Ti(z3) 6= t3

5 Ti(z1) = t2 ⇒ Ti(z2) 6= t3 and Ti(z3) 6= t3
6 Ti(z2) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3}
7 Ti(z3) = t2 ⇒ Ti(z1) 6= t1 and Ti(z2) 6= t1
8 Ti(z4) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z2) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3}

9 Ti(z1) = t3 ⇒ Ti(z2) 6= t2 and Ti(z4) 6= t2
10 Ti(z2) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
11 Ti(z3) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z2) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
12 Ti(z4) = t3 ⇒ Ti(z1) 6= t1 and Ti(z2) 6= t1

This table presents all the choice restrictions generated by applying the choice rule (35) to each of the combination of choices
(t, t′) ∈ {t1, t2, t3} and instrumental values (z, z′) ∈ {z1, z2, z3, z4} of the incentive matrix (46).

R =

s1 s2 s3 s4 s5 s6 s7 s8 s9


t1 t2 t2 t2 t2 t3 t3 t3 t3
t1 t1 t2 t2 t2 t1 t3 t3 t3
t1 t1 t2 t2 t2 t1 t1 t2 t3
t1 t1 t1 t2 t3 t1 t3 t3 t3

z1

z2

z3

z4

(D.7)

This response matrix satisfies neither unordered nor ordered monotonicity. When the instrument

switches from z1 to z4, agents in response type s3 move from treatment t2 to treatment t3 while

agents in response type s6 move away from t3 and towards t1. This represents a violation of ordered
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monotonicity and also prevents t3 from being ordered the highest or lowest in any ordering on T
that would satisfy ordered monotonicity.4 Similarly we can see a switch from z3 to z4 induces agents

in response type s3 to move from treatment t2 to treatment t1 while inducing agents in response

type s7 to move away from treatment t1 and towards treatment t3. This again represents a violation

of unordered monotonicity and precents t1 from being ordered either the highest or the lowest in

any ordering T that would satisfy ordered monotonicity. Since all orderings on T = {t1, t2, t3}
must have either t1 or t3 as the largest or smallest element, this means there is no ordering on T
that satisfies ordered monotonicity.

Despite this, we can once again use Theorem 3 to verify that this matrix does indeed satisfy MM.

Thus we can still use 2SLS type estimands to recover interpretable causal parameters as defined

in (26). Moreover, by applying (12)–(13) we can see that all response types probabilities P (S = sj),

j = 1, . . . , 9 are identified. Additionally, using (12)–(13) we obtain that the following counterfactual

outcomes are identified

Always-takers E(Y (t1)|S = s1) E(Y (t2)|S = s4) E(Y (t3)|S = s9)

Switchers E(Y (t1)|S = s3) E(Y (t2)|S = s2) E(Y (t3)|S = s5)

E(Y (t1)|S = s7) E(Y (t2)|S = s8) E(Y (t3)|S = s6)

Partially Identified E(Y (t1)|S ∈ {s2, s6}) E(Y (t2)|S ∈ {s3, s5}) E(Y (t3)|S ∈ {s7, s8})

4If t3 is ranked highest a movement away from t3 represents moving towards a lower treatment while a towards t3
represents moving towards a higher treatment. Vice versa, if t3 is ranked lowest a movement towards t3 represents
moving towards a lower treatment while a movement away from t3 represents moving towards a higher treatment.
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