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I propose a new identification-robust test for the structural parameter in a heteroskedas-
tic linear instrumental variables model. The proposed test statistic is similar in spirit to,
though structurally distinct from, a jackknife version of the K-statistic and the resulting test
has correct asymptotic size so long as an auxiliary parameter can be consistently estimated.
This is possible under approximate sparsity even when the number of instruments is po-
tentially much larger than the sample size. As the number of instruments is allowed, but
not required, to be large, the limiting behavior of the test statistic cannot be examined with
traditional central limit theorems. Instead, I directly derive the asymptotic chi-squared
distribution of the test statistic using novel modifications of Lindeberg’s interpolation tech-
nique. To improve power against certain alternatives, I propose a simple combination with
the sup-score statistic of Belloni et al. (2012) based on a thresholding rule. I point out that
first-stage F-statistics calculated on LASSO selected variables may be misleading indicators
of identification strength and apply the new methods to revisit the effect of social spillovers
in movie consumption. In a simulation study, the newly proposed methods are addition-
ally shown to have favorable size control and power properties compared to existing tests,
particularly when the instruments are highly correlated.
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1. Introduction

Consider a linear instrumental variables (IV) model

𝑦𝑖 = 𝑥′𝑖𝛽 + 𝑧′1𝑖Γ + 𝜖𝑖 , E[𝜖𝑖 |𝑧𝑖] = 0 (1.1)

where 𝑦𝑖 ∈ R is an outcome of interest and 𝑥𝑖 ∈ R𝑑𝑥 is a vector of endogenous variables. The
variable 𝑧𝑖 = (𝑧1𝑖 , 𝑧2𝑖)′ ∈ R𝑑𝑧 represents a vector of instrumental variables, of which a subvector
of fixed dimension, 𝑧′1𝑖 ∈ R𝑑𝑐 , is included in the structural equation (1.1) as exogenous control.
I assume that the researcher has access to 𝑛 independent observations of (𝑦𝑖 , 𝑥′𝑖 , 𝑧

′
𝑖
)′. In this

setting, I propose a new test for a two-sided restriction on the structural parameter; 𝐻0 : 𝛽 = 𝛽0
versus 𝐻1 : 𝛽 ≠ 𝛽0. The proposed test has exact asymptotic size even when instruments are
potentially high-dimensional (𝑑𝑧 ≫ 𝑛) and arbitrarily weak.

When instruments are suspected to be weak, researchers may want to test hypotheses about
structural parameters using testing procedures that are robust to identification strength. These
identification-robust testing procedures all require some conditions on the rate of growth of the
number of instruments, 𝑑𝑧 , in relation to the sample size, 𝑛. The testing procedure considered
in this paper seeks to fill two perceived gaps in the literature. The first is for the cases where
the number of instruments is high-dimensional (𝑑𝑧 ≫ 𝑛), which can occur if the researcher
chooses to enhance an initial set of instruments via polynomial or other transformations in
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order to flexibly model the first stage relationship between the endogenous variables and the
instruments.

In these settings, Belloni et al. (2012) show that, when identification is strong, LASSO, post-
LASSO, or other machine learning based estimators can be used in the first stage without
affecting the asymptotic normality of resulting second stage estimators. This is possible because
the conditional moment restriction in (1.1) implies a certain orthogonality that, under strong
identification, allows the researcher to ignore estimation error in the first stage. However, when
identification is sufficiently weak, the signal from the instruments can be on a similar or lesser
order to the first-stage estimation error and the limiting behavior of the first-stage estimate must
be explicitly accounted for (Mikusheva, 2023). This is problematic in high-dimensional settings
as the exact limiting behavior of machine learning based estimators is typically not known.
As such, there has been limited work on identification robust testing in the high dimensional
setting and existing identification robust tests that allow 𝑑𝑧 ≫ 𝑛 (Belloni et al., 2012; Gautier
and Rose, 2021; Mikusheva, 2023) either fail to incorporate first-stage information or rely on
sample splitting, both of which may reduce power in overidentified models.

An second gap in the literature is for cases with a moderate number of instruments. The initial
identification robust tests of Anderson and Rubin (1949), Staiger and Stock (1997), Moreira
(2001, 2003), and Kleibergen (2002, 2005) are shown by Andrews and Stock (2007) to control
size under heteroskedasticity when the number of instruments cubed is negligible compared
to sample size, 𝑑3

𝑧/𝑛 → 0. Meanwhile, recent tests proposed in Mikusheva and Sun (2021),
Crudu et al. (2021), Matsushita and Otsu (2022), and Lim et al. (2022) allow the number of
instruments to be proportional to sample size, 𝑑𝑧/𝑛 → 𝜚 ∈ [0, 1), but require that the number
of instruments be large, 𝑑𝑧 → ∞. In practice, these conditions can be difficult to interpret
and in settings with a moderate number of instruments it may be unclear which test, if any, is
applicable. For example, consider a setting similar to that of Derenoncourt (2022) where the
researcher has a dozen or so instruments and a sample size of a few hundred. The number of
instruments cubed is larger than sample size, but asymptotic approximations based on 𝑑𝑧 → ∞
seem unlikely to resemble the finite sample distribution.

In contrast, the test considered in this paper can be applied in any of the settings described above.
To test the null hypothesis I borrow an idea from Kleibergen (2002, 2005) and use first stage
estimates that are uncorrelated with the structural error under the null hypothesis. These first-
stage estimates are constructed using a jackknife ridge procedure and the structural errors are
partialled out via an auxiliary conditional slope parameter. So long as this auxiliary parameter
can be consistently estimated, the proposed test statistic has a limiting chi-squared distribution
with degrees of freedom equal to the number of structural parameters. The conditional slope
parameter is simple to estimate with out-of-the-box methods, and consistency is achievable
under approximate sparsity even when the number of instruments is much larger than the
sample size. This approximate sparsity assumption is trivially satisfied when the first- and
second-stage errors are homoskedastic.

Kleibergen’s original analysis relies on applying central limit theorems to show that variables
in the model can be treated as if they were normally distributed. The limiting distribution of
Kleibergen’s K-statistic is then derived by conditioning on the first stage estimates, exploiting
the fact that uncorrelated jointly Gaussian random variables are independent. I would like to
take a similar approach however, when the number of instruments is large, standard central
limit theorems cannot be applied. Instead, I develop new interpolation arguments to directly
show that, in local neighborhoods of the null characterized by a local power index, the distribu-
tion of my proposed test statistic can be uniformly approximated by that of an analog statistic
which replaces each observation in the expression of the test statistic with a Gaussian ver-
sion. The interpolation arguments are based on Lindeberg’s interpolation method (Lindeberg,
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1922), but are modified to accommodate a “divide-by-zero” problem that arises under weak
identification. These modifications are adaptable to other settings and may be of independent
interest to a growing literature on direct Gaussian approximation techniques (Chatterjee, 2006;
Chernozhukov et al., 2017; Celentano et al., 2020). Interestingly, the interpolation approach
applied in this paper requires minimal conditions on the first-stage estimates. In particular,
these estimates are not required to be consistent so the researcher has some flexibility in choos-
ing how she constructs the first stage estimates. However, analysis of local power suggests a
bias-variance trade-off which guides the recommendation of using ridge regression in the first
stage.

When there is a single endogenous variable, a leading case in empirical applications, analysis
of limiting behavior is considerably simplified by taking advantage of the particular form
of the test statistic. In this case I show that, under an additional regularity condition, an
infeasible version of the test that could be constructed if the auxiliary parameter was known
to the researcher is consistent whenever the local power index diverges. When the local power
index is bounded, I examine the limiting power of the test by examining the behavior of
the analog statistic. Under the alternative hypothesis the analog statistic has a nearly non-
central 𝜒2 distribution conditional on the first-stage estimates. The noncentrality parameter is
proportional to the correlation between the true first-stage model and the first-stage estimates,
but inversely proportional to the second moment of the first-stage estimates. Unfortunately,
partialling out the structural parameter may introduce bias into the first-stage estimates under
the alternate hypothesis. Against certain alternatives this bias can be particularly pronounced
and erase the first-stage signal from the instruments. This issue is pointed out by Moreira (2001),
Andrews et al. (2006), and Andrews (2016) in the context of Kleibergen’s original K-statistic.

To address this, I propose a simple combination of the jackknife K-statistic with the sup-
score statistic of Belloni et al. (2012) based on a thresholding rule. As with the Anderson-
Rubin statistic, while the sup-score statistic does not incorporate first-stage information, it
does not suffer from a loss of power against any particular alternative (Andrews et al., 2006;
Andrews, 2016). The combination test decides whether the jackknife K-test or the sup-score
test should be run by comparing the value of a conditioning statistic to a predetermined
cutoff value. In the approximating Gaussian regime, this conditioning statistic is marginally
independent of both the jackknife K-statistic and the sup-score statistic. This allows me to
show that the combination test controls size under the null without having to require that
the conditioning statistic converges in distribution to a stable limit. In a simulation study, I
find that taking this cutoff value to be the 75th quantile of the distribution of the conditioning
statistic delivers a reasonable balance of power against local and distant alternatives. Using
results in Chernozhukov et al. (2017) and Belloni et al. (2018) this quantile can be simulated via
a multiplier bootstrap procedure.

When there are multiple endogenous variables, I cannot take advantage of the simplified
form of the test statistic. Instead, I use a more involved interpolation argument that relies on
strengthened moment conditions. This modified argument has a clean geometric interpretation
explained in Section 5. Under these strengthened conditions I derive the limiting chi-squared
distribution of the jackknife K-statistic in the larger context and propose a generalization of the
thresholding test to improve power properties.

I apply the proposed testing procedures to the data of Gilchrist and Sands (2016) to gener-
ate weak instrument-robust confidence intervals for the effect of social spillovers in movie
consumption. Following Belloni et al. (2012), the authors’ initial analysis uses conventional
heteroskedasticity-robust standard errors after estimating the first-stage via post-LASSO. The
validity of this analysis depends on the structural parameter being strongly identified. Using
a simple numerical demonstration, I argue that the first-stage F-statistics reported by the au-
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thors may not be reliable indicators of identification strength when LASSO is used to select
instruments. The identification-robust confidence intervals generated by inverting the jack-
knife K-statistic are larger than those implied by the initial analysis but do not rule out the
authors’ point estimates. Moreover, for the author’s main specification the confidence intervals
obtained using my proposed testing procedures are considerably smaller than those obtained
through inverting the sup-score test.

Finally, I examine the applicability of the theoretical results in this paper through a simulation
study. While existing tests seem to face size distortions in alternate regimes, the test based on
the jackknife K-statistic is has nearly exact size in a variety of settings. While the jackknife K-
statistic may have diminished power against certain alternatives, this deficiency is ameliorated
by combining the jackknife K-statistic with the sup-score statistic via the thresholding test.
Compared to the many-instrument tests of Mikusheva and Sun (2021) and Matsushita and
Otsu (2022) and the sup-score test of Belloni et al. (2012), the tests proposed in this paper
also appear to have favorable power properties, particularly when the instruments are highly
correlated.

The outline of this paper is as follows. Section 2 formally defines the model considered and
introduces the jackknife K-statistic. Section 3 provides an overview of the Gaussian approx-
imation approach with a single endogenous variable and characterizes the limiting behavior
of the test statistic in this setting. Section 4 uses this characterization to examine the power
properties of the test and introduces the combination test to address power deficiencies against
certain alternatives. Section 5 extends the analyses of Sections 3 and 4 to the case of multiple
endogenous variables and outlines the Gaussian approximation argument in this setting. Sec-
tion 6 contains the empirical application while Section 7 provides evidence from simulation
study. Proofs of the main results are deferred to Appendices A–D.

Notation. For any 𝑛 ∈ N let [𝑛] denote the set {1, . . . , 𝑛}. I work with a sequence of probability
measures 𝑃𝑛 on the data {(𝑦𝑖 , 𝑥𝑖 , 𝑧𝑖) : 𝑖 ∈ [𝑛]}. To accommodate independent but not identically
distributed observations, let E𝑛[ 𝑓𝑖] = 𝑛−1 ∑𝑛

𝑖=1 𝑓𝑖 denote the empirical expectation and Ē[ 𝑓 ] =
E𝑛[E[ 𝑓𝑖]] denote the average expectation operator.

1.1. Prior Literature and Empirical Practice

When the first-stage F-statistic is small, standard asymptotic approximations may fail to ac-
curately describe the finite-sample behavior of IV estimates. This was first pointed out by
Nelson and Startz (1990) and Bound et al. (1995) who consider the finite-sample behavior of
two-stage least squares (2SLS) in alternate settings where the IV is only weakly correlated with
the endogenous variable. In a seminal paper, Staiger and Stock (1997) capture this phenomena
in an asymptotic framework by considering a sequence of first-stage models that shrink to zero
with the sample size. Under this framework, standard IV estimates are no longer consistent
and inference procedures based on these statistics fail to control size. Because of these results,
there has been a large interest in developing tests for the structural parameter that control size
regardless of identification strength.

To test hypotheses about the structural parameter when instruments are suspected to be weak,
Staiger and Stock (1997) propose the use of the Anderson-Rubin statistic, which does not require
any assumptions about identification strength to control size. Noting that the Anderson-Rubin
test is inefficient in overidentified models, Moreira (2001) and Kleibergen (2002, 2005) propose
the use of the (non-jackknife) K-statistic, which has a limiting null distribution that does not
depend on the number of instruments. Compared to the Anderson-Rubin statistic, these tests
have improved power in local neighborhoods of the null but can perform poorly against certain
alternatives. To address this, Moreira (2003) and Kleibergen (2005) suggest combinations of the
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K-statistic and Anderson-Rubin statistic based on a conditioning statistic that is independent
of them both under the null. Andrews et al. (2006) characterize the power envelope in a
homoskedastic weakly identified IV model and show that the test based on the conditional
likelihood ratio statistic of Moreira (2003) has nearly optimal power in this setting. When errors
are heteroskedastic, Andrews (2016) proposes alternate combinations of the K-statistic and the
Anderson-Rubin statistic based on a minimax regret criterion.

These initial tests are developed under asymptotic frameworks that treat the number of instru-
ments as fixed or growing slowly relative to the sample size (Han and Phillips, 2006; Newey and
Windmeĳer, 2009; Andrews and Stock, 2007). However, with the emergence of large datasets
and more sophisticated research designs, researchers may encounter scenarios where the num-
ber of instruments may not be negligible as a ratio of sample size. A prominent example of this
is in judge-design settings where the number of instruments is equal to the number of judges
to whom an individual can be assigned to (Maestas et al., 2013; Sampat and Williams, 2019;
Dobbie et al., 2018). Since each judge can handle only a finite number of cases the number
of instruments is proportional to the sample size. Moreover, to flexibly model the first-stage,
researchers may generate a large number of instruments by enriching a “small” initial set of
instruments via polynomial (or other) transformations. Angrist and Krueger (1991) famously
interact quarter-of-birth, state-of-birth, and year-of-birth dummies to construct a total of 180
instruments. Belloni et al. (2012) show that, when identification is strong, researchers can use
a potentially high-dimensional, 𝑑𝑧 ≫ 𝑛, set of first-stage instrument basis terms in conjunc-
tion with a regularized LASSO or post-LASSO estimate of the first-stage. This strategy has
been successfully employed in practice by Paravisini et al. (2014), Gilchrist and Sands (2016),
Derenoncourt (2022), and Jou and Morgan (2023).

To address these settings, there has been recent interest in developing weak instrument-robust
tests under asymptotic frameworks that do not require that the ratio of instruments to sample
size tends to zero. Crudu et al. (2021), Mikusheva and Sun (2021), and Matsushita and Otsu
(2022) take advantage of a new central limit theorem for quadratic forms developed in Chao
et al. (2012) and propose weak identification-robust tests that are valid even when the number of
instruments is proportional to sample size; 𝑑𝑧/𝑛 → 𝜚 ∈ [0, 1). Following the many instruments
asymptotic framework first introduced by Bekker (1994), the analyses in these papers rely on
the number of instruments diverging. When the number of instruments is fixed or diverges
slowly to infinity, these asymptotic approximations may provide poor characterizations of the
proposed test statistics’ finite sample distribution.

Limited identification-robust testing procedures exist for the high-dimensional case, 𝑑𝑧 ≫ 𝑛.
To my knowledge, the only two options available are the sup-score test of Belloni et al. (2012) and
the split-sample optimal instrument AR test developed in Mikusheva (2023).1 The sup-score
test makes use of Gaussian approximations for maxima of high-dimensional vectors developed
in Chernozhukov et al. (2013) but suffers from the same issue as the Anderson-Rubin test in
that its critical value is increasing with the number of instruments. The spilt sample optimal
instrument AR test splits the dataset into two parts and uses one split to estimate an optimal
instrument and the other to test the null hypothesis. This may lead to a loss of power as only
half of the sample is being effectively used to test the null hypothesis.

Weak instrument-robust tests may be particularly interesting in high-dimensional and het-
eroskedastic settings due to a lack of clarity on how to pretest for identification strength. When
the number of instruments is modeled as fixed and errors are homoskedastic, Stock and Yogo
(2005) propose pretesting for the strength of identification via the first-stage F-statistic. Based
on their results, common practice in empirical settings has been to use standard Wald tests
whenever the first-stage F-statistic exceeds 10. Lee et al. (2022) point out this recommendation

1The sup-score test is also considered by Gautier and Rose (2021, 2022).
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is not applicable in heteroskedastic models and update the recommended F-statistic cutoff.
To pretest for weak identification in the many-instruments asymptotic framework, 𝑑𝑧 → ∞,
Mikusheva and Sun (2021) propose a new �̃�-statistic and suggest using identification-robust
procedures when �̃� < 4.14. When the number of instruments is larger than sample size there
is no accepted full-sample pretest for identification strength.2 In particular, I demonstrate in
Section 6 that first-stage F-statistics resulting from first-stage post-LASSO procedures can be
misleading even if they are larger the standard cutoff of 10.

Asymptotic Regime Main Tests

Low-Dimensional:
𝑑3
𝑧/𝑛 → 0

Anderson-Rubin
K/Lagrange Multiplier

Conditional Linear Combination

Many-Instruments:
𝑑𝑧/𝑛 → 𝜙 ∈ [0, 1)

𝑑𝑧 → ∞

Jackknife-AR
Jackknife-LM

Conditional Linear Combination

High-Dimensional:
log𝑀(𝑑𝑧𝑛)/𝑛 → 0

Sup-Score Test
Split-Sample AR

Table 1.1: Existing Identification and Heteroskedasticity Robust
Tests for Linear IV models.

I contribute to these literatures by proposing a new identification-robust test for the structural
parameter that can work in potentially high-dimensional settings (𝑑𝑧 ≫ 𝑛) without requiring
that the number of instruments diverges. The testing procedures in this paper may be par-
ticularly applicable in intermediate cases where the number of instruments cubed may not be
negligible relative to sample size but it is unclear whether asymptotic approximations based on
𝑑𝑧 → ∞ will accurately describe finite sample behavior. Examples of such intermediate cases
include the post-LASSO analyses of Derenoncourt (2022), where 𝑑𝑧 = 9 and 𝑛 = 239, Paravisini
et al. (2014), 𝑑𝑧 = 10 and 𝑛 = 5,995, and Gilchrist and Sands (2016), 𝑑𝑧 = 52 and 𝑛 = 1,671.

In addition to the literature on weak-instrument robust testing, I contribute to a growing
literature on direct Gaussian approximation and interpolation techniques (Chatterjee, 2006,
2010; Pouzo, 2015; Chernozhukov et al., 2013, 2017; Celentano et al., 2020). These techniques
have proven useful to approximate the behaviors of statistics in a variety of nonstandard
settings, such as high-dimensional random vectors or spectral analysis of random matrices.
Prior analysis of statistics via interpolation techniques has relied on the boundedness of the
derivatives of these statistics with respect to individual observations. This condition does not
hold in my setting as the denominator of my test-statistic is not bounded away from zero under
weak identification and, as such, derivatives of the jackknife K-statistic with respect to terms
in the denominator may be unbounded. This poses a number of technical challenges for my
interpolation argument that must be overcome in order to characterize the limiting behavior of
the jackknife K-statistic, particularly when 𝑑𝑥 > 1. I contribute to this literature by proposing
modifications of the original Lindeberg (1922) interpolation technique that can accommodate
statistics with unbounded derivatives.

2Mikusheva (2023) suggests a split-sample pretest for use with the split-sample optimal-instrument AR test.
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2. Model and Setup

Though the analysis below allows for exogenous regressors, to simplify the exposition I follow
Mikusheva and Sun (2021) and assume that they have already been partialed out of both the
outcome, 𝑦𝑖 , and the endogenous regressors, 𝑥𝑖 . As the controls are assumed to be of fixed
dimension, this is without loss of generality.1 Along with the structural equation in (1.1), the
IV model can then be written with the first stage as a system of simultaneous equations:

𝑦𝑖 = 𝑥′𝑖𝛽 + 𝜀𝑖

𝑥𝑖 = Π𝑖 + 𝑣𝑖
(2.1)

The researcher observes the outcome 𝑦𝑖 ∈ R, the endogenous variable 𝑥𝑖 ∈ R𝑑𝑥 , and the
instruments 𝑧𝑖 ∈ R𝑑𝑧 but neither the structural error 𝜀𝑖 ∈ R nor the first-stage errors 𝑣𝑖 ∈
R𝑑𝑥 . The structural error is assumed to be conditional-mean independent of the instruments,
E[𝜀𝑖 |𝑧𝑖] = 0. I denote E[𝑥𝑖 |𝑧𝑖] as Π𝑖 B E[𝑥𝑖 |𝑧𝑖] and make no assumptions about the functional
form of the conditional expectation so the instruments are allowed to affect the endogenous
variable in a nonlinear fashion.

The random variables {(𝑧𝑖 , 𝜀𝑖 , 𝑣𝑖)}𝑛𝑖=1 are assumed to be independent across observations. Ob-
servations need not be identically distributed but the errors are assumed to have a common
covariance structure conditional on the instruments 𝑧𝑖 :

Var((𝜀𝑖 , 𝑣𝑖)′ |𝑧𝑖) B Ω(𝑧𝑖) =
(
𝜎2
𝜖𝜖(𝑧𝑖) Σ𝑣𝜖(𝑧𝑖)

Σ𝜖𝑣(𝑧𝑖) Σ𝑣𝑣(𝑧𝑖)

)
∈ R(1+𝑑𝑥)×(1+𝑑𝑥)

As Ω(𝑧𝑖) is otherwise left unrestricted, the errors are allowed to be heteroskedastic. All results
in this paper hold conditionally on a realization of the instruments z := (𝑧′1 , . . . , 𝑧′𝑛) ∈ R𝑛 × 𝑑𝑧
so from this point forth they are treated as fixed and all expectations can be understood as
conditional on the instruments.

Under this setup, the researcher wishes to test a two-sided restriction on the structural param-
eter:

𝐻0 : 𝛽 = 𝛽0 vs. 𝐻1 : 𝛽 ≠ 𝛽0

I am interested in constructing powerful tests for this null-alternate pair that are asymptotically
valid under arbitrarily weak identification and with minimal restrictions on the number of
instruments 𝑑𝑧 . To this end, define the null errors 𝜀𝑖(𝛽0) B 𝑦𝑖 − 𝑥′

𝑖
𝛽0. Using these, I con-

struct a variable, 𝑟𝑖 , that is a “partialed-out” version of the endogenous variable satisfying
Cov(𝑟𝑖 , 𝜖𝑖(𝛽0)) = 0:

𝑟𝑖 B 𝑥𝑖 − 𝜌(𝑧𝑖)𝜖𝑖(𝛽0), 𝜌(𝑧𝑖) B
Cov(𝜖𝑖(𝛽0), 𝑥𝑖)

Var(𝜖𝑖(𝛽0))
∈ R𝑑𝑥

=
Σ𝑣𝜖(𝑧𝑖) + Σ𝑣𝑣(𝑧𝑖)(𝛽 − 𝛽0)
(1, 𝛽 − 𝛽0)′Ω(𝑧𝑖)′(1, 𝛽 − 𝛽0)

.

Each element of the nuisance parameter 𝜌(𝑧𝑖), 𝜌ℓ (𝑧𝑖) for ℓ = 1, . . . , 𝑑𝑥 , can be interpreted as the
(conditional) slope coefficient from a simple linear regression of 𝑥ℓ 𝑖 on 𝜖𝑖(𝛽0). Thus, if 𝜌ℓ (·) falls
in some function class Φ it can be estimated directly under 𝐻0 by solving empirical analogs of:2

𝜌ℓ (𝑧𝑖) = arg min
𝜑∈Φ
Ē[(𝑥ℓ 𝑖 − 𝜖𝑖(𝛽0)𝜑(𝑧𝑖))2].

1For discussion refer to Appendix E.
2Under 𝐻1, 𝜌ℓ (𝑧𝑖) can be estimated directly by solving empirical analogs of 𝜌ℓ (𝑧𝑖) = arg min𝜙∈Φ E[(𝑥ℓ 𝑖 −

𝜂𝑖(𝛽0)𝜙(𝑧𝑖))2] where 𝜂𝑖(𝛽0) = 𝜖𝑖(𝛽0) − E[𝜖𝑖(𝛽0)|𝑧𝑖]. This requires an initial estimate of E[𝜖𝑖(𝛽0)|𝑧𝑖], however.
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I will largely work under the assumption that 𝜌(𝑧𝑖) has an approximately sparse representation
in some (growing) basis 𝑏(𝑧𝑖) B (𝑏1(𝑧𝑖), . . . , 𝑏𝑑𝑏 (𝑧𝑖))′ ∈ R𝑑𝑏 , that is 𝜌ℓ (𝑧𝑖) = 𝑏(𝑧𝑖)′𝜙ℓ + 𝜉ℓ 𝑖
where 𝜉ℓ 𝑖 represents an approximation error that tends to zero with the sample size and 𝜙ℓ
is sparse in the sense that many of its coefficients are zero. This allows for nesting of the
low-dimensional case, where the number of instruments is fixed, and the high dimensional
case, where the number of instruments is potentially much larger than the sample size, under
a unified estimation procedure. Under homoskedasticity, 𝜌ℓ (𝑧𝑖) is a constant function and
thus has a spare representation in any basis that contains a constant term. In general, the
aproximate sparsity assumption can either be interpreted as an assumption that there are only
a few instruments that are important for explaining variation in the covariance matrix Ω(𝑧𝑖) or
as an assumption that the function 𝜌(𝑧𝑖) can be accurately approximated using only a smaller
set of basis terms in 𝑏(𝑧𝑖).

As in Chernozhukov et al. (2022), the parameter 𝜙ℓ can be estimated via LASSO:

�̂�ℓ = arg min
𝜙∈R𝑑𝑏

E𝑛[(𝑥ℓ 𝑖 − 𝜖𝑖(𝛽0)𝑏(𝑧𝑖)′𝜙)2] + 𝜆∥𝜙∥1 , (2.2)

or via post-LASSO, refitting an unpenalized version of (2.2) using only the basis terms associated
with nonzero coeffecients in the inital LASSO regression. The estimating procedure in (2.2) is
a simple ℓ1-penalized regression of 𝑥ℓ 𝑖 against 𝜖𝑖(𝛽0)𝑏(𝑧𝑖). It can be easily implemented using
out-of-the-box software available on most platforms. Under standard conditions, this leads
to a consistent estimate of 𝜌ℓ (𝑧𝑖) as long as the sparsity condition 𝑠2 log𝑀(𝑑𝑏𝑛)/𝑛 → 0 where
𝑠 is the number of nonzero elements of 𝜙ℓ and 𝑀 is a positive constant that depends on the
moment bounds imposed. The estimation procedure is discussed in more detail in Section 3.2.
With �̂�(𝑧𝑖) B 𝑏(𝑧𝑖)′�̂�ℓ , I construct the estimated version of 𝑟ℓ 𝑖 , 𝑟ℓ 𝑖 B 𝑥𝑖 − �̂�(𝑧𝑖)𝜖𝑖(𝛽0) for each
ℓ ∈ [𝑑𝑥].

2.1. Test Statistic

The test statistic is based on an arbitrary jackknife-linear estimate of the first stage,

Π̂ℓ 𝑖 =
∑
𝑗≠𝑖

ℎ𝑖 𝑗𝑟ℓ 𝑗 , ℓ ∈ [𝑑𝑥]

for some “hat” matrix 𝐻 = [ℎ𝑖 𝑗] ∈ R𝑛×𝑛 . The phrase “hat matrix” is borrowed from ordinary
least squares (OLS) where the projection matrix, z(z′z)−1z′, is sometimes referred to as the hat
matrix in the sense that �̂� = z(z′z)−1z′𝑥. In practice, the hat matrix, 𝐻, can be any matrix that
depends only on z. It is important to note that while Π̂ℓ 𝑖 does not depend on the observation
𝑟ℓ 𝑖 , it may depend on 𝑧𝑖 through the hat matrix𝐻. This gives the test power against alternatives
where E[𝜖𝑖(𝛽0)𝑧𝑖] ≠ 0. For technical reasons, I will assume that ℎ𝑖𝑖 = 0 for each 𝑖 ∈ [𝑛] so that
Π̂ℓ 𝑖 can be written as Π̂ℓ 𝑖 =

∑𝑛
𝑗=1 ℎ𝑖 𝑗𝑟ℓ 𝑗 .

Formally, the only structure I require on the hat matrix 𝐻 is a balanced-design condition
described in Section 3. However, for reasons explained in Section 4 it may be optimal to
introduce some regularization in estimating the first-stage models Π̂ℓ 𝑖 so I suggest using the
deleted diagonal ridge-regression hat matrix 𝐻(𝜆★):

[𝐻(𝜆★)]𝑖 𝑗 =
{
[z(z′z + 𝜆★𝐼𝑑𝑧 )−1z′]𝑖 𝑗 if 𝑖 ≠ 𝑗

0 otherwise
(2.3)

where, following recommendations in Harrell (2015) and van Wieringen (2023), the penalty
parameter 𝜆★ is set so that the effective degrees of freedom of the resulting hat matrix is no
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more than a fraction of the sample size:

𝜆★ = inf{𝜆 ≥ 0 : trace(z(z′z + 𝜆𝐼𝑑𝑧 )−1z′) ≤ 𝑛/5}

The ridge hat matrix has the benefit of being well defined even when the number of instruments
is larger than the sample size. I stress, though, that the Π̂ℓ 𝑖 estimators are not required to be
consistent and the researcher may use any other hat matrix that she believes will lead to
plausible first-stage estimates. Other possible choices of hat matrix include the jackknife OLS
hat matrix of Angrist et al. (1999), the deleted diagonal projection matrix introduced in Chao
et al. (2012) and successfully used in Kline et al. (2020), Crudu et al. (2021), Mikusheva and
Sun (2021), and Matsushita and Otsu (2022), or hat matrices based on selecting instruments
via some preliminary unsupervised technique such as principal component analysis (PCA).
Remark 3.1 below discusses how the balanced-design condition may be verified for arbitrary
choices of hat matrices.

For each 𝑖 = 1, . . . , 𝑛, define Π̂𝑖 = (Π̂1𝑖 , . . . , Π̂𝑑𝑥 𝑖) ∈ R𝑑𝑥 and Π̂𝜖𝑖 = 𝜖𝑖(𝛽0)Π̂𝑖 . Collect these in the
matrices

𝜀(𝛽0) =
(
𝜀1(𝛽0), . . . , 𝜀𝑛(𝛽0)

)′ ∈ R𝑛
Π̂ =

(
Π̂′

1 , . . . , Π̂
′
𝑛

)′ ∈ R𝑛 × 𝑑𝑥
Π̂𝜀 =

(
Π̂′

𝜖1 , . . . , Π̂
′
𝜖𝑛

)′ ∈ R𝑛 × 𝑑𝑥 (2.4)

The jackknife K-statistic can then be defined

JK(𝛽0) = 𝜖(𝛽0)′Π̂
(
Π̂′

𝜖Π̂𝜖
)−1

Π̂′𝜖(𝛽0) × 1{𝜆min(Π̂′
𝜖Π̂𝜖) > 0} (2.5)

I will show that, under appropriate moment bounds and conditions on the hat matrix, 𝐻,
the limiting distribution of JK(𝛽0) under 𝐻0 is 𝜒2

𝑑𝑥
. For exposition, I will largely focus on

the case where 𝑑𝑥 = 1, in which case the form of the test statistic simplifies to JK(𝛽0) =( ∑𝑛
𝑖=1 𝜖𝑖(𝛽0)Π̂𝑖

)2/∑𝑛
𝑖=1 𝜖

2
𝑖
(𝛽0)Π̂2

𝑖
. The extension to 𝑑𝑥 > 1 is not immediate but is possible under

strengthened moment conditions and is explored in Section 5.

Remark 2.1. While use of first-stage estimates that are uncorrelated with the structural error
is inspired by Kleibergen (2002, 2005), the form of the jackknife K-statistic is distinct from
that of the original K-statistics. One major difference is in how both test statistics account
for heteroskedasticity. The K-statistic of Kleibergen (2005) accounts for heteroskedastic errors
using a 𝑑𝑧 × 𝑑𝑧 matrix, which cannot be consistently estimated when 𝑑𝑧 is large. In contrast, the
jackknife K-statistic uses the heteroskedasticity robust variance estimate (Π̂′

𝜖Π̂𝜖)−1 ∈ R𝑑𝑥 × 𝑑𝑥 .
Showing that these variance estimates can be used to account for heteroskedasticity is a feature
of the direct Gaussian approximation approach. Under weak identification the distribution of
the variance estimate is relevant to the distribution of the test-statistic. However, even when
𝑑𝑧 ≪ 𝑛, the distribution of this variance estimate would be difficult to analyze using traditional
central limit theorems as it is not a continuous function of a sample mean or even of a quadratic
form.

3. Limiting Behavior with a Single Endogenous Variable

The limiting behavior of the test statistic is analyzed via a direct Gaussian approximation
technique. When there is a single endogenous variable this approach can be considerably
simplified. In this section, I detail the approach and take advantage of the simplified analysis
to characterize the limiting behavior of the test statistic under local alternatives to 𝐻0. This
direct approach has the advantage of not relying on any particular central limit theorem, which



Single Endogeneous Variable Page 10

allows a great deal of flexibility in the choice of hat matrix 𝐻.

For each 𝑖 ∈ [𝑛], let (�̃�𝑖(𝛽0), 𝑟𝑖)′ be jointly Gaussian random variables generated (i) independently
of each other and the data and (ii) with the same mean and covariance matrix as (𝜖𝑖(𝛽0), 𝑟𝑖)′.
In addition, define Π̃𝑖 B

∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗 . The goal will be to show that the quantiles of JK(𝛽0) can be

approximated by corresponding quantiles of the Gaussian statistic,

JK𝐺(𝛽0) B
(∑𝑛

𝑖=1 �̃�𝑖(𝛽0)Π̃𝑖)2∑𝑛
𝑖=1 E[𝜖2

𝑖
(𝛽0)]Π̃2

𝑖

(3.1)

Since uncorrelated jointly Gaussian random variables are independent, under 𝐻0 the vector
(�̃�1(𝛽0), . . . , �̃�𝑛(𝛽0))′ is mean zero and independent of (𝑟1 , . . . , 𝑟𝑛)′. The null distribution of
JK𝐺(𝛽0) conditional on any realization of (𝑟1 , . . . , 𝑟𝑛)′ is then 𝜒2

1 and so its unconditional null
distribution is also 𝜒2

1.

3.1. Interpolation Approach

Error arising from estimation of 𝜌(𝑧𝑖) prevents immediate comparison of the distribution of
JK(𝛽0) to the distribution of JK𝐺(𝛽0). As such, I begin by considering the distribution of an
infeasible statistic, JK𝐼(𝛽0), which could be constructed if 𝜌(𝑧𝑖) were known to the researcher:

JK𝐼(𝛽0) B
( ∑𝑛

𝑖=1 𝜖𝑖(𝛽0)Π̂𝐼
𝑖

)2∑𝑛
𝑖=1 𝜖

2
𝑖
(𝛽0)

(
Π̂𝐼
𝑖

)2 × 1
{ 𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)

(
Π̂𝐼
𝑖

)2
> 0

}
where Π̂𝐼

𝑖
=

∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗 . To show that the distribution of JK𝐼(𝛽0) can be approximated by the

distribution of JK𝐺(𝛽0), I adapt Lindeberg’s interpolation method, first introduced by Lindeberg
(1922) in an elegant proof of the central limit theorem. This method consists of one-by-one
replacment of the terms (𝜖𝑖(𝛽0), 𝑟𝑖) in the expression of JK𝐼(𝛽0) with their Gaussian analogs,
(�̃�𝑖(𝛽0), 𝑟𝑖), and bounding the resulting one-step distributional changes.

Applying the interpolation method directly on the statistics JK𝐼(𝛽0) and JK𝐺(𝛽0), however, is
not tractable as it requires bounding expectations of derivatives with respect to terms in the
denominator. When identification is weak, the denominators of JK𝐼(𝛽0) and JK𝐺(𝛽0) may both
be arbitrarily close to zero with positive probability. Derivatives with respect to terms in the
denominators thus may not have finite expectations.

Instead, I consider a different approach. For a scaling factor 𝑠𝑛 , introduced below, define the
scaled numerators and denominators

𝑁 B
( 𝑠𝑛√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)Π̂𝐼
𝑖

)2
�̃� B

( 𝑠𝑛√
𝑛

𝑛∑
𝑖=1

�̃�𝑖(𝛽0)Π̃𝑖

)2

𝐷 B
𝑠2
𝑛

𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)

(
Π̂𝐼
𝑖

)2
�̃� B

𝑠2
𝑛

𝑛

𝑛∑
𝑖=1
E[𝜖2

𝑖 (𝛽0)]
(
Π̃𝑖

)2

and for any 𝑎 ≥ 0, define the decomposed statistics

JK𝑎
𝐼 (𝛽0) B 𝑁 − 𝑎𝐷 JK𝑎

𝐺(𝛽0) B �̃� − 𝑎�̃�

Since 𝐷 = 0 implies 𝑁 = 0 and since �̃� ≠ 0 almost surely, the events ({JK𝐼(𝛽0) ≤ 𝑎}, {JK𝐺(𝛽0) ≤
𝑎}) are almost surely equivalent to the events ({JK𝑎

𝐼 (𝛽0) ≤ 0}, {JK𝑎
𝐺(𝛽0) ≤ 0}). The decomposed

statistics no longer have denominators to be dealt with and are tractable for the interpolation
argument. I show for any 𝜑(·) ∈ 𝐶3

𝑏
(R), the space of all thrice continuously differentiable
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functions with bounded derivatives up to the third order, that there is a fixed constant 𝑀 > 0
such that

|E[𝜑(JK𝑎
𝐼 ) − 𝜑(JK𝑎

𝐺)]| ≤
𝑀(𝑎3 ∨ 1)√

𝑛
(𝐿2(𝜑) + 𝐿3(𝜑)) (3.2)

where 𝐿2(𝜑) B sup𝑥 |𝜑′′(𝑥)| and 𝐿3(𝜑) B sup𝑥 |𝜑′′′(𝑥)|. By taking 𝜑(·) to be a sequence of
functions approximating the indicator function, 1{𝑥 ≤ 0}, the result in (3.2) can be used to
show that the cumulative distribution function (CDF) of the infeasible statistic JK𝐼(𝛽0) can be
approximated by the CDF of the Gaussian statistic JK𝐺(𝛽0) at each point 𝑎 ∈ R. A Glivenko-
Cantelli type argument is then be applied to show the approximation holds uniformly over
all points on the real line. The Lindeberg interpolation argument on the decomposed test
statistics makes use of the fact that the numerator and denominator of the Gaussian test
statistic are functions of quadratic forms in the random vectors 𝜖(𝛽0) B (𝜖1(𝛽0), . . . , 𝜖𝑛(𝛽0))′
and 𝑟 B (𝑟1 , . . . , 𝑟𝑛)′.1

Moving from approximation of expectations of smooth functions to approximation of the
CDF relies on a particular anticoncentration bound on �̃�. I show that that this bound can
be established under either weak or strong identification. This allows for the limiting null
distribution of the test statistic under various identification regimes to be derived via a unifying
argument. Additionally, even though (𝑁, 𝐷, �̃� , �̃�) may all have nonnegligible distributions
when identification is weak, the interpolation argument does not require any of these to
individually converge in distribution or probability anywhere stable. This allows for a wide
range of possible hat matrices𝐻 to be used in constructing the first stage estimates, (Π̂1 , . . . , Π̂𝑛).
In particular, no assumption need be made on the number of instruments used to construct 𝐻
nor any requirement imposed that the first-stage estimates (Π̂1 , . . . , Π̂𝑛) are consistent.

I now detail the assumptions needed for the argument. Define 𝜂𝑖 B (𝛽 − 𝛽0)𝑣𝑖 + 𝜖𝑖 and
𝜁𝑖 B 𝑣𝑖 − 𝜌(𝑧𝑖)𝜂𝑖 , noting 𝜂𝑖 = 𝜖𝑖(𝛽0) − E[𝜖𝑖(𝛽0)] and 𝜁𝑖 = 𝑟𝑖 − E[𝑟𝑖]. In what comes below 𝑐 > 1
can be considered an arbitrary constant that may be updated upon each use but that does not
depend on sample size 𝑛.

Assumption 3.1 (Moment Conditions). There is a fixed constant 𝑐 > 1 such that (i) {|Π𝑖 | + |(𝛽 −
𝛽0)| + |𝜌(𝑧𝑖)|} ≤ 𝑐, and (ii) for any 𝑙 , 𝑘 ∈ N ∪ {0} such that 𝑙 + 𝑘 ≤ 6, 𝑐−1 ≤ E[|𝜂𝑖 | 𝑙 |𝜁𝑖 |𝑘] ≤ 𝑐.

Assumption 3.2 (Balanced Design). (i) For 𝑠−2
𝑛 = max𝑖 E[(Π̂𝐼

𝑖
)2] the following is bounded away from

zero, 𝑐−1 ≤ E[ 𝑠
2
𝑛

𝑛

∑𝑛
𝑖=1(Π̂𝐼

𝑖
)2]; (ii) max𝑖 𝑠2

𝑛

∑
𝑗≠𝑖 ℎ

2
𝑗𝑖
≤ 𝑐; and (iii) the following ratio is bounded away

from zero:
∑𝑛
𝑘=2 𝜆

2
𝑘
(𝐻𝐻′)∑𝑛

𝑘=1 𝜆
2
𝑘
(𝐻𝐻′) ≥ 𝑐−1 where 𝜆𝑘(𝐻𝐻′) represents the 𝑘th largest eigenvalue of the matrix 𝐻𝐻′.

Assumptions 3.1 and 3.2 allow characterization of the null distribution of JK(𝛽0). Assump-
tion 3.1 imposes light moment conditions on the random variables 𝜂𝑖 and 𝜁𝑖 , which in turn
imply restrictions on 𝜖𝑖(𝛽0) and 𝑟𝑖 . In particular, Assumption 3.1(i) imposes that 𝜖𝑖(𝛽0) and 𝑟𝑖
have finite means while Assumption 3.1(ii) bounds, both from above and away from zero, the
first through sixth central moments of the random variables.

Assumption 3.2(i) requires that the average second moment of the infeasible first-stage esti-
mators be on the same order as the maximum first-stage estimator second moment. This is
imposed mainly to rule out hat matrices that are all zeroes or nearly all zeros so that the effective
number of observations used to test the null is growing with the sample size. Remark 3.1 below
discusses how this assumption and Assumption 3.2(ii) may be verified in practice. Remark 3.2
compares this balanced design assumption to that in the many-instruments literature (Crudu

1See Pouzo (2015) for another example of the Lindeberg interpolation method applied to approximate the
distribution of quadratic forms.
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et al., 2021; Mikusheva and Sun, 2021; Matsushita and Otsu, 2022; Lim et al., 2022), noting that
their balanced design neither implies nor is implied by the one in this paper.

Assumption 3.2(ii) requires that the maximum leverage of any observation be bounded. When
𝐻 is symmetric, it is automatically satisfied under Assumption 3.1(i) and the definition of 𝑠𝑛 .2
The scaling factor 𝑠𝑛 captures both the “size” of the elements in the hat matrix 𝐻 and the
strength of identification. If elements of the hat matrix are on the same order as a constant, one
would expect 𝑠𝑛 = 𝑂(𝑛−1) under strong identification (Π𝑖 ∝ 1) while 𝑠𝑛 = 𝑂(𝑛−1/2) under weak
identification (Π𝑖 ≲ 𝑛−1/2). Assumption 3.2(iii) can be viewed as a technical requirement that
there be more than one “effective” instrument in the hat matrix.3 This condition can be easily
verified in practice by examining the eigenvalues of 𝐻𝐻′.

In addition to characterizing the limiting distribution of JK(𝛽0) under 𝐻0, I also examine the
behavior of JK(𝛽0) in local neighborhoods of the null. These local neighborhoods are charac-
terized by the local power index 𝑃, defined below, as well as an additional regularity condition
that restricts the size of E[𝜖𝑖(𝛽0)] relative to E[𝑟𝑖].

𝑃 B (𝛽 − 𝛽0)2E
[(
𝑠𝑛√
𝑛

𝑛∑
𝑖=1

Π𝑖Π̂
𝐼
𝑖

)2]
Assumption 3.3 (Local Identification). (i) The local power index 𝑃 is bounded, 𝑃 ≤ 𝑐; and (ii)
max𝑖 E[(𝑠𝑛

∑
𝑗≠𝑖 ℎ 𝑗𝑖𝜖 𝑗(𝛽0))2] ≤ 𝑐.

Under 𝐻0, Assumption 3.3 is trivially satisfied since (𝛽 − 𝛽0) = 0 and
∑
𝑗≠𝑖 𝑠

2
𝑛ℎ

2
𝑗𝑖

≤ 𝑐. The
local power index is the second moment of the scaled numerator, 𝑁 and is a measure of the
association between the true first stageΠ𝑖 and the first-stage estimates Π̂𝑖 . In Section 4, I discuss
how the strength of this association is related to the power of the test under local alternatives.
Proposition 3.1 below shows that when Assumption 3.3(ii) holds, 𝑃 → ∞ implies that the test
based on the infeasible statistic JK𝐼(𝛽0) is consistent.

Assumption 3.3(ii) is an additional technical condition that requires that the maximum value of
E[(∑𝑗≠𝑖 ℎ 𝑗𝑖𝜖 𝑗(𝛽0))2] be on the same or lesser order than the maximum value of E[(∑𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗)2].
Using the moment bounds in Assumption 3.1 and Assumption 3.2(ii) one can verify that
Assumption 3.3(ii) is equivalent to the existence of constants 𝐶1 , 𝐶2 > 0 such that

max
𝑖

(∑
𝑗≠𝑖

ℎ 𝑗𝑖E[𝜖 𝑗(𝛽0)]
)2 ≤ 𝐶1 max

𝑖
E
[
(
∑
𝑗≠𝑖

ℎ𝑖 𝑗𝑟 𝑗)2
]
+ 𝐶2

= 𝐶1 max
𝑖

{∑
𝑗≠𝑖

ℎ2
𝑖 𝑗 Var(𝑟 𝑗) +

(∑
𝑗≠𝑖

ℎ𝑖 𝑗E[𝑟 𝑗]
)2

}
+ 𝐶2

for all 𝑖 ∈ [𝑛]. It is always satisfied whenever E[𝜖𝑖(𝛽0)] = Π𝑖(𝛽 − 𝛽0) is in a
√
𝑛-neighborhood

of zero in the sense that |Π𝑖(𝛽 − 𝛽0)| ≤ 𝐶/
√
𝑛 for all 𝑖 ∈ [𝑛] and some constant 𝐶. In general,

Assumption 3.3(ii) can be roughly interpreted as requiring the local neighborhoods of 𝐻0
considered to be those in which the means of (𝜖1(𝛽0), . . . , 𝜖𝑛(𝛽0)) are of the same or lesser order
than the means of (𝑟1 , . . . , 𝑟𝑛).

Under Assumptions 3.1–3.3, I establish a main technical lemma stating that the CDF of the

2To see this, notice that 𝑠−2
𝑛 = max𝑖 E[(Π̂𝐼

𝑖
)2] ≥ max𝑖 Var(Π̂𝐼

𝑖
) = max𝑖

∑
𝑗≠𝑖 ℎ

2
𝑖 𝑗

Var(𝑟𝑗). By Assumption 3.1, Var(𝑟𝑗)
is bounded from below by 𝑐−1. Inverting this chain of inequalities yields that 𝑠2𝑛

∑
𝑗≠𝑖 ℎ

2
𝑖 𝑗

is bounded from above
uniformly over all 𝑖 ∈ [𝑛].

3In the case of a standard projection matrix (no deleted diagonal), Assumption 3.2(iii) would be satisfied
whenever rank(𝑧(𝑧′𝑧)−1𝑧) > 1.
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infeasible statistic, JK𝐼(𝛽0), can be uniformly approximated by the CDF of the Gaussian statistic,
JK𝐺(𝛽0). This result does not require JK𝐺(𝛽0) to have a fixed limiting distribution.

Lemma 3.1 (Infeasible Uniform Approximation). Suppose that Assumptions 3.1–3.3 hold. Then,

sup
𝑎∈R

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
�� → 0

I additionally show that the test based on the JK𝐼(𝛽0) statistic is consistent whenever the power
index diverges, 𝑃 → ∞, and Assumption 3.3(ii) holds.

Proposition 3.1 (Consistency). Suppose that Assumptions 3.1, 3.2, and 3.3(ii) hold. Then if 𝑃 → ∞
the test based on JK𝐼(𝛽0) is consistent; i.e for any fixed 𝑎 ∈ R, Pr(JK𝐼(𝛽0) ≤ 𝑎) → 0.

The dependence of the consistency result on Assumption 3.3(ii) is a nontrivial restriction
because of the bias taken on in constructing 𝑟𝑖 . In particular, against certain alternatives it is
possible that E[Π̂𝐼

𝑖
] = 0 for all 𝑖 ∈ [𝑛] even under strong identification. This is an extreme

case, however. In general, bias in E[𝑟𝑖] does not imply a violation of Assumption 3.3(ii), which
requires only that the size of E[𝑟𝑖] be of a weakly greater order than that of E[𝜖𝑖(𝛽0)]. Moreover,
as discussed in Remark 3.5, Proposition 3.1 does not necessarily rule out consistency when
𝑃 → ∞ but Assumption 3.3(ii) fails.

Regardless, bias taken on in constructing 𝑟𝑖 has consequences for the power of the test in finite
samples. This is particularly true when the mean of 𝑟𝑖 is of a lesser order than that of 𝜖𝑖(𝛽0)
as will be discussed in Section 4. To rectify this deficiency in tests based on the jackknife
K-statistic, I suggest a thresholding test that decides whether to use the jackknife K-statistic or
the sup-score Belloni et al. (2012) statistic based on the value of the conditioning statistic. This
conditioning statistic, in turn, is based on a test statistic for the null hypothesis that E[Π̂𝐼

𝑖
] = 0

for all 𝑖 ∈ [𝑛].

3.2. Limiting Behavior of Test Statistic

The final step in characterizing the limiting behavior of the feasible test statistic is to show
that the difference between the infeasible and feasible statistics is negligible. I begin with a
technical lemma stating that the difference between JK(𝛽0) and JK𝐼(𝛽0) is asymptotically neg-
ligible whenever the differences between the scaled numerators and the scaled denominators
are asymptotically negligible. Define these differences:

Δ𝑁 B
𝑠𝑛√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)(Π̂𝑖 − Π̂𝐼
𝑖 )

Δ𝐷 B
𝑠2
𝑛

𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)(Π̂2

𝑖 − (Π̂𝐼
𝑖 )

2)

Lemma 3.2. Suppose Assumptions 3.1–3.3 hold and (Δ𝑁 ,Δ𝐷)′ →𝑝 0. Then |JK(𝛽0) − JK𝐼(𝛽0)| →𝑝 0.

While Lemma 3.2 is a simple statement, it is not obvious. In particular, showing that the
difference between the infeasible and feasible statistics is negligible requires showing that
1/(𝐷+Δ𝐷) is bounded in probability, where𝐷 represents the scaled denominator of JK𝐼(𝛽0). In
a standard analysis, this would be done by arguing that 𝐷 converges in distribution to a stable
limit and then applying the continuous mapping theorem.4 This approach is not applicable
here as neither the scaled numerator nor the scaled denominator has a limiting distribution.

4This is the approach taken by Kleibergen (2002, 2005)
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Instead, I directly show that 1/(𝐷 +Δ𝐷) is bounded in probability by showing Pr(𝐷 ≤ 𝛿𝑛) → 0
for any sequence 𝛿𝑛 → 0. This is done by first establishing that quantiles of 𝐷 can be approx-
imated by quantiles of �̃�, the scaled denominator of JK𝐺(𝛽0). If the variance of �̃� is bounded
away from zero, its density can also be bounded with new bounds on Gaussian quadratic form
densities from Götze et al. (2019), which yields the result. Otherwise, if Var(�̃�) → 0, the result
holds by an application of Chebyshev’s inequality and E[𝐷] > 𝑐−1 from Assumption 3.2(i).
This particular anticoncentration bound for �̃� is also important in the proof of Lemma 3.1 to
establish anticoncentration for the decomposed Gaussian test statistic.

Lemma 3.2 allows the researcher to use alternate choices of estimators for 𝜌(𝑧𝑖), so long as
they can verify that (Δ𝑁 ,Δ𝐷)′ →𝑝 0. Below, I verify that this condition can be satisfied for the
ℓ1-penalized estimation procedure proposed in (2.2). This requires a strengthened moment
condition on 𝜂𝑖 . Given a random variable 𝑋 and 𝜐 > 0 the Orlicz (quasi-)norm is defined

∥𝑋∥𝜓𝜐 B inf{𝑡 > 0 : E exp(|𝑋 |𝜐/𝑡𝜐) ≤ 2}

Random variables with a finite Orlicz norm for some 𝜐 ∈ (0, 1] ∪ {2} are termed 𝛼-sub-
exponential random variables (Gotze et al., 2021; Sambale, 2022). This class encompasses a
wide range of potential distributions including all bounded and sub-Gaussian random random
variables (with 𝜐 = 2), all sub-exponential random variables such as Poisson or noncentral 𝜒2

random variables (with 𝜐 = 1), as well as random variables with “fatter” tails such as Weibull
distributed random variables with shape parameter 𝜐 ∈ (0, 1].

Assumption 3.4 (Estimation Error). (i) There is a fixed constant 𝜐 ∈ (0, 1]∪{2} such that ∥𝜂𝑖 ∥𝜓𝜐 ≤ 𝑐;
(ii) The basis terms 𝑏(𝑧𝑖) are bounded, ∥𝑏(𝑧𝑖)∥∞ ≤ 𝐶 for all 𝑖 = 1, . . . , 𝑛; (iii) the approximation error
satisfies (E𝑛[𝜉2

𝑖
])1/2 = 𝑜(𝑛−1/2); (iv) the researcher has access to an estimator 𝜙 of 𝜙 that satisfies

log(𝑑𝑏𝑛)2/(𝜐∧1)∥𝜙 − 𝜙∥1 →𝑝 0; (v) the following moment bounds hold

(va) max1≤ℓ≤𝑑𝑏
��E[ 𝑠𝑛√

𝑛

∑𝑛
𝑖=1

∑
𝑗≠𝑖 ℎ𝑖 𝑗𝜖𝑖(𝛽0)𝑏ℓ (𝑧 𝑗)𝜖 𝑗(𝛽0)

] �� ≤ 𝑐

(vb) max 1≤𝑖≤𝑛
1≤ℓ≤𝑑𝑏

|E[𝑠𝑛
∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑏ℓ (𝑧 𝑗)𝜖 𝑗(𝛽0)]| ≤ 𝑐.

Assumption 3.4(i) strengthens the moment condition on 𝜂𝑖 to require that 𝜂𝑖 be in the class of
𝛼-sub-exponential random variables. While this condition is more restrictive than the moment
condition in Assumption 3.1, as discussed above, it still allows for a wide range of potential
distributions. Assumption 3.4(ii) is a standard condition in ℓ1-penalized estimation. At the cost
of extra notation, it can be relaxed and the sup-norm of the basis terms can be allowed to grow
slowly with the sample size to accommodate bases such as normalized b-splines or wavelets.
Assumption 3.4(iii) is a bound on the rate of decay of the approximation error, similar to the
approximate sparsity condition of Belloni et al. (2012).

Assumption 3.4(iv) is a high-level condition on the rate of consistency of the parameter estimate
�̂� in the ℓ1 norm. This can be verified under approximate sparsity for both the LASSO estimator
in (2.2) or post-LASSO procedures based on refitting an unpenalized version of (2.2) only using
the basis terms selected in a LASSO first stage. See Belloni et al. (2012), van der Greer (2016), Tan
(2017), and Chetverikov and Sørensen (2021) for references under various choices of penalty
parameter. This condition allows for the dimensionality of the basis terms, 𝑑𝑏 , to grow near
exponentially as a function of the sample size. Following the analysis of Tan (2017) one
can see that, under appropriate choice of penalty parameter, this may be satisfied as long as
𝑠2 log2(𝜐+1)/𝜐(𝑑𝑏𝑛)/𝑛 → 0, where the sparsity index 𝑠 denotes the number of nonzero elements
of 𝜙.

Assumption 3.4(v) is a strengthening of the definition of local neighborhoods and can be inter-
preted similarly to Assumption 3.3(ii). Since the moment conditions in Assumption 3.4(va,vb)
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hold with 𝑏ℓ (𝑧 𝑗)𝜖 𝑗(𝛽0) replaced with 𝑟 𝑗 , Assumption 3.4(v) can be interpreted as requiring
that |E[∑𝑗≠𝑖 ℎ𝑖 𝑗𝑏ℓ (𝑧 𝑗)𝜖 𝑗(𝛽0)]| is on the same order as |E[∑𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗]| for all 𝑖 = 1, . . . , 𝑛 and
ℓ = 1, . . . , 𝑑𝑏 . As with Assumption 3.3(ii), it is trivially satisfied under 𝐻0 or, using the fact that
max𝑖

∑
𝑗≠𝑖 𝑠

2
𝑛ℎ

2
𝑖 𝑗
≤ 𝑐, whenever E[𝜖𝑖(𝛽0)] = Π𝑖(𝛽 − 𝛽0) is in a

√
𝑛-neighborhood of zero.

Under Assumptions 3.1–3.4, I establish that the difference between the infeasible and feasible
statistics can be treated as negligible when the estimation procedure proposed in (2.2) is used.

Lemma 3.3. Suppose that Assumptions 3.1–3.4 hold. Then (Δ𝑁 ,Δ𝐷)′ →𝑝 0.

Lemmas 3.1–3.3 are combined for the main result, local approximation of the distribution of the
feasible test statistic, JK(𝛽0), by the distribution of the Gaussian statistic, JK𝐺(𝛽0). An immediate
corollary is that the limiting null distribution of JK(𝛽0) is 𝜒2

1.

Theorem 3.1 (Uniform Approximation). Suppose that Assumptions 3.1–3.4 hold. Then

sup
𝑎∈R

��Pr(JK(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
�� → 0

Corollary 3.1 (Size Control). Suppose that Assumptions 3.1, 3.2 and 3.4 hold. Then, under 𝐻0,
JK(𝛽0)⇝ 𝜒2

1.

If the limiting JK𝐺(𝛽0)had a fixed distribution under𝐻1, Theorem 3.1 would follow immediately
from Lemmas 3.1–3.3, and an application of Slutsky’s lemma. However, under 𝐻1, there
is nothing preventing the distribution of JK𝐺(𝛽0) changing with the sample size. Instead I
establish Theorem 3.1 directly using the fact that both JK(𝛽0) and JK𝐺(𝛽0) are bounded in
probability and that JK𝐺(𝛽0) has a density that is bounded uniformly over 𝑛.

While JK𝐺(𝛽0) does not have a fixed distribution, examining its behavior is still tractable and
allows for insight into the power properties of the jackknife K-test. In the next section, I use
this result to analyze the local power of the proposed test. To improve power against certain
alternatives, I suggest a combination with the sup-score statistic of Belloni et al. (2012).

Remark 3.1. A sufficient condition for Assumption 3.2(i) is that there is some fixed quantile

𝑞 ∈ (0, 100) such that (𝑐𝑞)−1 ≤ 𝑞th-quantile of E[(Π̂𝐼
𝑖
)2]

max𝑖 E[(Π̂𝐼
𝑖
)2]

. In practice this can be verified by checking
that there is some quantile 𝑞 such that both

𝑞th-quantile of
∑
𝑗≠𝑖 ℎ

2
𝑖 𝑗

max𝑖
∑
𝑗≠𝑖 ℎ

2
𝑖 𝑗

and
𝑞th-quantile of (∑𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗)2

max𝑖(
∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗)2

(3.3)

are bounded away from zero. Similarly, Assumption 3.2(ii) can be verified by checking that
max𝑖

∑
𝑗≠𝑖 ℎ

2
𝑗𝑖
/max𝑖

∑
𝑗≠𝑖 ℎ

2
𝑖 𝑗

is bounded from above.

Remark 3.2. The balanced-design condition in Assumption 3.2(i) is neither weaker nor stronger
than that in the many instruments literature (Crudu et al., 2021; Mikusheva and Sun, 2021;
Matsushita and Otsu, 2022; Lim et al., 2022). These papers require that the projection matrix
𝑃 = z(z′z)−1z′ satisfies [𝑃]𝑖𝑖 ≤ 𝛿 ≤ 1 for some value 𝛿 and all 𝑖 ∈ [𝑛]. Since 𝑃 is idempotent,
[𝑃]𝑖𝑖 = 1 for some 𝑖 ∈ [𝑛] implies that [𝑃]𝑖 𝑗 = 0 for 𝑗 ≠ 𝑖.5 This would not violate Assumption 3.2
if one were to take 𝐻 such that ℎ𝑖 𝑗 = [𝑃]𝑖 𝑗1{𝑖 ≠ 𝑗}; E[(Π̂𝐼

𝑖
)2] = 0 is allowed for a constant share

of 𝑖 ∈ [𝑛]. Conversely, if the instruments are fixed or grow slowly, it is possible to construct a
projection matrix 𝑃 of rank 𝑑𝑧 where [𝑃]𝑖𝑖 is bounded away from one for all 𝑖 ∈ [𝑛], but “most”

5Since 𝑃 is idempotent, [𝑃]𝑖𝑖 =
∑𝑛
𝑖=1[𝑃]

2
𝑖 𝑗
= [𝑃]2

𝑖𝑖
+∑

𝑗≠𝑖[𝑃]2𝑖 𝑗 .



Improving Power Page 16

of the rows are zero. I view this as a theoretical edge case, however, that seems unlikely to
result from real data.

Remark 3.3. The Lindeberg interpolation method allows me to give a nearly uniform explicit
bound on the Gaussian approximation error. In particular, using the bound in (3.2), I show
that for any fixed value Δ > 0;

sup
𝑎≤Δ

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
�� ≤ 𝐶𝑛−2/13

where 𝐶 is a constant that depends only on (𝑐,Δ). Lemma 3.1 makes use of the fact that the
limiting statistic JK𝐺(𝛽0) is bounded in probability and extends this result to show that the
approximation error tends to zero uniformly over the real line. While it does not account for
estimation error in �̂�(·), obtaining an explicit bound reflects an improvement over the original
analyses of K-statistics in Kleibergen (2002, 2005). These original studies rely on continuous
mapping theorems to obtain the limiting chi-squared distributions, making the rate of decay
of the approximation error difficult to analyze.

Remark 3.4. The interpolation argument relies on the fact that the first and second moments
of (�̃�𝑖(𝛽0), 𝑟𝑖) are the same as the first and second moments of (𝜖𝑖(𝛽0), 𝑟𝑖) to match the first and
moments of one-step deviations with Gaussian analogs. Without the jackknife form of Π̂𝐼

𝑖
,

these one step deviations would additionally contain cross-terms such as ℎ𝑖𝑖𝑟𝑖𝜖𝑖(𝛽0), for 𝑖 ∈ [𝑛].
While the first moment of this cross-term is matched by the first moment of the Gaussian
analog, ℎ𝑖𝑖 �̃�𝑖(𝛽0)𝑟𝑖 , the second moment is not matched. This is manageable, however, so long as
the terms ℎ𝑖𝑖 are “small.” An example of when the ℎ𝑖𝑖 terms are small is when 𝐻 is taken to be
the OLS projection matrix, 𝐻 = z(z′z)−1z, and the number of instruments satisfies 𝑑3

𝑧/𝑛 → 0.
See Appendices A and E for details.

Remark 3.5. Proposition 3.1 does not necessarily rule out that a test based on JK𝐼(𝛽0) is consistent
when𝑃 → ∞ but Assumption 3.3(ii) fails to hold. The proof of Proposition 3.1 relies on showing
that, when 𝑃 → ∞ and Assumption 3.3(ii) holds, E[|𝑁 |] → ∞ while Var(|𝑁 |) and E[𝐷] are
bounded. These facts can be combined to show that Pr(𝑁2 − 𝑎𝐷 ≤ 0) → 0 for any fixed 𝑎 ∈ R.
When Assumption 3.3(ii) fails, 𝑃 → ∞ may imply that Var(|𝑁 |) → ∞ as well, making the
limiting behavior of the test difficult to analyze. There is reason to believe that this issue can
be overcome, Andrews et al. (2004) show that the K-statistic of Kleibergen (2002) is consistent
against fixed alternatives under strong identification. However, a full consistency result is not
pursued here and left to future work.

Remark 3.6. Approximate sparsity of 𝜌(𝑧𝑖) may be a particularly palatable assumption in cases
where the instrument set is generated by functions of a smaller initial set of instruments,
as in Angrist and Krueger (1991), Paravisini et al. (2014), Gilchrist and Sands (2016), and
Derenoncourt (2022). In these cases, the dimensionality of the basis, 𝑑𝑏 , may not need to be
much larger than the dimensionality of the instruments, 𝑑𝑧 , to provide a good approximation
of 𝜌(𝑧𝑖). Interestingly, if taking 𝑏(𝑧𝑖) = 𝑧𝑖 provides a good approximation of 𝜌(𝑧𝑖), the Tan (2017)
result suggests that consistency of �̂�(·) is achievable under 𝑑2

𝑧 log2(𝜐+1)/𝜐(𝑑𝑧𝑛)/𝑛 → 0 even if
𝜙 is fully dense. This requirement is weaker than the 𝑑3

𝑧/𝑛 → 0 requirement of the standard
K-statistic.

4. Improving Power against Certain Alternatives

Using the characterization of the limiting behavior of the test statistic derived in Section 3, I
analyze the local power properties of the test. Unfortunately, against certain alternatives the test
statistic may have trivial power, a deficiency shared with the K-statistics of Kleibergen (2002,
2005). To combat this, I propose a simple combination with the sup-score statistic of Belloni
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et al. (2012) based on a thresholding rule.

4.1. Local Power Properties

In local neighborhoods of 𝐻0, as defined in Assumptions 3.3 and 3.4, Theorem 3.1 implies that
the limiting behavior of JK(𝛽0) can be analyzed by examining the behavior of the Gaussian
analog statistic, JK𝐺(𝛽0). Conditional on the vector 𝑟 = (𝑟1 , . . . , 𝑟𝑛), the distribution of JK𝐺(𝛽0)
is nearly non-central 𝜒2

1 with noncentrality parameter 𝜇(𝑟), JK𝐺(𝛽0)|𝑟 ∼ 𝐴2(𝑟) · 𝜒2
1(𝜇(𝑟)):

𝐴(𝑟) =
∑𝑛
𝑖=1 Var(𝜂𝑖)Π̃2

𝑖∑𝑛
𝑖=1{Π2

𝑖
(𝛽 − 𝛽0)2 + Var(𝜂𝑖)}Π̃2

𝑖

𝜇2(𝑟) = (𝛽 − 𝛽0)2
( ∑𝑛

𝑖=1 Π𝑖Π̃𝑖

)2∑𝑛
𝑖=1{Π2

𝑖
(𝛽 − 𝛽0)2 + Var(𝜂𝑖)}Π̃2

𝑖

.

Under local alternatives, the terms Π2
𝑖
(𝛽 − 𝛽0)2 → 0 so that 𝐴(𝑟) → 1 and |𝜇2(𝑟) − 𝜇2

∞(𝑟)| → 0,
where

𝜇2
∞(𝑟) = (𝛽 − 𝛽0)2

( ∑𝑛
𝑖=1 Π𝑖Π̃𝑖)2∑𝑛

𝑖=1 Var(𝜂𝑖)Π̃2
𝑖

. (4.1)

The numerator of 𝜇2
∞(𝑟) suggests that power is maximized when the first-stage estimate Π̃𝑖 is

close to the true first stage valueΠ𝑖 . Indeed, when errors are homoskedastic𝜇2
∞(𝑟) is maximized

by setting Π̃𝑖 = Π𝑖 reflecting the classical result of Chamberlain (1987). The denominator of
𝜇2
∞(𝑟) suggests that having first-stage estimates Π̃𝑖 with low second moments may increase

power. This guides the recommendation for the use of ℓ2-regularization in constructing the hat
matrix, 𝐻.

Unfortunately, estimators of Π𝑖 based on 𝑟𝑖 = 𝑥𝑖 − 𝜌(𝑧𝑖)𝜖𝑖(𝛽0) may not be close to Π𝑖 under 𝐻1.
This is because the mean of 𝑟𝑖 will in general differ from Π𝑖

E[𝑟𝑖] = Π𝑖 − 𝜌(𝑧𝑖)Π𝑖(𝛽 − 𝛽0)

This deficiency is inherited from the similarity of the JK(𝛽0) statistic to the K-statistic. As pointed
out by Moreira (2001), this need not be an issue as long as there is a fixed constant 𝐶 ≠ 0 such
that E[𝑟𝑖] = 𝐶Π𝑖 for all 𝑖 ∈ [𝑛]. However, in general, this will introduce bias into the first-stage
estimates Π̂𝑖 under 𝐻1. The power implications of this bias are particularly pronounced when
𝜌(𝑧𝑖) is a constant (𝛽 − 𝛽0) = 1/𝜌(𝑧𝑖). In this case, E[𝑟𝑖], and thus E[Π̃𝑖], will equal zero for
each 𝑖 ∈ [𝑛], and the JK(𝛽0) statistic will select a direction completely at random to direct power
into.1

4.2. A Simple Combination Test

To combat this loss of power for tests based on the K-statistic, a common strategy is to combine
the K-statistic with the Anderson-Rubin statistic based on a conditioning statistic. While the
Anderson-Rubin statistic does not have optimal power on its own, it has the benefit of directing
power equally in all directions avoiding the pitfalls of the K-statistic which lacks power in certain
directions. Prominent examples of such tests are the conditional likelihood ratio test of Moreira
(2003), the GMM-M test of Kleibergen (2005), and the minimax regret tests of Andrews (2016).
These combinations make use of the fact that the Anderson-Rubin statistic is asymptotically
independent of both the K-statistic and the conditioning statistic.

1Andrews et al. (2006) and Andrews (2016) point out this deficiency in the context of the K-statistics of Kleibergen
(2002, 2005).
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Unfortunately, the asymptotic validity of these tests under heteroskedasticity is based on the
assumption that 𝑑3

𝑧/𝑛 → 0, which may not reasonably describe many settings discussed above.
Instead, to improve the power of tests based on the jackknife K-statistic, I consider a simple
combination with the sup-score statistic of Belloni et al. (2012). The test based on the sup-score
statistic (4.2) is similar in spirit to the Anderson-Rubin test but controls size even when 𝑑𝑧 grows
near exponentially as a function of the sample size.

𝑆(𝛽0) B sup
1≤ℓ≤𝑑𝑧

����∑𝑛
𝑖=1 𝜖𝑖(𝛽0)𝑧ℓ 𝑖

(∑𝑛
𝑖=1 𝑧

2
ℓ 𝑖
)1/2

���� (4.2)

A size 𝜃 ∈ (0, 1) test based on the sup-score statistic rejects whenever 𝑆(𝛽0) > 𝑐𝑆1−𝜃 where, for
𝑒1 , . . . , 𝑒𝑛 iid standard normal and generated independently of the data, 𝑐𝑆1−𝜃 is the simulated
multiplier bootstrap critical value:

𝑐𝑆1−𝜃 B (1 − 𝜃) quantile of sup
1≤ℓ≤𝑑𝑧

����∑𝑛
𝑖=1 𝑒𝑖𝜖𝑖(𝛽0)𝑧ℓ 𝑖
(∑𝑛

𝑖=1 𝑧
2
ℓ 𝑖
)1/2

���� conditional on {(𝑦𝑖 , 𝑥𝑖 , 𝑧𝑖)}𝑛𝑖=1.

As with the Anderson-Rubin test, tests based on the sup-score statistic may have suboptimal
power properties in overidentified models as it does not incorporate first-stage information.
However, the sup-score statistic does retain the benefit of directing power evenly in all direc-
tions, avoiding pitfalls of tests based on JK(𝛽0) against certain alternatives.

The combination test will be based on an attempt to detect whether the alternative 𝛽 is such
that E[Π̂𝐼

𝑖
] = 0 for all 𝑖 = 1, . . . , 𝑛. When this is the case, the test based on JK(𝛽0) will choose a

direction completely at random to direct power into. It would then be optimal for the researcher
to test the null hypothesis using the sup-score statistic. Detection of whether E[Π̂𝐼

𝑖
] = 0 is based

on the conditioning statistic:

𝐶 = max
1≤𝑖≤𝑛

���� ∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗

(∑𝑗≠𝑖 ℎ
2
𝑖 𝑗
)1/2

����. (4.3)

Under the assumption that E[Π̂𝐼
𝑖
] = 0 for all 𝑖 ∈ [𝑛], quantiles of the conditioning statistic can

be simulated analogously to the sup-score critical value. For a new set of 𝑒1 , . . . , 𝑒𝑛 iid standard
normal and generated independently of the data, and for any 𝜃 ∈ (0, 1), define the conditional
quantile

𝑐𝐶1−𝜃 B (1 − 𝜃) quantile of max
1≤𝑖≤𝑛

���� ∑𝑗≠𝑖 𝑒𝑖ℎ𝑖 𝑗𝑟 𝑗

(∑𝑗≠𝑖 ℎ
2
𝑖 𝑗
)1/2

���� conditional on {(𝑦𝑖 , 𝑥𝑖 , 𝑧𝑖)}𝑛𝑖=1 (4.4)

Depending on the value of the conditioning statistic, the thresholding test decides whether the
test based on JK(𝛽0) or one based on 𝑆(𝛽0) should be run.

𝑇(𝛽0; 𝜏) =
{
1{JK(𝛽0) > 𝜒2

1;1−𝛼} if 𝐶 ≥ 𝜏

1{𝑆(𝛽0) > 𝑐𝑆1−𝛼} if 𝐶 < 𝜏
(4.5)

for some cutoff 𝜏, which I take in the simulation study and empirical exercise to be the 75th

quantile of the distribution of 𝐶 under the assumption that E[Π̂𝐼
𝑖
] = 0,∀𝑖 ∈ [𝑛].

To show that the thresholding test controls size, I compare the rejection probability to that of a
Gaussian analog. In addition to JK𝐺(𝛽0), defined in (3.1), define the Gaussian analogs of S(𝛽0)
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and the conditioning statistic 𝐶:

𝑆𝐺(𝛽0) B sup
1≤ℓ≤𝑑𝑧

����∑𝑛
𝑖=1 �̃�𝑖(𝛽0)𝑧ℓ 𝑖

(∑𝑛
𝑖=1 𝑧

2
ℓ 𝑖
)1/2

���� 𝐶𝐺 B sup
1≤𝑖≤𝑛

���� ∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗

(∑𝑗≠𝑖 ℎ
2
𝑖 𝑗
)1/2

����
where, as in Section 3, (�̃�𝑖(𝛽0), 𝑟𝑖)′ are generated independently of each other and the data
following a Gaussian distribution with the same mean and covariance matrix as (𝜖𝑖(𝛽0), 𝑟𝑖).
Since Cov(�̃�𝑖(𝛽0), 𝑟𝑖) = 0 under 𝐻0, the statistics 𝐶𝐺 and 𝑆𝐺(𝛽0) are independent under the
null. Similarly, the null distribution of JK𝐺(𝛽0) is the same conditional on any realization of
(𝑟1 , . . . , 𝑟𝑛); it is also independent of 𝐶𝐺 under the null. The Gaussian analog thresholding test
decides whether the researcher should run a test based on 𝑆𝐺(𝛽0) or JK𝐺(𝛽0) depending on the
value of 𝐶𝐺 as in (4.5).

The test statistics JK𝐺(𝛽0) and 𝑆𝐺(𝛽0) are only marginally independent of the conditioning
statistic 𝐶𝐺 under the null. This limits the ways in which the test statistics can be combined
using the conditioning statistic while still controlling size. This marginal independence in the
Gaussian limit is enough, however, for the asymptotic validity of the thresholding test, 𝑇(𝛽0; 𝜏).
To establish that the behavior of the pairs (𝐶, JK(𝛽0)) and (𝐶, 𝑆(𝛽0)) can be approximated by the
behavior of (𝐶𝐺 , JK𝐺(𝛽0)) and (𝐶𝐺 , 𝑆𝐺(𝛽0)), respectively, I rely on the following assumption:

Assumption 4.1 (Combination Conditions). Assume that (i) there is a 𝜐 ∈ (0, 1] ∪ {2} such that
∥𝜁𝑖 ∥𝜓𝜐 ≤ 𝑐; (ii) max𝑖 , 𝑗 |

ℎ𝑖 𝑗

(E𝑛[ℎ2
𝑖 𝑗
])1/2 | + max𝑙 ,𝑖 | 𝑧𝑙𝑖

(E𝑛[𝑧2
𝑙𝑖
])1/2 | ≤ 𝑐; and (iii) log7+4/𝜐(𝑑𝑧𝑛)/𝑛 → 0.

Assumption 4.1(i) is a strengthening of the moment bound on 𝑟𝑖 similar to that of Assump-
tion 3.4(i). As discussed, while more restrictive than the condition in Assumption 3.1, this still
allows for a wide range of potential distributions for 𝑟𝑖 . Assumption 4.1(ii) requires that the
number of observations used to test E[Π̂𝑖] = 0 via the conditioning statistic and the number
of observations used to test the null hypothesis via the sup-score test are both growing with
the sample size. It can be verified by looking at the hat matrix 𝐻 and the instruments. Finally,
Assumption 4.1(iii) is a light requirement on the number of instruments 𝑑𝑧 needed for the
validity of the sup-score test. It allows the number of instruments to grow near exponentially
as a function of sample size.

Theorem 4.1. Suppose Assumptions 3.1–3.4 and 4.1 hold. Then,

1. the test based on 𝑇(𝛽0; 𝜏) has asymptotic size 𝛼 for any choice of cutoff 𝜏, and

2. if E[Π̂𝐼
𝑖
] = 0 for all 𝑖 ∈ [𝑛], there exist sequences 𝛿𝑛 ↘ 0 and 𝛽𝑛 ↘ 0 such that with probability

at least 1 − 𝛿𝑛 ,
sup
𝜃∈(0,1)

��Pr𝑒(𝐶 ≤ 𝑐𝐶1−𝜃) − (1 − 𝜃)
�� ≤ 𝛽𝑛 ,

where Pr𝑒(·) denotes the probability with respect to only the variables 𝑒1 , . . . , 𝑒𝑛 .

The first part of Theorem 4.1 establishes the asymptotic validity of the thresholding test 𝑇(𝛽0; 𝜏)
for any choice of cutoff 𝜏. The proof of this statement follows the logic outlined above. The
second part of Theorem 4.1 establishes the validity of the multiplier bootstrap procedure to
approximate quantiles of the conditioning statistic. It follows directly from results in Belloni
et al. (2018) after verifying that the conditions needed for error taken on from estimation of
𝜌(𝑧𝑖) can treated as negligible under Assumption 3.4.

In Section 7, I investigate the power properties of the thresholding test via simulation study. I
find that combining the JK(𝛽0) statistic with the sup-score statistic based on 𝐶 improves power
against distant alternatives and helps alleviate a power decline suffered by the JK(𝛽0) statistic
against a particular set of alternatives.
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Remark 4.1. As mentioned by Andrews (2016) in the context of the standard K-statistic, this
attempt to rectify the power deficiency via this particular conditioning statistic is not perfect.
In particular, under heteroskedasticity, the means of the partialed-out endogenous variables,
E[𝑟𝑖], may not be scaled versions of the true first stages. However, as long as E[𝑟𝑖] ≠ 0, one can
still expect E[Π̂𝐼

𝑖
] = ∑

𝑗≠𝑖 ℎ𝑖 𝑗Π𝑖 +(𝛽−𝛽0)
∑
𝑗≠𝑖 ℎ𝑖 𝑗𝜌(𝑧𝑖)Π𝑖 to be related to the true fist stage Π𝑖 and

for the test to have nontrivial power. Moreover, in light of the dependence of the consistency
result in Proposition 3.1 on Assumption 3.3(ii), in the case where E[Π̂𝑖] = 0 for all 𝑖 ∈ [𝑛] it may
be particularly important to avoid using the jackknife K-statistic to test 𝐻0.

5. Analysis with Multiple Endogenous Variables

To analyze the limiting behavior of the test statistic when 𝑑𝑥 > 1, I follow the basic idea of
Section 3, which is to show that quantiles of the jackknife K-statistic can be approximated by
analogous quantiles of the Gaussian statistic:

JK𝐺(𝛽0) B �̃�(𝛽0)Π̃(Π̃′
𝜖Π̃𝜖)−1Π̃′�̃�(𝛽0);

where (�̃�𝑖(𝛽0), 𝑟𝑖)′ are Gaussian with the same mean and covariance matrix as (𝜖𝑖(𝛽0), 𝑟𝑖)′ and
for Π̃ℓ 𝑖 =

∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟ℓ 𝑗 define Π̃𝑖 B (Π̃1𝑖 , . . . , Π̃𝑑𝑥 𝑖)′ ∈ R𝑑𝑥 , Π̃𝜖𝑖 B (E[𝜖2

𝑖
(𝛽0)])1/2Π̃𝑖 , and

�̃�(𝛽0) B (�̃�1(𝛽0), . . . , �̃�𝑛(𝛽0))′ ∈ R𝑛

Π̃ B (Π̃1 , . . . , Π̃𝑛)′ ∈ R𝑛×𝑑𝑥

Π̃𝜖 B (Π̃𝜖1 , . . . , Π̃𝜖𝑛)′ ∈ R𝑛×𝑑𝑥

As in Section 3, notice that, since uncorrelated random variables are independent, under𝐻0 the
vector �̃�(𝛽0) is mean zero and independent of (Π̃, Π̃𝜖). Conditional on any realization of (Π̃, Π̃𝜖)
the JK𝐺(𝛽0) statistic then follows a 𝜒2

𝑑𝑥
distribution, and thus, its unconditional distribution is

also 𝜒2
𝑑𝑥

.

In addition to characterizing the local behavior of JK(𝛽0) with multiple endogenous variables,
I show that the thresholding test of Section 4.2 can be applied with multiple endogenous
variables with a generalized conditioning statistic.

5.1. Modified Interpolation Approach

As with a single endogenous variable, error taken on from the estimation of 𝜌(𝑧𝑖) prevents
immediate comparison of JK(𝛽0) to JK𝐺(𝛽0). Instead as an intermediate step consider showing
that the quantiles of JK𝐼(𝛽0) can be approximated by corresponding quantiles of JK𝐺(𝛽0) where
JK𝐼(𝛽0) is an infeasible statistic:

JK𝐼(𝛽0) B 𝜖(𝛽0)(Π̂𝐼)((Π̂𝐼
𝜖)′(Π̂𝐼

𝜖))−1(Π̂𝐼)′𝜖(𝛽0),

for Π̂𝐼 and Π̂𝐼
𝜖 defined the same way as Π̂ and Π̂𝜖 in (2.4), respectively, but using the true values

(𝑟1 , . . . , 𝑟𝑛)′ in place of their estimates (𝑟1 , . . . , 𝑟𝑛)′.

When there are multiple endogenous variables, 𝑑𝑥 > 1, I cannot take advantage of the simplified
form of the test statistic to establish this approximation as in Section 3. Instead I deal directly
with the test statistics themselves. Consider functions 𝜑𝛾(·) ∈ 𝐶3

𝑏
(R) that approximate the

indicators 1{· ≤ 𝑎}, where 𝑎 ∈ R is arbitrary and 𝛾 is a scaling factor inversely proportional to
the quality of the approximation but positively proportional to the derivatives of 𝜑𝛾. The goal
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is to show, for a sequence 𝛾𝑛 tending to zero, that

E[𝜑𝛾𝑛 (JK𝐼(𝛽0)) − 𝜑𝛾𝑛 (JK𝐺(𝛽0))] → 0 (5.1)

The classical interpolation argument of Lindeberg (1922) would attempt to show (5.1) by one-
by-one replacement of each pair, (𝜖𝑖(𝛽0), 𝑟𝑖)′, in the expression of 𝜑𝛾𝑛 (JK𝐼(𝛽0)) with its Gaussian
analog, (�̃�𝑖(𝛽0), 𝑟𝑖)′, and bounding of the size of each of these deviations. As mentioned in
Section 3, the problem arises as the derivative of the test statistic, JK𝐼(𝛽0), with respect to terms
in the denominator matrix, Π̂′

𝜖Π̂𝜖, may be as large as the inverse of the minimum eigenvalue
of the denominator matrix. When identification is sufficiently weak, the denominator matrix
will have a nonnegligible distribution and the inverse of its minimum eigenvalue may not have
finite moments.

To get around this, I modify the argument by considering a “data-dependent” choice of ap-
proximation parameter 𝛾𝑛 . This choice of approximation parameter inversely scales with the
determinant of the denominator matrix and thus, since the determinant is the product of the
eigenvalues, inversely scales with the minimum eigenvalue.1 Geometrically, this approach can
be thought of as “stretching out” the function 𝜑𝛾𝑛 (·) in directions where the minimum eigen-
value of the denominator matrix is close to zero. Since the overall derivatives of 𝜑𝛾𝑛 (JK𝐼(𝛽0))
with respect to (𝜖𝑖(𝛽0), 𝑟𝑖)′ depend on the product of derivatives with respect to the test statistic
and derivatives of 𝜑𝛾𝑛 (·), which scale inversely with the approximation parameter, this adjust-
ment of the approximation parameter allows control of the overall derivative. Details of this
approach can be found in Appendix D.

This approach relies on stronger moment conditions, which I detail below. These strengthened
moment conditions are needed mainly needed to bound moments of the determinant of the
denominator matrix. For all ℓ = 1, . . . , 𝑑𝑥 let 𝜁ℓ 𝑖 B 𝑣𝑖 − 𝜌ℓ (𝑧𝑖)𝜂𝑖 , noting that 𝜁ℓ 𝑖 = 𝑟ℓ 𝑖 − E[𝑟ℓ 𝑖].
Recall also the definition of 𝜂𝑖 = 𝜖𝑖 − 𝑣′𝑖(𝛽 − 𝛽0), which is equal to 𝜖𝑖(𝛽0) − E[𝜖𝑖(𝛽0)].

Assumption 5.1 (Moment Conditions). Assume (i) there are constants 𝑐 > 1 and 𝜐 ∈ (0, 1] ∪ {2}
such that ∥𝜖𝑖 ∥𝜓𝑎 ≤ 𝑐 and ∥𝜁ℓ 𝑖 ∥𝜓𝜐 ≤ 𝑐, and (ii) 𝑐−1 ≤ 𝜆min(E[𝜂𝑖𝜂′𝑖]) ≤ 𝜆max(E[𝜂𝑖𝜂′𝑖]) ≤ 𝑐.

Assumption 5.2 (Balanced Design). (i) For any ℓ = 1, . . . , 𝑑𝑥 let 𝑠−2
ℓ ,𝑛

= max1≤𝑖≤𝑛 E[(Π̂𝐼
ℓ 𝑖
)2]; then,

the minimum eigenvalue of the following matrix is bounded away from zero:

𝑐−1 ≤ 𝜆minE
(
𝑠ℓ ,𝑛 𝑠𝑘,𝑛
𝑛

∑𝑛
𝑖=1(Π̂𝐼

ℓ 𝑖
)(Π̂𝐼

𝑘𝑖
)
)

1≤ℓ≤𝑑𝑥
1≤𝑘≤𝑑𝑥

(ii) max𝑖 𝑠𝑛
∑
𝑗≠𝑖 ℎ

2
𝑗𝑖
≤ 𝑐; and (iii) the following ratio is bounded away from zero:

∑𝑛
𝑘=2 𝜆

2
𝑘
(𝐻𝐻′)∑𝑛

𝑘=1 𝜆
2
𝑘
(𝐻𝐻′) ≥ 𝑐−1

where 𝜆𝑘(𝐻𝐻′) represents the 𝑘th largest eigenvalue of the matrix 𝐻𝐻′.

Assumption 5.1(i) strengthens Assumption 3.1 to require that the random variables (𝜂𝑖 , 𝜁𝑖), and
thus, by extension, (𝜖𝑖(𝛽0), 𝑟𝑖) are 𝜐-sub-exponential. As discussed below Assumption 3.4 this
is more restrictive than the finite sixth moments needed to establish Lemma 3.1 but still allows
for a wide range of possible distributions. Assumption 5.1(ii) is a light regularity condition
requiring that the random variables (𝜂1𝑖 , . . . , 𝜂𝑑𝑥 𝑖) be linearly independent.

Assumption 5.2(i) is a natural extension of Assumption 3.2(i) to the setting where 𝑑𝑥 > 1. It
requires that the average second moment of any linear combination of the first-stage estimates
is proportional to the maximum second moment of the same linear combination. Assump-
tion 5.2(ii,iii) are the same conditions as Assumption 3.2(ii,iii) and can again be implicitly

1The determinant has the benefit of being a smooth function of elements of the matrix. This makes it nicer to
work with than the minimum eigenvalue itself, which loses differentiability when the dimension of its eigenspace
is larger than one.
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thought of as requiring that the maximum leverage of any one observation be bounded and
there be than two effective instruments in the hat matrix. Assumption 5.2 thus reduces to
Assumption 3.2 when 𝑑𝑥 = 1.

Assumption 5.3 (Local Identification). (i) The local power index is bounded 𝑃 ≤ 𝑐 for

𝑃 =

𝑑𝑥∑
ℓ=1
E

[(
𝑠ℓ ,𝑛√
𝑛

𝑛∑
𝑖=1

Π̂𝐼
ℓ 𝑖Π

′
𝑖(𝛽 − 𝛽0)

)2]
(ii) E[(𝑠𝑛,ℓ

∑
𝑗≠𝑖 ℎ 𝑗𝑖𝜖 𝑗(𝛽0))2] ≤ 𝑐 for all ℓ = 1, . . . , 𝑑𝑥 .

Lemma 5.1 (Infeasible Uniform Approximation). Suppose that Assumptions 5.1–5.3 hold. Then

sup
𝑎∈R

|Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0)) ≤ 𝑎)| → 0

5.2. Limiting Behavior of Test Statistic

Having derived the limiting behavior of the infeasible statistic, I next present a high-level
condition under which estimation error taken on from estimation of 𝜌(𝑧𝑖) can be treated as
negligible. I then verify this high-level condition for the ℓ1-regularized estimators proposed in
(2.2). For any ℓ = 1, . . . , 𝑑𝑥 define the scaled differences

Δ𝑁,ℓ B
𝑠ℓ ,𝑛√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)(Π̂ℓ ,𝑖 − Π̂𝐼
ℓ ,𝑖)

Δ𝐷,ℓ B
𝑠2
ℓ ,𝑛

𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)(Π̂2

ℓ ,𝑖 − (Π̂𝐼
ℓ ,𝑖)

2)

As long as these scaled differences tend to zero, Lemma 5.2 shows that the difference between
the feasible and infeasible test statistics converges to zero:

Lemma 5.2. Suppose that Assumptions 5.1–5.3 hold and that (Δ𝑁,ℓ ,Δ𝐷,ℓ ) →𝑝 0 for all ℓ = 1, . . . , 𝑑𝑥 .
Then |JK(𝛽0) − JK𝐼(𝛽0)| →𝑝 0.

As with Lemma 3.2, while Lemma 5.2 is a simple statement, it is not immediate. In particular,
establishing Lemma 5.2 requires showing that 𝜆max(𝐷−1) is bounded in probability, where 𝐷
represents a scaled version of the denominator matrix. This requires some work as the scaled
denominator matrix is not required to converge in distribution to a stable limit. Instead I
directly show that 𝜆max(𝐷−1) is bounded in probability by showing that Pr(𝜆min(𝐷) ≤ 𝛿𝑛) → 0
for any sequence 𝛿𝑛 → 0.

To do this, I first demonstrate that it is sufficient to show that Pr(𝑎′𝐷𝑎 ≤ 𝛿𝑛) → 0 for any 𝛿𝑛 → 0
and fixed 𝑎 ∈ 𝒮𝑑𝑥−1 = {𝑣 ∈ R𝑑𝑥 : ∥𝑣∥ = 1}. I then establish the claim for an arbitrary choice of 𝑎.
As in Lemma 3.2 I do this by comparing the scaled quadratic form of the denominator matrix
to a Gaussian analog and then establishing the corresponding result for the Gaussian analog.
This corresponding result is again also useful for establishing the validity of the interpolation
approach with a dynamic choice of approximation parameter.

I state conditions under which (Δ𝑁,ℓ ,Δ𝐷,ℓ ) →𝑝 0 holds for the ℓ1-regularized estimation proce-
dure proposed in (2.2). These conditions are equivalent to those in Assumption 3.4 but hold
for each the 𝑑𝑥 estimation procedures.

Assumption 5.4 (Estimation Error). (i) The basis terms 𝑏(𝑧𝑖) are bounded, ∥𝑏(𝑧𝑖)∥∞ ≤ 𝐶 for all
𝑖 = 1, . . . , 𝑛; (ii) the approximation error satisfies (E𝑛[𝜉2

ℓ 𝑖
])1/2 = 𝑜(𝑛−1/2); (iii) the researcher has access
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to estimators 𝜙ℓ of 𝜙ℓ that satisfy log(𝑑𝑏𝑛)2/(𝜐∧1)∥𝜙ℓ − 𝜙ℓ ∥1 →𝑝 0 for each ℓ ∈ [𝑑𝑥]; and (iv) locally
identified in the sense that

(iva) max1≤ℓ≤𝑑𝑥
1≤𝑘≤𝑑𝑏

��E[ 𝑠𝑛,ℓ√
𝑛

∑𝑛
𝑖=1

∑
𝑗≠𝑖 ℎ𝑖 𝑗𝜖𝑖(𝛽0)𝑏𝑘(𝑧 𝑗)𝜖 𝑗(𝛽0)

] �� ≤ 𝑐

(ivb) max 1≤𝑖≤𝑛
1≤ℓ≤𝑑𝑏

|E[𝑠𝑛,ℓ
∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑏ℓ (𝑧 𝑗)𝜖 𝑗(𝛽0)]| ≤ 𝑐.

Under Assumption 5.4 the conditions of Lemma 5.2 are satisfied. If these conditions are
satisfied, Lemmas 5.1 and 5.2 can be combined to analyze the behavior of JK(𝛽0) statistics in
local neighborhoods of the null.

Theorem 5.1 (Uniform Approximation). Suppose that Assumptions 5.1–5.4 hold. Then,

sup
𝑎∈R

|Pr(JK(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)| → 0

In particular, under 𝐻0, JK(𝛽0)⇝ 𝜒2
𝑑𝑥

.

As in Lemma 3.1, the result in Theorem 5.1 does not require JK𝐺(𝛽0) to have a stable limiting
distribution under 𝐻1.

5.3. Improving Power against Certain Alternatives

As discussed in Section 4.1, tests based on the jackknife K-statistic may suffer from suboptimal
power properties. These properties are particularly bad whenever E[Π̂ℓ 𝑖] = 0 for some ℓ ∈ [𝑑𝑥]
and all 𝑖 ∈ [𝑛]. To improve power in this direction, I propose a generalization of the thresholding
test in Section 4.2 based on the conditioning statistic 𝐶

𝐶 B min
1≤ℓ≤𝑑𝑥

max
1≤𝑖≤𝑛

���� ∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟ℓ 𝑗

(∑𝑗≠𝑖 ℎ
2
𝑖 𝑗
)1/2

���� (5.2)

The conditioning statistic 𝐶 attempts to detect whether, for some ℓ ∈ [𝑑𝑥], E[Π̂𝐼
ℓ 𝑖
] = 0 for all

𝑖 ∈ [𝑛]. Under the assumption thatE[Π̂𝐼
ℓ 𝑖
] = 0,∀𝑖 ∈ [𝑛], ℓ ∈ [𝑑𝑥], quantiles of𝐶 can be simulated

by multiplier bootstrap. Let 𝑒1 , . . . , 𝑒𝑛 be generated iid standard normal independent of the
data and for any 𝜃 ∈ (0, 1), define the conditional bootstrap quantile:

𝑐𝐶1−𝜃 B (1 − 𝜃) quantile of min
1≤ℓ≤𝑑𝑥

max
1≤𝑖≤𝑛

���� ∑𝑗≠𝑖 𝑒 𝑗ℎ𝑖 𝑗𝑟 𝑗

(∑𝑗≠𝑖 ℎ
2
𝑖 𝑗
)1/2

���� conditional on {(𝑦𝑖 , 𝑥𝑖 , 𝑧𝑖)}𝑛𝑖=1

Based on the value of the conditioning statistic the researcher can decide whether to run a test
based on JK(𝛽0) or a test based on the sup-score statistic 𝑆(𝛽0).

𝑇(𝛽0; 𝜏) B
{
1{JK(𝛽0) > 𝜒2

𝑑𝑥 ;1−𝛼} if 𝐶 > 𝜏

1{𝑆(𝛽0) > 𝑐𝑆1−𝛼} if 𝐶 ≤ 𝜏
(5.3)

As with Theorem 4.1, I show the asymptotic validity of the thresholding test by first establishing
that quantiles of (JK(𝛽0), 𝐶) and (𝑆(𝛽0), 𝐶) can jointly be approximated by Gaussian analogs
and then using the marginal independence of the Gaussian analog testing and conditioning
statistics under the null; (JK(𝛽0) ⊥ 𝐶) and (𝑆𝛽0) ⊥ 𝐶) under 𝐻0.

Theorem 5.2. Suppose that Assumptions 4.1(ii,iii), 5.1, 5.2, and 5.4 hold. Then,

1. the test based on 𝑇(𝛽0; 𝜏) has asymptotic size 𝛼 for any choice of cutoff 𝜏, and
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2. if E[Π̂𝐼
ℓ 𝑖
] = 0 for all 𝑖 ∈ [𝑛] and ℓ ∈ [𝑑𝑥], there exist sequences 𝛿𝑛 ↘ 0 and 𝛽𝑛 ↘ 0 such that

with probability at least 1 − 𝛿𝑛 ,

sup
𝜃∈(0,1)

|Pr𝑒(𝐶 ≤ 𝑐𝐶1−𝜃) − (1 − 𝜃)| ≤ 𝛽𝑛

where Pr𝑒(·) denotes the probability with respect to only the variables 𝑒1 , . . . , 𝑒𝑛 .

The first part of Theorem 5.2 establishes the validity of the test based on the thresholding
statistic for any choice of cutoff 𝜏. In practice, I recommend taking the cutoff, 𝜏, to be the 75th

quantile of the distribution of 𝐶 under the assumption that E[Π̂𝐼
ℓ 𝑖
] = 0 for all ℓ ∈ [𝑑𝑥] and

𝑖 ∈ [𝑛]. The second part of Theorem 5.2 establishes that this quantile can be simulated via the
multiplier bootstrap procedure described above.

6. Empirical Application

I apply the testing procedures proposed in this paper to the data of Gilchrist and Sands (2016),
who seek to determine the effect of social spillovers in movie consumption. The sample
consists of all 1,671 opening weekend days1 between January 1, 2002 and January 1, 2012. For
each opening weekend, the authors observe gross ticket sales for all movies wide released in
theaters in the United States.2 The data are obtained through Box Office Mojo, a subsidiary of
the Internet Movie Database (IMDb). To focus on movies in theaters long enough for social
spillovers to be a relevant factor, the authors consider only movies that remain in theaters for
at least six weeks.

The outcome variables of interest are gross ticket sales of movies that opened in a given weekend
in the second through sixth weeks of their run, while the endogenous variable is the gross ticket
sales of a movie in its opening weekend. To control for seasonal periodicity in both the supply
of and demand for movies, a vector of date controls are included. Formally, Gilchrist and Sands
(2016) are interested in the parameters 𝛽𝑤 , 𝑤 = 2, . . . , 7 from the linear IV model(s):

Sales⊥𝑤𝑖 = 𝛽𝑤Sales⊥1𝑖 + 𝜖𝑤𝑖 (6.1)

where, for 𝑖 = 1, . . . , 6, Sales⊥𝑤𝑖 represents gross national ticket sales, after the partialing out
of date controls and a constant, 7𝑤 days after day 𝑖, of movies that opened on the opening
weekend of 𝑖. The variable Sales⊥7𝑖 =

∑6
𝑤=1 Sales⊥𝑤𝑖 denotes the cumulative national ticket sales

from the second through sixth running weekends of movies who opened in weekend 𝑖, after the
partialing out of date controls and a constant. The parameter 𝛽𝑤 represents the social spillover
effect of strong opening weekend sales on sales in later weeks; more people seeing a movie on
its opening weekend will mean more people telling their friends about the movie potentially
leading to larger sales later on.

Because movies with high first-week sales may have high sales in succeeding weeks for reasons
other than word of mouth spillover effects (e.g the movie may receive positive critical reviews
prerelease or be part of a previously successful franchise), the parameter 𝛽𝑤 cannot be plausibly
recovered from ordinary least squares regression of Sales⊥𝑤𝑖 on Sales⊥1𝑖 . To identify the struc-
tural parameter, Gilchrist and Sands (2016) employ a vector of nationally aggregated weather
measures. These weather measures reflect the proportion of movie theaters experiencing a
particular type of weather on a particular weekend. The measures include the proportion
of movie theaters experiencing maximum temperatures in 5◦ Fahrenheit bins on the interval
[10◦ , 100◦], the proportion of movie theaters experiencing precipitation levels in 0.25 inch per

1An opening weekend day is a Friday, Saturday, or Sunday of opening weekend.
2A wide released movie is any movie that ever shows on 600 or more screens.
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hour increments on the interval [0, 1.5], and the proportions of theaters experiencing any type
of snow and of theaters experiencing any type of rain.

The nationally aggregated weather conditions on opening weekend days serve as plausibly
exogenous instrumental variables, affecting ticket sales in later weeks only through their effect
on opening-weekend-day sales. Same-day weather conditions may also have an effect on movie
ticket sales: when the weather is particularly nice, people may be more inclined to engage in
outdoor activities while in poorer, weather people may choose to stay indoors and see a new
movie. Putting together the nationally aggregated weather measures leaves Gilchrist and Sands
(2016) with a vector of 52 instrumental variables. After the partialing out a constant and the
date controls, four of these are linearly dependent. I discard these and work with the remaining
48 partialed-out instruments in my analysis.

To handle the large number of instruments, the authors follow Belloni et al. (2012) and employ
a post-LASSO estimate of the first stage. In their main specifications, they set the first-stage
penalty parameter so that the number of instrument selected is one, two, or three. The resulting
first-stage F-statistics using the selected instrument(s), 38.80, 25.86, and 20.95, respectively,
seem to indicate strong identification.3 However, the first-stage F-statistic on the full set of
instrumental variables is only 3.80. Moreover, since the LASSO objective is an ℓ1 penalized
version of the OLS loss, using the variables selected by LASSO may mechanically lead to higher
F-statistics even if the underlying relationship between the instruments and the endogenous
variables is weak.

Figure 6.1 provides evidence from a simple simulation experiment to demonstrate this. For the
simulation experiment I generate an iid sample of 10 instrumental variables, {𝑍1𝑖 , . . . , 𝑍10𝑖}𝑛𝑖=1
from a normal distribution with a Toeplitz covariance structure, Cov(𝑍ℓ 𝑖 , 𝑍𝑘𝑖) = (1.1)−| 𝑗−𝑘 |,
1 ≤ 𝑗 , 𝑘 ≤ 10. The endogenous variable is generated to only have a weak relationship with the
instruments 𝑋𝑖 = 1√

𝑛

∑10
ℓ=1 0.7 ·𝑍ℓ 𝑖 + 𝑣𝑖 , where the first-stage errors 𝑣𝑖 are independent standard

normals. From this initial set of 10 instrumental variables I generate an additional 55 technical
instruments by squaring and taking all interactions between variables in the initial set. These
generated instruments are correlated with the initial instruments but do not directly enter the
first stage.

I then set the LASSO penalty so that only a certain number of instruments are chosen and
report the resulting average first stage F-statistics over one thousand simulations. As seen in
Figure 6.1, these first-stage F-statistics increase significantly as the number of selected instru-
ments decreases. While the “true” F-statistic, computed with only the 10 initial instruments
directly relevant for the first stage, is only 5.234, the average F-statistic on the selected variables
can be larger than 40. The persistence of this pattern between sample sizes 𝑛 = 500 and 𝑛 = 1000
suggests that this is not a small-sample issue and that pretesting for weak identifications based
on post-LASSO F-statistics may be problematic generally. Figure 6.2 shows how the first stage
F-statistic changes with the number of LASSO-selected variables in the Gilchrist and Sands
(2016) data. The pattern is similar to that seen in the Figure 6.1 simulation experiment.

Given a lack of clarity on the strength of identification, I seek to validate the results of Gilchrist
and Sands (2016) using the weak identification testing procedures proposed in this paper.
The setting is particularly suitable for weak IV testing using the jackknife K-statistic. With 48
instruments and a sample size of 1671, 𝑑3

𝑧 = 110,592 ≫ 𝑛, making the tests of Moreira (2003,
2009), Kleibergen (2005), and Andrews (2016) inapplicable. On the other hand, it is unclear
whether asymptotic approximations based on 𝑑𝑧 → ∞will accurately describe the finite-sample
distribution of test statistics with 48 instruments. Moreover, since fluctuations in movie theater
attendance seem to be largely driven by either particularly cold or particularly hot weather (see

3Typical empirical practice is to use the Wald test when the first stage F-statistic is larger than 10.
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Figure 6.1: Results from Simulation Experiment. The endogenous variable is generated
to be weakly related to a set of ten initial instruments. I take quadratic powers and inter-
actions of these ten initial instruments to create an additional 55 technical instruments
that do not directly enter the first stage. The LASSO penalty is then set to select a certain
number of variables and I report the resulting average post-LASSO F-statistics over 1000
simulations. The average F-statistic using only the relevant ten initial instruments is
5.234 for both 𝑛 = 500 and 𝑛 = 1000.

Figure 6.2: First-Stage F-statistic as Function of Number of LASSO-Selected Variables in
the Data of Gilchrist and Sands (2016). When selecting variables using a cross-validated
choice of LASSO penalty parameter, the first-stage F-statistic is 6.42.
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Figure 4 in Gilchrist and Sands (2016)), the nuisance parameter 𝜌(𝑧𝑖) is plausibly approximately
sparse.

Table 6.1 compares the 95% confidence intervals for 𝛽1 , . . . , 𝛽7 generated by the jackknife K
test to the confidence intervals generated by the sup-score test of Belloni et al. (2012) and the
jackknife LM test (JLM) test of Matsushita and Otsu (2022). I form these confidence intervals
by running the tests for each 𝛽0 on a 300 point grid between zero and two and inverting the
results; a point 𝛽0 is included in the 95% confidence interval if the test fails to reject the null
that 𝛽𝑤 = 𝛽0 at level 𝛼 = 0.05. For the JK(𝛽0) statistic I use the choice of hat matrix in (2.3)
and estimate the auxiliary parameter 𝜌(𝑧𝑖) as in (2.2). The penalty parameter 𝜆 is chosen with
leave-one-out cross-validation using the cv.glmnet command from the glmnet package in R
(R Core Team, 2021; Friedman et al., 2010). The critical value for the sup-score statistic 𝑆(𝛽0)
is simulated using 2,500 bootstrap draws. Confidence intervals based on the combination test,
𝑇(𝛽0; 𝜏), are not directly reported as the pretesting procedure based on simulating the 75th

quantile of 𝐶 as in (4.4) always suggests using the JK(𝛽0) statistic.

For reference, I also provide point estimates and standard errors for 𝛽1 , . . . , 𝛽7 from Gilchrist and
Sands (2016), Table 2. To facilitate comparison, these point estimates and standard errors come
from a specification that uses all the instruments in the first stage of a 2SLS procedure. While the
Gilchrist and Sands (2016) point estimates are always in the 95% confidence intervals generated
by the JK(𝛽0) and JLM tests, the confidence intervals from the identification-robust procedures
are significantly wider than those generated with the 2SLS standard errors. Interestingly, the
confidence intervals from inverting the jackknife K-test tend to be quite similar to the confidence
intervals from the JLM test. This is surprising given the distinct forms of the JK(𝛽0) and the
JLM test statistics.

For the parameters 𝛽2 , 𝛽4 , 𝛽5 , and 𝛽6, the confidence intervals generated by the sup-score
statistic are empty while the sup-score confidence interval for 𝛽2 is nearly empty. This is
also the case when using the jackknife AR-statistic of Crudu et al. (2021) and Mikusheva and
Sun (2021), whose confidence intervals are not reported as they are always empty. With 48
instruments and a single parameter the linear IV model in (6.1) is overidentified and as such
the empty confidence intervals could be interpreted as evidence of model misspecification. For
the parameter 𝛽7 the confidence interval generated by inverting the sup-score statistic is not
empty and is instead 36% larger than the JK(𝛽0) confidence interval and 41% larger than the
JLM confidence interval. This result suggests that the jackknife K tests and JLM tests may have
better power properties than the sup-score test in this setting.

Parameter 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7

Estimate
(s.e.)

0.475
(0.024)

0.269
(0.023)

0.164
(0.017)

0.121
(0.013)

0.093
(0.010)

1.222
(0.074)

JK(𝛽0) [0.436, 0.557] [0.227, 0.334] [0.134, 0.214] [0.100, 0.167] [0.080, 0.134] [1.003, 1.391]
𝑆(𝛽0) ∅ [0.294, 0.334] [0.087, 0.094] ∅ ∅ [0.990, 1.518]
JLM [0.436, 0.557] [0.227, 0.334] [0.134, 0.214] [0.107, 0.167] [0.087, 0.134] [1.010, 1.384]

Table 6.1: 95% Confidence Intervals based on inverting various test statistics. Instrument set used
is the same as the Gilchrist and Sands (2016) instrument set less four collinear instruments; 𝑑𝑧 = 48
with 𝑛 = 1, 671. Thresholding test confidence intervals are not reported as they coincide with
confidence intervals for JK(𝛽0).

Tables 6.2 and 6.3 repeat the analysis of Table 6.1 but with alternative instrument sets. The
confidence intervals of Table 6.2 use only 5◦ Fahrenheit temperature bins (𝑑𝑧 = 36) while the
confidence intervals of Table 6.3 include all the instruments used in Table 6.1 and all interactions
between the 5◦ Fahrenheit temperature bins and the other weather measures for a total of 524
instruments.4 For the most part, the confidence intervals generated by inverting the jackknife

4The instrument set of Table 6.3 does not include interactions between temperature bins nor interactions between
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K-statistic are similar across Tables 6.1-6.3. The confidence intervals for the jackknife LM
statistic however, become much narrower when using the largest set of instruments is used.
This is interesting as the results from the JK(𝛽0) test as well as the power analysis in Section 4
seem to suggest that use of the extra isntruments does not lead to better first-stage estimates.
Interestingly, the JLM confidence intervals in for 𝛽6 , 𝛽7 in Table 6.3 do not contain the point
estimates for 𝛽6 and 𝛽7 from Gilchrist and Sands (2016). As with Table 6.1, Tables 6.2 and 6.3 do
not report confidence intervals from 𝑇(𝛽0; 𝜏) as these always agree with the JK(𝛽0) confidence
intervals and do not report jackknife AR confidence intervals as these are always empty.

Parameter 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7

Estimate
(s.e.)

0.475
(0.024)

0.269
(0.023)

0.164
(0.017)

0.121
(0.013)

0.093
(0.010)

1.222
(0.074)

JK(𝛽0) [0.449, 0.597] [0.255, 0.389] [0.148, 0.248] [0.114, 0.194] [0.094, 0.154] [1.086, 1.555]
𝑆(𝛽0) ∅ [0.302, 0.329] ∅ ∅ ∅ ∅
JLM [0.449, 0.597] [0.255, 0.389] [0.154, 0.248] [0.114, 0.194] [0.094, 0.154] [1.092, 1.555]

Table 6.2: 95% Confidence Intervals based on inverting various test statistics. Instrument set used
includes only temperatures measures; 𝑑𝑧 = 36, with 𝑛 = 1, 671. Thresholding test condidence
intervals are not reported as they coincide with confidence intervals for JK(𝛽0).

Parameter 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7

Estimate
(s.e.)

0.475
(0.024)

0.269
(0.023)

0.164
(0.017)

0.121
(0.013)

0.093
(0.010)

1.222
(0.074)

JK(𝛽0) [0.443, 0.604] [0.215, 0.342] [0.094, 0.228] [0.087, 0.154] [0.054, 0.121] [0.916, 1.435]
𝑆(𝛽0) [0.416, 0.477] ∅ ∅ [0.034, 0.121] [0.121, 0.208] [0.918, 1.562]
JLM [0.463, 0.497] [0.268, 0.282] [0.161, 0.174] [0.101, 0.107] [0.063, 0.084] [1.059, 1.137]

Table 6.3: 95% Confidence Intervals based on inverting various test statistics. Instrument set used
includes the original instrument set along with interactions of the temperature measures set with
all other aggregated weather measures; 𝑑𝑧 = 524, with 𝑛 = 1, 671. Thresholding test confidence
intervals are not reported as they coincide with confidence intervals for JK(𝛽0).

7. Simulation Study

In this simulation study, I examine the performance of tests based on the JK(𝛽0) statistic and
compare it with that of other tests that may be used in settings where the number of instruments
is nonnegligible as a fraction of sample size. I consider a reduced-form data-generating process
(DGP) similar to that of Matsushita and Otsu (2022). The outcome variable, 𝑦𝑖 , and endogenous
variable, 𝑥𝑖 , are generated according to

𝑦𝑖 = 𝑥𝑖 + 𝜖𝑖

𝑥𝑖 = Π𝑖 + 𝑣𝑖
(7.1)

where Π𝑖 =
1
𝑟𝑛

∑5
𝑘=1

3
4 �̄�𝑘𝑖 + 1

4 �̄�
2
𝑘𝑖
+ 1

4 �̄�
3
𝑘𝑖

is a transformation of an initial set of instruments �̄�𝑖 ∈ R10

generated as described below. The value of 𝑟𝑛 varies depending on the strength of identification
considered; for strong identification, 𝑟𝑛 = 1, while under weak identification, 𝑟𝑛 = 1/

√
𝑛. To

model heteroskedasticity, the errors (𝑒𝑖 , 𝑣𝑖) are generated 𝜖𝑖 = (1 + 𝜚1(�̄�2
1𝑖 + �̄�

2
2𝑖 + �̄�2𝑖 �̄�3𝑖))𝑒1𝑖 , and

𝑣𝑖 = 𝜚2(1 + �̄�1𝑖)𝜖𝑖 + (1 − 𝜚2)2𝑒2𝑖 where 𝑒1𝑖 and 𝑒2𝑖 are generated independently of each other
and other variables in the model according to a Laplace distribution with location parameter
𝜇 = 0 and scale parameter 𝑏 = 1.1 Since the limiting 𝜒2 distribution of the jackknife K-statistic

other weather measures.
1The Laplace distribution is often referred to as a “double exponential” distribution. If 𝑋1 and 𝑋2 are indepen-

dently distributed according Exponential(1), then 𝑌 = 𝑋1 − 𝑋2 has a Laplace distribution with parameters 𝜇 = 0
and 𝑏 = 1. If 𝑋 has a Laplace distribution with parameters 𝜇 = 0 and 𝑏 = 1, then |𝑋 | ∼ Exponential(1).
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is exact when the errors are jointly Gaussian and 𝜌(𝑧𝑖) is known, I purposefully avoid normally
distributed errors to investigate the quality of asymptotic approximations to the finite-sample
behavior of the test. The parameters 𝜚1 and 𝜚2 control the degree of heteroskedasticity and
endogeneity, respectively.

DGP Testing Procedure

𝑛 𝑑𝑧 𝜚1 𝜚2 JK(𝛽0) 𝑆(𝛽0) 𝑇(𝛽0; 𝜏0.3) 𝑇(𝛽0; 𝜏0.75) A.Rbn. JAR JLM
200 10 0.2 0.3 0.0516 0.0352 0.0406 0.0406 0.0296 0.0766 0.0502

0.2 0.6 0.0542 0.0306 0.0442 0.0384 0.0258 0.0748 0.0400
0.5 0.3 0.0470 0.0338 0.0416 0.0418 0.0238 0.0784 0.0460
0.5 0.6 0.0506 0.0350 0.0416 0.0390 0.0280 0.0676 0.0384

30 0.2 0.3 0.0570 0.0124 0.0422 0.0200 0.0088 0.1000 0.0382
0.2 0.6 0.0564 0.0126 0.0408 0.0208 0.0124 0.0962 0.0322
0.5 0.3 0.0498 0.0100 0.0366 0.0190 0.0096 0.1090 0.0318
0.5 0.6 0.0562 0.0118 0.0420 0.0216 0.0088 0.1104 0.0292

65 0.2 0.3 0.0542 0.0316 0.0428 0.0370 0.0314 0.0764 0.0420
0.2 0.6 0.0532 0.0366 0.0418 0.0398 0.0250 0.0780 0.0376
0.5 0.3 0.0474 0.0308 0.0388 0.0362 0.0244 0.0748 0.0354
0.5 0.6 0.0484 0.0324 0.0366 0.0388 0.0282 0.0708 0.0402

500 10 0.2 0.3 0.0590 0.0468 0.0478 0.0516 0.0376 0.0652 0.0452
0.2 0.6 0.0530 0.0420 0.0460 0.0466 0.0366 0.0692 0.0434
0.5 0.3 0.0496 0.0370 0.0408 0.0368 0.0338 0.0710 0.0464
0.5 0.6 0.0512 0.0426 0.0456 0.0438 0.0334 0.0696 0.0404

30 0.2 0.3 0.0522 0.0202 0.0386 0.0278 0.0238 0.0818 0.0322
0.2 0.6 0.0558 0.0208 0.0408 0.0310 0.0266 0.0888 0.0342
0.5 0.3 0.0554 0.0178 0.0392 0.0280 0.0174 0.0940 0.0272
0.5 0.6 0.0570 0.0156 0.0426 0.0236 0.0206 0.0984 0.0280

65 0.2 0.3 0.0542 0.0372 0.0434 0.0432 0.0384 0.0754 0.0464
0.2 0.6 0.0584 0.0442 0.0482 0.0470 0.0334 0.0676 0.0438
0.5 0.3 0.0614 0.0460 0.0504 0.0496 0.0316 0.0708 0.0434
0.5 0.6 0.0526 0.0378 0.0434 0.0420 0.0298 0.0692 0.0358

Table 7.1: Simulated Size of Identification and Heteroskedasticity Robust Tests under Weak Identi-
fication. Each DGP is simulated 5000 times. Critical values of the sup-score statistic and quantiles
of the conditioning statistic are calculated using 1000 multiplier bootstrap simulations.

In addition to considering the behavior of tests under both weak and strong identification, I
examine the size of the test under three different instrument regimes. In all three regimes,
I begin with an initial set of instruments �̄�𝑖 = (�̄�1𝑖 , . . . , �̄�10𝑖)′ generated independently across
indices according to a multivariate Gaussian distribution with Toeplitz covariance structure,
Cov(�̄�ℓ 𝑖 , �̄�𝑘𝑖) = 2−|ℓ−𝑘 |. In the first regime, the full set instruments 𝑧𝑖 is taken to be equal to �̄�𝑖
so that 𝑑𝑧 = 10. In the second regime, the full set of instruments 𝑧𝑖 additionally includes all
quadratic and cubic terms, (𝑧2

ℓ 𝑖
, 𝑧3
ℓ 𝑖
), ℓ = 1, . . . , 10 so that in total 𝑑𝑧 = 30. In the third regime,

the full set of instrument includes the initial set of instruments, �̄�𝑖 , and all quadratic terms (10
additional terms) and interactions of the initial set of instruments (

(10
2
)
= 45 additional terms),

so that in total 𝑑𝑧 = 65. Under each regime, the full set of instruments is passed to the test
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DGP Testing Procedure

𝑛 𝑑𝑧 𝜚1 𝜚2 JK(𝛽0) 𝑆(𝛽0) 𝑇(𝛽0; 𝜏0.3) 𝑇(𝛽0; 𝜏0.75) A.Rbn. JAR JLM
200 10 0.2 0.3 0.0474 0.0420 0.0474 0.0468 0.0308 0.0728 0.0424

0.2 0.6 0.0512 0.0386 0.0512 0.0506 0.0304 0.0764 0.0378
0.5 0.3 0.0416 0.0318 0.0414 0.0414 0.0248 0.0794 0.0428
0.5 0.6 0.0446 0.0342 0.0446 0.0442 0.0244 0.0806 0.0384

30 0.2 0.3 0.0482 0.0122 0.0448 0.0264 0.0110 0.1048 0.0370
0.2 0.6 0.0498 0.0120 0.0480 0.0312 0.0118 0.0980 0.0378
0.5 0.3 0.0456 0.0126 0.0410 0.0262 0.0082 0.1146 0.0268
0.5 0.6 0.0482 0.0110 0.0474 0.0308 0.0094 0.1090 0.0302

65 0.2 0.3 0.0528 0.0380 0.0526 0.0510 0.0276 0.0696 0.0460
0.2 0.6 0.0464 0.0360 0.0464 0.0468 0.0302 0.0728 0.0416
0.5 0.3 0.0482 0.0298 0.0480 0.0466 0.0246 0.0738 0.0412
0.5 0.6 0.0396 0.0320 0.0390 0.0386 0.0258 0.0748 0.0356

500 10 0.2 0.3 0.0524 0.0444 0.0524 0.0524 0.0394 0.0684 0.0472
0.2 0.6 0.0476 0.0430 0.0476 0.0476 0.0400 0.0644 0.0490
0.5 0.3 0.0434 0.0410 0.0434 0.0434 0.0340 0.0702 0.0404
0.5 0.6 0.0448 0.0382 0.0448 0.0448 0.0350 0.0736 0.0432

30 0.2 0.3 0.0502 0.0214 0.0502 0.0498 0.0240 0.0854 0.0368
0.2 0.6 0.0522 0.0208 0.0522 0.0524 0.0224 0.0858 0.0392
0.5 0.3 0.0456 0.0202 0.0456 0.0434 0.0220 0.0918 0.0264
0.5 0.6 0.0500 0.0186 0.0500 0.0498 0.0204 0.0924 0.0268

65 0.2 0.3 0.0490 0.0426 0.0490 0.0490 0.0350 0.0742 0.0472
0.2 0.6 0.0522 0.0458 0.0522 0.0522 0.0436 0.0652 0.0442
0.5 0.3 0.0542 0.0476 0.0542 0.0542 0.0294 0.0712 0.0446
0.5 0.6 0.0438 0.0420 0.0438 0.0438 0.0306 0.0666 0.0500

Table 7.2: Simulated Size of Identification and Heteroskedasticity Robust Tests under Strong Iden-
tification. Each DGP is simulated 5000 times. Critical values of the sup-score statistic and quantiles
of the conditioning statistic are calculated using 1000 multiplier bootstrap simulations.

statistics with no indication about which instruments correspond to the initial set, and thus no
indication about which instruments are relevant to the DGP.

I compare the simulated size of the jackknife K test and to the performance of the sup-score
test, 𝑆(𝛽0), of Belloni et al. (2012), the thresholding test introduced in Section 4.2, the standard
Anderson-Rubin (A.Rbn.) test of Anderson and Rubin (1949) and Staiger and Stock (1997), the
jackknife AR test (JAR) of Crudu et al. (2021) and Mikusheva and Sun (2021), and the jackknife
LM test (JLM) of Matsushita and Otsu (2022). To estimate the parameter 𝜌(𝑧𝑖), I implement the
ℓ1-penalized procedure of (2.2) via the glmnet package in R (Friedman et al., 2010). The penalty
parameter 𝜆 is selected via tenfold cross-validation. I use the full vector of instruments as the
basis to approximate 𝜌(𝑧𝑖). For the jackknife AR test I use cross-fit estimates of test statistic
variances proposed and shown to improve power by Mikusheva and Sun (2021). Critical
values of the sup-score and conditioning statistic are simulated with the procedures described
in Section 4 with 1000 bootstrap replications. For the combination test cutoff, I consider two



Simulation Study Page 31

Figure 7.1: Calibrated Local Power Curves under Intermediate Identification Strength and 65
Instruments. Sample size is 500 and rejection probability is calculated on a grid of 100 (𝛽0 − 𝛽)
points between -4 and 4. At each point the DGP is simulated 2000 times.

different quantiles of the conditioning statistic under the assumption that E[Π̂𝐼
𝑖
] = 0 for all

𝑖 ∈ [𝑛]; 𝜏0.3 corresponding to the 30th quantile and 𝜏0.75 corresponding to the 75th quantile.

Tables 7.1 and 7.2 report the simulated size for all tests under weak and strong identification,
respectively. One can see that the JK(𝛽0) statistic has nearly exact size in almost all the setups
considered. In contrast, the jackknife AR test seems to overreject in nearly all the simulation
setups considered. This is also the case in the simulation study of Matsushita and Otsu (2022)
and so may be an artifact of the similarity of my simulation design to theirs.

The sup-score, jackknife AR, and jackknife LM test all seem to have particularly poor perfor-
mance under both weak and strong identification when 𝑑𝑧 = 30. This is the setup with the
most correlation between the instruments. While tests based on the jackknife AR statistic can
have a simulated size that is nearly double the nominal size in this setting, both the sup-score
and and jackknife LM tests appear to be conservative. The size of the sup-score test is always
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under 0.025 while the size of the JLM test can be under half of the nominal size. Notably, the
size properties of the sup-score test do seem to improve under both weak and strong identifi-
cation when the sample size increases from 𝑛 = 200 to 𝑛 = 500. This is in line with theoretical
results showing that the sup-score test has exact asymptotic size under standard conditions. In
contrast, the size properties of the jackknife LM test do not seem to improve when the sample
size increases and indeed worsen for three out of the four DGPs considered under both weak
and strong identification. This suggests that the requirement of 𝑑𝑧 → ∞ may be important for
the quality of finite-sample approximation by its limiting distribution.

The thresholding test seems to control size in all the setups considered. However, under
weak identification the thresholding test appears to inherit the conservative nature of the sup-
score test, even in the “large” sample size regime of 𝑛 = 500. This is not the case under
strong identification, suggesting that the thresholding-test is choosing to run tests based on
the JK(𝛽0) with high probability in this regime. This behavior is similar to the conditional
combination tests of Moreira (2003), Andrews (2016) which weigh the K-statistic more under
strong identification. This behavior is optimal as the K-statistic yields effecient inference when
the data is informative about the structural parameter (Andrews et al., 2004, 2006). When errors
are homoskedastic and the number of instruments is fixed, the jackknife K-statistic can also be
shown to yield effecient inference under strong identification.

Figure 7.1 plots calibrated local power curves under an intermediate-strength identification
where the first stage is in a 𝑛−1/3 neighborhood of zero, 𝑑𝑧 = 65, 𝜚1 ∈ {0.2, 0.5} and 𝜚2 ∈
{0.3, 0.6}. The critical value of each test is set to simulated 95th quantile of the distribution of
the corresponding test-statistic under 𝐻0. I compare the calibrated local power curves of the
JK(𝛽0) test, the combination test with cutoff 𝜏0.75, the jackknife AR test, the Jackknife LM test,
and the sup-score test. The jackknife K-test appears to have stronger power than the jackknife
AR, jackknife LM, and sup-score tests in local neighborhoods of the null as well as for negative
values of (𝛽0 − 𝛽). For values of (𝛽0 − 𝛽) larger than 1.5, tests based on the jackknife K-statistic
appear to suffer from a loss of power as described in Section 4. This power decline appears to
be largerly ameliorated by combining the jackknife K-statistic with the sup-score statistic and
the thresholding test appears to have good power properties over all alternatives considered.
However, tests based on the jackknife AR or jackknife LM statistic may still provide better
power than the threshholding test for very positive values of (𝛽0 − 𝛽).

In order to consider the effect of correlated instruments on the power properties of the test in
a setting with plausibly many instruments, I additionally examine local power under a fourth
instrument regime. This setup adds the ten cubic terms 𝑧3

ℓ 𝑖
, ℓ = 1, . . . , 10 to the interactions and

quadratic terms of the third instrument regime for a total of 75 instruments, 𝑑𝑧 = 75. Appendix I
provides the simulated sizes of tests under this fourth regime. Figure 7.2 plots calibrated local
power curves under this fourth instrument regime. While all tests have lower power in this
regime than in the regime considered in Figure 7.1, the many instrument jackknife AR and
jackknife LM tests appear to face a steeper power decline than tests based on the jackknife
K-statistic or the thresholding statistic.

These results should not be interpreted as critiques of the benchmark testing procedures of
Anderson and Rubin (1949), Staiger and Stock (1997), Belloni et al. (2012), Crudu et al. (2021),
Mikusheva and Sun (2021), and Matsushita and Otsu (2022), whose work I rely on and was
inspired by.
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Figure 7.2: Calibrated Local Power Curves under Intermediate identification Strength and 75
Instruments. Sample size is 500 and rejection power is calculated on a grid of 100 (𝛽0 − 𝛽) points
between -4 and 4. At each point the DGP is simulated 2000 times.

8. Conclusion

I propose a new test for the structural parameter in a linear instrumental variables model.
This test is based on a jackknife version of the K-statistic and the limiting behavior of the test
is analyzed via a novel direct Gaussian approximation argument. I show that, as long as an
auxiliary parameter can be consistently estimated, the test is robust to both the strength of
identification and the number of instruments; the limiting distribution of the test statistic does
not depend on either of these factors. Consistency of the auxiliary parameter can be achieved
under approximate sparsity using simple-to-implement ℓ1-penalized methods.

I characterize the behavior of the jackknife K-statistic in local neighborhoods of the null. To
address a power deficiency that tests based on jackknife K-statistic inherit from their non-
jackknife namesakes, I propose a testing procedure that decides whether the researcher should
run a test via the jackknife K-statistic or one via the sup-score statistic based on the value of a
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conditioning statistic. While this combination does not fully address the power decline, I show
that it works well in a simulation study and leave further refinements to future work.
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A. Proofs of Results in Section 3

A.1. Proof of Lemma 3.1

The statement sup𝑎<0
��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)

�� = 0 is immediate since both JK𝐼(𝛽0)
and JK𝐺(𝛽0) are always weakly positive. It thus suffices to show

sup
𝑎≥0

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
�� → 0

Before proceeding, we will introduce some notation. Let �̃� = 𝑠𝑛𝐻 and ℎ̃𝑖 𝑗 = 𝑠𝑛ℎ𝑖 𝑗 , where 𝑠𝑛 is
as in Assumption 3.2. Recall that ℎ̃𝑖𝑖 = 0 and define

𝑁 := 1√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗 �̃� := 1√
𝑛

𝑛∑
𝑖=1

�̃�𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗

𝐷 := 1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)

( 𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗
)2

�̃� := 1
𝑛

𝑛∑
𝑖=1

𝜅2
𝑖 (𝛽0)

( 𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗
)2

where (�̃�𝑖(𝛽0), 𝑟𝑖) are jointly Gaussian with the same mean and covariance matrix as (𝜖𝑖(𝛽0), 𝑟𝑖)
and 𝜅2

𝑖
(𝛽0) = E[𝜖2

𝑖
(𝛽0)]. Under this notation we can write JK𝐼(𝛽0) = 𝑁2

𝐷 1{𝐷>0} and JK𝐺(𝛽0) = �̃�2

�̃�
.

Dealing with these forms of the statistics is difficult for the interpolation argument, since the
denominator is random. Instead, we will notice that since𝐷 = 0 =⇒ 𝑁 = 0 and Pr(�̃� > 0) = 1,
for any 𝑎 ≥ 0 we can rewrite the events

{JK𝐼(𝛽0) ≤ 𝑎} = {𝑁2 − 𝑎𝐷 ≤ 0} and {JK𝐺(𝛽0) ≤ 𝑎} a.s
= {�̃�2 − 𝑎�̃� ≤ 0} (A.1)

With this in mind define

JK𝑎 := 𝑁2 − 𝑎𝐷 and ˜JK𝑎 := �̃�2 − 𝑎�̃�

Showing Lemma 3.1 is then equivalent to showing that sup𝑎 |Pr(JK𝑎 ≤ 0) − Pr( ˜JK𝑎 ≤ 0)| → 0.
We do so in a few lemmas, the final result being shown in Lemma A.6 at the bottom of this
subsection.

Lemma A.1 (Lindeberg Interpolation). Suppose that Assumptions 3.1–3.3 hold. Let 𝜑(·) : R→ R
be such that 𝜑(·) ∈ 𝐶3

𝑏
(R) with 𝐿2(𝜑) = sup𝑥 |𝜑′′(𝑥)| and 𝐿3(𝜑) = sup𝑥 |𝜑′′′(𝑥)|. Then, there is a

constant 𝑀 that depends only on the constant 𝑐 such that:

|E[𝜑(JK𝑎) − 𝜑( ˜JK𝑎)]| ≤ 𝑀(𝑎3 ∨ 1)√
𝑛

(𝐿2(𝜑) + 𝐿3(𝜑))

Proof of Lemma A.1. Begin by defining the leave-one-out numerator, denominator, and decom-
posed statistics

𝑁−𝑖 := 1√
𝑛

∑
𝑗≠𝑖

¤𝜖 𝑗(𝛽0)
∑
ℓ≠𝑖

ℎ̃ 𝑗ℓ ¤𝑟ℓ 𝐷−𝑖 := 1
𝑛

∑
𝑗≠𝑖

¥𝜖2
𝑗 (𝛽0)

(∑
ℓ≠𝑖

ℎ̃ 𝑗ℓ ¤𝑟ℓ
)2

JK−𝑖 := 𝑁2
−𝑖 − 𝑎𝐷−𝑖

where for each ℓ ∈ [𝑛], ¤𝜖ℓ (𝛽0) is equal to 𝜖ℓ (𝛽0) if ℓ > 𝑖 and �̃�ℓ (𝛽0) if ℓ < 𝑖, ¤𝑟ℓ is equal to 𝑟ℓ if ℓ > 𝑖

and 𝑟ℓ if ℓ < 𝑖, and ¥𝜖2
ℓ
(𝛽0) is equal to 𝜅2

ℓ
(𝛽0) if ℓ < 𝑖 and 𝜖2

ℓ
(𝛽0) if ℓ > 𝑖. While the definitions of

¤𝜖ℓ , ¤𝑟ℓ , and ¥𝜖ℓ depend on 𝑖 because we will be considering only one deviation at a time, we will
supress the dependence of these variables on 𝑖 to simplify notation.
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Next, define the one-step deviations

Δ1𝑖 := 𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗 ¤𝑟 𝑗 + 𝑟𝑖
𝑛∑
𝑗=1

ℎ̃ 𝑗𝑖 ¤𝜖 𝑗(𝛽0)

Δ̃1𝑖 := �̃�𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗 ¤𝑟 𝑗 + 𝑟𝑖
𝑛∑
𝑗=1

ℎ̃ 𝑗𝑖 ¤𝜖 𝑗(𝛽0)

Δ2𝑖 := 𝑎𝜖2
𝑖 (𝛽0)(

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗 ¤𝑟 𝑗)2 + 𝑎𝑟2
𝑖

𝑛∑
𝑗=1

ℎ̃2
𝑗𝑖 ¥𝜖

2
𝑗 (𝛽0)︸                                          ︷︷                                          ︸

Δ𝑎2𝑖

+ 2𝑎𝑟𝑖
𝑛∑
𝑗=1

¥𝜖2
𝑗 (𝛽0)

∑
ℓ≠𝑖

ℎ̃ 𝑗ℓ ℎ̃ 𝑗𝑖 ¤𝑟ℓ︸                           ︷︷                           ︸
Δ𝑏2𝑖

Δ̃2𝑖 := 𝑎𝜅2
𝑖 (𝛽0)(

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗 ¤𝑟 𝑗)2 + 𝑎𝑟2
𝑖

𝑛∑
𝑗=1

ℎ̃2
𝑗𝑖 ¥𝜖

2
𝑗 (𝛽0)︸                                           ︷︷                                           ︸

Δ𝑎2𝑖

+ 2𝑎𝑟𝑖
𝑛∑
𝑗=1

¥𝜖2
𝑗 (𝛽0)

∑
ℓ≠𝑖

ℎ̃ 𝑗ℓ ℎ̃ 𝑗𝑖 ¤𝑟ℓ︸                           ︷︷                           ︸
Δ̃𝑏2𝑖

(A.2)

These one-step deviations contain all the terms associated with observation 𝑖 in the expression
of the numerator and denominator of the test statistics. To demonstrate, note that these one-step
deviations satisfy 𝑁−1 + 𝑛−1/2Δ11 = 𝑁 and 𝑎𝐷−1 + 𝑛−1Δ21 = 𝑎𝐷 as

𝑁 =
1√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗

=
1√
𝑛

∑
𝑗>1

𝜖 𝑗(𝛽0)
𝑛∑
ℓ=1

ℎ̃ 𝑗ℓ 𝑟 𝑗 + 𝜖1(𝛽0)
1√
𝑛

∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗

=
1√
𝑛

∑
𝑗>1

𝜖 𝑗(𝛽0)
{
ℎ̃ 𝑗1𝑟1 +

∑
ℓ>1

ℎ 𝑗ℓ 𝑟ℓ

}
+ 𝜖1(𝛽0)

1√
𝑛

∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗

=
1√
𝑛

∑
𝑗>1

𝜖 𝑗(𝛽0)
∑
ℓ>1

ℎ 𝑗ℓ 𝑟ℓ︸                       ︷︷                       ︸
𝑁−1

+ 𝜖1(𝛽0)
1√
𝑛

∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗 + 𝑟1
1√
𝑛

∑
𝑗>1

ℎ̃ 𝑗1𝜖 𝑗(𝛽0)︸                                               ︷︷                                               ︸
𝑛−1/2Δ11

and

𝐷 =
1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)

( 𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗)2

=
1
𝑛

∑
𝑗>1

𝜖2
𝑗 (𝛽0)

( 𝑛∑
ℓ=1

ℎ̃ 𝑗ℓ 𝑟ℓ
)2 + 𝜖2

1(𝛽0)
1
𝑛

(∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗
)2

=
1
𝑛

∑
𝑗>1

𝜖2
𝑗 (𝛽0)

(
ℎ̃ 𝑗1𝑟1 +

∑
ℓ≠1

ℎ̃ℓ 𝑗𝑟ℓ
)2 + 𝜖2

1(𝛽0)
1
𝑛

(∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗
)2

=
1
𝑛

∑
𝑗>1

𝜖2
𝑗 (𝛽0)

(∑
ℓ>1

ℎ̃ℓ , 𝑗𝑟ℓ
)2

︸                         ︷︷                         ︸
𝐷−1
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+ 𝜖2
1(𝛽0)

1
𝑛

(∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗
)2 + 𝑟2

1
1
𝑛

∑
𝑗>1

ℎ̃2
𝑗1𝜖

2
𝑗 (𝛽0) + 2𝑟1

1
𝑛

∑
𝑗>1

𝜖2
𝑗 (𝛽0)

∑
ℓ>1

ℎ̃ℓ 𝑗𝑟ℓ︸                                                                                   ︷︷                                                                                   ︸
(𝑎𝑛)−1Δ21

Using the one-step deviations, write the difference E[𝜑(𝐾𝑎) − 𝜑(�̃�𝑎)] as a telescoping sum, one
by one replacing (Δ1𝑖 ,Δ2𝑖) with (Δ̃1𝑖 , Δ̃2𝑖) in the expressions of JK𝑎 = 𝑁2 − 𝑎𝐷 until we arrive at
˜JK𝑎

= �̃�2 − 𝑎�̃�.

E[𝜑(JK𝑎) − 𝜑( ˜JK𝑎)] =
𝑛∑
𝑖=1
E[𝜑(JK−𝑖 + 𝑛−1/2𝑁−𝑖Δ1𝑖 + 𝑛−1Δ2

1𝑖 − 𝑛
−1Δ2𝑖)]

− E[𝜑(JK−𝑖 + 𝑛−1/2𝑁−𝑖Δ̃1𝑖 + 𝑛−1Δ̃2
1𝑖 − 𝑛

−1Δ̃2𝑖)]
(A.3)

Via a second-order Taylor expansion, we can write each term inside the summand

E[Term𝑖] = E[𝜑′(JK−𝑖){2𝑛−1/2𝑁−𝑖(Δ1𝑖 − Δ̃1𝑖) + 𝑛−1(Δ2
1𝑖 − Δ2

1𝑖) − 𝑛
−1(Δ2𝑖 − Δ̃2𝑖)}]

+ E[𝜑′′(JK−𝑖){4𝑛−1𝑁2
−𝑖(Δ

2
1𝑖 − Δ̃2

1𝑖) + 𝑛
−2(Δ4

1𝑖 − Δ̃4
1𝑖) − 𝑛

−2(Δ2
2𝑖 − Δ2

2𝑖)}]
+ E[𝜑′′(JK−𝑖){4𝑛−3/2𝑁−𝑖(Δ3

1𝑖 − Δ̃3
1𝑖) + 4𝑛−3/2𝑁−𝑖(Δ1𝑖Δ2𝑖 − Δ̃1𝑖Δ̃2𝑖)}]

+ E[𝜑′′(JK−𝑖){2𝑛−2(Δ2
1𝑖Δ2𝑖 − Δ̃2

1𝑖Δ̃2𝑖)}] + 𝑅𝑖 + �̃�𝑖

where 𝑅𝑖 and �̃�𝑖 are remainder terms to be examined later. Let ℱ−𝑖 denote the sigma algebra
generated by all random variables whose index is not equal to 𝑖. Since (a) for each 𝑖 ∈ [𝑛] the
mean and covariance matrix of (𝜖𝑖(𝛽0), 𝑟𝑖) is the same as the mean and covariance matrix of
(�̃�𝑖(𝛽0), 𝑟𝑖), (b) E[𝜖2

𝑖
(𝛽0)] = 𝜅2

𝑖
(𝛽0), and (c) random variables are independent across indices, we

have that

E[Δ1𝑖 − Δ̃1𝑖 |ℱ−𝑖] = E[Δ2
1𝑖 − Δ̃2

1𝑖 |ℱ−𝑖] = E[Δ2𝑖 − Δ̃2𝑖 |ℱ−𝑖]
= E[Δ𝑏2𝑖 − Δ̃𝑏2𝑖 |ℱ−𝑖] = E[Δ1𝑖Δ

𝑏
2𝑖 − Δ̃1𝑖Δ̃

𝑏
2𝑖 |ℱ−𝑖] = 0

(A.4)

Using this we can simplify the prior display

E[Term𝑖] = 𝑛−2E[𝜑′′(JK−𝑖)(Δ4
1𝑖 − Δ4

1𝑖)]︸                            ︷︷                            ︸
A𝑖

− 𝑛−2E[𝜑′′(JK−𝑖)((Δ𝑎2𝑖)
2 − (Δ̃𝑎2𝑖)

2)]︸                                   ︷︷                                   ︸
B𝑖

− 2𝑛−2E[𝜑′′(JK−𝑖)(Δ𝑎2𝑖Δ
𝑏
2𝑖 − Δ̃𝑎2𝑖Δ̃

𝑏
2𝑖)]︸                                      ︷︷                                      ︸

C𝑖

+ 4𝑛−3/2E[𝜑′′(JK−𝑖)𝑁−𝑖(Δ3
1𝑖 − Δ̃3

1𝑖)]︸                                     ︷︷                                     ︸
D𝑖

+ 4𝑛−3/2E[𝜑′′(JK−𝑖)𝑁−𝑖(Δ1𝑖Δ
𝑎
2𝑖 − Δ̃1𝑖Δ̃

𝑎
2𝑖)]︸                                             ︷︷                                             ︸

E𝑖

+ 2𝑛−2E[𝜑′′(JK−𝑖)(Δ2
1𝑖Δ2𝑖 − Δ̃2

1𝑖Δ̃2𝑖)︸                                     ︷︷                                     ︸
F𝑖

+ 𝑅𝑖 + �̃�𝑖

where for some ¯JK1𝑖 and ¯JK2𝑖 we can write

𝑅𝑖 = E[𝜑′′′( ¯JK1𝑖){𝑛−1/2𝑁−𝑖Δ1𝑖 + 𝑛−1Δ2
1𝑖 + 𝑛

−1Δ2𝑖}3]
�̃�𝑖 = E[𝜑′′′( ¯JK2𝑖){𝑛−1/2𝑁−𝑖Δ̃1𝑖 + 𝑛−1Δ̃2

1𝑖 + 𝑛
−1Δ̃2𝑖}3]

Applications of Lemmas F.1 and F.2, Cauchy-Schwarz, and the generalized Hölder inequality,1

1E[| 𝑓 𝑔𝑘 |]3 ≤ E[| 𝑓 |3]E[|𝑔 |3]E[|𝑘 |3]
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will allow us to bound for a fixed constant 𝑀 that depends only on 𝑐,

|A𝑖 | ≤
𝑀

𝑛2 𝐿2(𝜑) |B𝑖 | ≤
𝑀𝑎2

𝑛2 𝐿2(𝜑) |C𝑖 | ≤
𝑀𝑎2

𝑛3/2
𝐿2(𝜑)

|D𝑖 | ≤
𝑀

𝑛3/2
𝐿2(𝜑) |E𝑖 | ≤

𝑀(𝑎 ∨ 1)
𝑛3/2

𝐿2(𝜑) |F𝑖 | ≤
𝑀𝑎3

𝑛3/2
𝐿2(𝜑)

and

|𝑅𝑖 | + |�̃�𝑖 | ≤
𝑀

𝑛3/2
𝐿3(𝜑) +

𝑀𝑎3

𝑛3 𝐿3(𝜑)

Combining these bounds and summing over 𝑛 gives the result. □

Lemma A.2 (Gaussian Denominator Anti-Concentration). Suppose that Assumptions 3.1 and 3.2
hold. Then for any sequence 𝛿𝑛 ↘ 0,

Pr(�̃� ≤ 𝛿𝑛) → 0

Proof of Lemma A.2. By Assumption 3.1, we know that 𝜅2
𝑖
(𝛽0) ∈ [𝑐−1 , 𝑐] for all 𝑖 = 1, . . . , 𝑛 so

that �̃� ≥ 𝑐−1

𝑛

∑𝑛
𝑖=1(

∑𝑛
𝑗=1 ℎ̃𝑖 𝑗𝑟 𝑗)2. Then

Pr(�̃� ≤ 𝛿𝑛) ≤ Pr
( 1
𝑐𝑛

𝑛∑
𝑖=1

( 𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗
)2 ≤ �̃�𝑛

)
= Pr

(
∥𝑟′�̄�1/2∥2 ≤ 𝛿𝑛

)
(A.5)

where 𝑟 := (𝑟1 , . . . , 𝑟𝑛)′ ∈ R𝑛 and �̄� := 1
𝑐𝑛 �̃��̃�

′ ∈ R𝑛×𝑛 . �̄� is symmetric and positive semidefinite
so we can take �̄�1/2 to be its symmetric square root, which will also be symmetric and positive
semidefinite (and thus not necessarily equal to

√
𝑐
𝑛 �̃�). I provide two bounds on (A.5), the first

of which corresponds to the strong identification setting while the second corresponds to weak
identification.

First Bound. Since 𝛿𝑛 ↘ 0 we will eventually have that 𝛿𝑛 < 𝑐−1/2. When this happens we can
bound using Chebyshev’s inequality and 𝑐−1 < E[𝑟′�̄�𝑟] < 𝑐:

Pr(𝑟′�̄�𝑟 ≤ 𝛿𝑛) = Pr(𝑟′�̄�𝑟 − E[𝑟′�̄�𝑟] ≤ 𝛿𝑛 − E[𝑟′�̄�𝑟])
≤ Pr(𝑟′�̄�𝑟 − E[𝑟′�̄�𝑟] ≥ E[𝑟′�̄�𝑟] − 𝛿𝑛)

≤ Pr(|𝑟′�̄�𝑟 − E[𝑟′�̄�𝑟]| ≥ 1
2𝑐 )

≤ 2𝑐 Var(𝑟′�̄�𝑟) (A.6)

Under strong identification we will expect Var(𝑟′�̄�𝑟) → 0.

Second Bound. For the second bound, we will directly use bounds on the density of Gaus-
sian quadratic forms from Götze et al. (2019). The vector 𝑟′�̄�1/2 is Gaussian with covariance
matrix Σ𝑟 = �̄�1/2R�̄�1/2 where R = diag(Var(𝑟1), . . . ,Var(𝑟𝑛)). Let Λ1 =

∑𝑛
𝑘=1 𝜆

2
𝑘
(Σ𝑟) and

Λ2 =
∑𝑛
𝑘=2 𝜆

2
𝑘
(Σ𝑟). By Assumption 3.2 and Lemma G.5, Λ2/Λ1 is bounded away from zero.

Using Theorem H.4 we can then bound for some constant 𝐶 > 0

Pr(∥𝑟′𝐻∥1/2 ≤ 𝛿𝑛) ≤ 𝐶𝛿𝑛Λ
−1
1 (A.7)
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Combining Bounds. To combine the bounds in (A.6) and (A.7), first write

Var(𝑟′�̄�𝑟) = 2trace(R�̄�R�̄�) + 4𝜇𝑟�̄�R�̄�𝜇𝑟

for 𝜇𝑟 = E[𝑟]. Using the fact that �̄�1/2R�̄�1/2 is symmetric positive definite we can bound:

𝜇′
𝑟�̄�R�̄�𝜇𝑟 = (𝜇′

𝑟�̄�
1/2)′(�̄�1/2R�̄�1/2)(�̄�1/2𝜇𝑟)

≤ 𝜆1(�̄�1/2R�̄�1/2)∥𝜇′
𝑟�̄�

1/2∥2

=

√
𝜆2

1(�̄�1/2R�̄�1/2)∥𝜇′
𝑟�̄�

1/2∥2

=

√
𝜆1(�̄�1/2R�̄�R�̄�1/2)∥𝜇′

𝑟�̄�
1/2∥2

≤
√

trace(�̄�1/2R�̄�R�̄�1/2)∥𝜇′
𝑟�̄�

1/2∥2

=

√
trace(R�̄�R�̄�)∥𝜇′

𝑟�̄�∥2 ≤ 𝑐2Λ
1/2
1 (A.8)

where the first equality uses the symmetric square root of �̄�, the first inequality comes from
Courant-Fischer minmax principle and the third equality uses the fact that the eigenvalues of
𝐴2 are the squares of the eigenvalues of 𝐴, for any generic symmetric matrix 𝐴. The second
inequality comes from the fact that a matrix times its transpose is always positive semidefinite
and that for 𝑀 psd, 𝜆1(𝑀) ≤

√
trace(𝑀2) since the trace is the sum of the (weakly positive)

eigenvalues. The final inequality uses 𝜇′
𝑟�̄�𝜇𝑟 =

𝑐
𝑛

∑𝑛
𝑖=1(E[Π̃𝑖])2 ≤ 𝑐

𝑛

∑𝑛
𝑖=1 E[(Π̃𝑖)2] ≤ 𝑐2.

Combining (A.6), (A.7), and (A.8) gives us

Pr(�̃� ≤ 𝛿𝑛) ≤ 𝐶min
{
Λ1 +Λ

1/2
1 , 𝛿𝑛Λ

−1
1

}
(A.9)

Regardless of the behavior of Λ1, this tends to zero as 𝛿𝑛 → 0. □

Remark A.1 (Final Anticoncentration Bound). To give an explicit bound on (A.9) in terms of
𝛿𝑛 we note that, if 𝑥★ solves

𝑥★ +
√
𝑥★ =

𝑐

𝑥★

then for any 𝑥 ≥ 0, min{𝑥 +
√
𝑥, 𝑐/𝑥} ≤ 𝑥★ +

√
𝑥★. Using this, notice that (𝑥★)2 + (𝑥★)3/2 = 𝑐 so

that 𝑥★ ≤
√
𝑐. This allows us to bound (A.9)

Pr(�̃� ≤ 𝛿𝑛) ≤ 𝐶min{Λ1 +Λ
1/2
1 , 𝛿𝑛Λ

−1
1 } ≤ 𝐶(𝛿1/2

𝑛 + 𝛿1/4
𝑛 )

Lemma A.3. Let 𝑋𝑛 and 𝑌𝑛 be two sequences of random variables and let 𝑊𝑛 = 𝑋𝑛/𝑌𝑛 . Then for any
𝑐 ∈ R and any 𝛿 > 0:

Pr(0 ≤ 𝑋𝑛 − 𝑐𝑌𝑛 ≤ 𝛿) ≤ Pr(𝑐 ≤ 𝑊𝑛 ≤ 𝛿1/2 + 𝑐) + Pr(𝑌𝑛 ≤ 𝛿1/2)

and

Pr(−𝛿 ≤ 𝑋𝑛 − 𝑐𝑌𝑛 ≤ 0) ≤ Pr(𝑐 − 𝛿1/2 ≤ 𝑊𝑛 ≤ 𝑐) + Pr(𝑌𝑛 ≤ 𝛿1/2)

Proof. Define the event Ω = {𝑌𝑛 ≥ 𝛿1/2}. We can bound

Pr(0 ≤ 𝑋𝑛 − 𝑐𝑌𝑛 ≤ 𝛿) = Pr(𝑐𝑌𝑛 ≤ 𝑋𝑛 ≤ 𝛿 + 𝑐𝑌𝑛)
≤ Pr({𝑐𝑌𝑛 ≤ 𝑋𝑛 ≤ 𝛿 + 𝑐𝑌𝑛} ∩Ω) + Pr(Ω𝑐)
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= Pr({𝑐 ≤ 𝑊𝑛 ≤ 𝛿/𝑌𝑛 + 𝑐} ∩Ω) + Pr(Ω𝑐)
≤ Pr(𝑐 ≤ 𝑊𝑛 ≤ 𝛿1/2 + 𝑐) + Pr(Ω𝑐)

The second statement of the lemma follows symmetrically. □

Lemma A.4. Suppose that 𝑋𝑛 and 𝑌𝑛 are sequences of (real-valued) random variables such that 𝑌𝑛 =

𝑂𝑝(1) and for any 𝑥 ∈ R
|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| → 0

Then 𝑋𝑛 = 𝑂𝑝(1).

Proof. Pick any 𝜖 > 0, and let 𝑀𝜖/2 be such that Pr(𝑌𝑛 > 𝑀𝜖/2) ≤ 𝜖/2 for all 𝑛 ≥ 𝑁𝜖. In
addition, let �̃�𝜖 be such that |Pr(𝑋𝑛 ≤ 𝑀𝜖/2) − Pr(𝑌𝑛 ≤ 𝑀𝜖/2)| ≤ 𝜖/2 for all 𝑛 ≥ �̃�𝜖. Then for all
𝑛 ≥ 𝑁𝜖 ∨ �̃�𝜖/2,

Pr(𝑋𝑛 > 𝑀𝜖/2) ≤ Pr(𝑌𝑛 > 𝑀𝜖/2) + |Pr(𝑋𝑛 > 𝑀𝜖/2) − Pr(𝑌𝑛 > 𝑀𝜖/2)|
≤ 𝜖/2 + |Pr(𝑌𝑛 ≤ 𝑀𝜖/2) − Pr(𝑋𝑛 ≤ 𝑀𝜖/2)|
≤ 𝜖/2 + 𝜖/2 = 𝜖

□

Lemma A.5. Suppose that 𝑋𝑛 and 𝑌𝑛 are sequences of (real-valued) random variables such that 𝑌𝑛 =

𝑂𝑝(1) and for any Δ ∈ R
sup
𝑥≤Δ

|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| → 0

Then sup𝑥∈R |Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| → 0.

Proof. Pick an 𝜖 > 0. By Lemma A.4, 𝑋𝑛 = 𝑂𝑝(1). Pick a constant 𝑀𝜖/3 such that Pr(𝑋𝑛 >
𝑀𝜖/3) ≤ 𝜖/3 and Pr(𝑌𝑛 > 𝑀𝜖/3) ≤ 𝜖/3. Then for any 𝑥 ∈ Rwe can bound |Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤
𝑥)| by considering two cases:

Case 1. If 𝑥 ≤ 𝑀𝜖/3, then,

|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| ≤ sup
𝑥≤𝑀𝜖/3

|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| (A.10)

by hypothesis, there is an 𝑁𝜖 such that for 𝑛 ≥ 𝑁𝜖 the RHS of (A.10) is less than 𝜖.

Case 2. If 𝑥 > 𝑀𝜖/3 we can bound

|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| ≤ |Pr(𝑋𝑛 ≤ 𝑀𝜖/3) − Pr(𝑌𝑛 ≤ 𝑀𝜖/3)|
+ |Pr(𝑀𝜖/3 < 𝑋𝑛 ≤ 𝑥) − Pr(𝑀𝜖/3 < 𝑌𝑛 ≤ 𝑥)|

≤ |Pr(𝑋𝑛 ≤ 𝑀𝜖/3) − Pr(𝑌𝑛 ≤ 𝑀𝜖/3)| + 𝜖/3 + 𝜖/3 (A.11)

By hypothesis, there is an 𝑁𝜖/3 such that |Pr(𝑋𝑛 ≤ 𝑀𝜖/3) − Pr(𝑌𝑛 ≤ 𝑁𝜖/3)| ≤ 𝜖/3.

WLOG𝑁𝜖/3 ≥ 𝑁𝜖. Combining the bounds in (A.10) and (A.11), for any 𝑛 ≥ 𝑁𝜖/3 and any 𝑥 ∈ R,

|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| ≤ 𝜖

Since this holds for all 𝑥, this gives the result. □
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Lemma A.6 (Approximate Distribution). Under Assumptions 3.1–3.3

sup
𝑎∈R

|Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)| → 0

Proof of Lemma A.6. First, fix aΔ ≥ 0 and consider any 𝑎 ≤ Δ. As in Lemma A.2, let �̃�(·) : R→ R
be three times continuously differentiable with bounded derivatives up to the third order such
that �̃�(𝑥) is 1 if 𝑥 ≤ 0, �̃�(𝑥) is decreasing if 𝑥 ∈ (0, 1), and �̃�(𝑥) is zero if 𝑥 ≥ 1. Consider a
sequence 𝛾𝑛 ↘ 0 slowly enough such that (𝛾−2

𝑛 + 𝛾−3
𝑛 )/

√
𝑛 → 0 and define 𝜑𝑛(𝑥) = �̃�( 𝑥𝛾𝑛 ).

By Lemma A.1 we can write for some constant 𝑀 that depends only on Δ:

Pr(JK𝐼(𝛽0) ≤ 𝑎) = Pr(JK𝑎 ≤ 0) ≤ E[𝜑𝑛(JK𝑎)]

≤ E[𝜑𝑛( ˜JK
𝑎)] + 𝑀√

𝑛
(𝛾2
𝑛 + 𝛾−3

𝑛 )

≤ Pr( ˜JK𝑎 ≤ 0) + Pr(0 ≤ �̃�2 − 𝑎�̃� ≤ 𝛾𝑛) +
𝑀√
𝑛
(𝛾2
𝑛 + 𝛾−3

𝑛 )

Applying Lemma A.3 and { ˜JK𝑎 ≤ 0} = {JK𝐺(𝛽0) ≤ 𝑎} gives:

≤ Pr(JK𝐺(𝛽0) ≤ 𝑎) + Pr(𝑎 ≤ �̃�2/�̃� ≤ 𝑎 + 𝛾1/2
𝑛 )︸                           ︷︷                           ︸

A

+ Pr(�̃� ≤ 𝛾1/2
𝑛 )︸          ︷︷          ︸

B

+ 𝑀√
𝑛
(𝛾−2
𝑛 + 𝛾−3

𝑛 )

By Lemma F.3, we can bound A ≤ 𝑀𝛾1/2
𝑛 while by Lemma A.2 and Remark A.1, B ≤ 𝑀𝛾1/4

𝑛 .
Since 𝛾𝑛 is chosen such that 𝑀√

𝑛
(𝛾−2
𝑛 + 𝛾−3

𝑛 ) → 0 we can conclude that Pr(JK𝐼(𝛽0) ≤ 𝑎) ≤
Pr(JK𝐺(𝛽0) ≤ 𝑎) + 𝑜(1). A symmetric argument with 𝜑𝑛(𝑥) = �̃�(1 − 𝑥

𝛾𝑛
) gives a lower bound so

that, in total
Pr(JK𝐺(𝛽0) ≤ 𝑎) − e ≤ Pr(JK𝐼(𝛽0) ≤ 𝑎) ≤ Pr(JK𝐺(𝛽0) ≤ 𝑎) + e

where
e = 𝑀

(𝛾−2
𝑛 + 𝛾−3

𝑛√
𝑛

+ 𝛾1/2
𝑛 + 𝛾1/4

𝑛

)
= 𝑜(1)

Since the constant M depends only on Δ, this gives us that for any fixed Δ > 0

sup
𝑎≤Δ

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
�� ≤ 𝐶

(𝛾−2
𝑛 + 𝛾−3

𝑛√
𝑛

+ 𝛾1/2
𝑛 + 𝛾1/4

𝑛

)
= 𝑜(1) (A.12)

where 𝐶 is a constant that depends only onΔ. Noting that the numerator JK𝐺(𝛽0) is𝑂𝑝(1) under
Assumption 3.3 while the inverse of the denominator of JK𝐺(𝛽0) is 𝑂𝑝(1) by Lemma A.2, we
can apply Lemma A.5. This step shows that the result in (A.12) implies that the approximation
error tends to zero uniformly over the real line, which is the desired result. Optimizing over
𝛾𝑛 in the expression of (A.12) yields the rate of decay in Remark 3.3. □

A.2. Proof of Proposition 3.1

Proof of Proposition 3.1. As at the top of Appendix A.1, recall that ℎ̃𝑖𝑖 = 0, and define

𝑁 =
1√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗 𝐷 =
1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)(

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗)2
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where ℎ̃𝑖 𝑗 = 𝑠𝑛ℎ𝑖 𝑗 . The goal is to show that Pr(JK𝐼(𝛽0) ≤ 𝑎) → 0 for any fixed 𝑎 ∈ R+. The event
{JK𝐼(𝛽0) ≤ 𝑎} is equivalently expressed {𝑁2 − 𝑎𝐷 ≤ 0} so that Pr(JK(𝛽0) ≤ 𝑎) = Pr(𝑁2 − 𝑎𝐷 ≤
0). Under Assumptions 3.1 and 3.2, 𝑎𝐷 = 𝑂𝑝(1) so by Lemma A.8 it suffices to show that
Pr(|𝑁 | ≤ 𝑀) → 0 for any fixed 𝑀 ≥ 0. By assumption 𝑃 = E[𝑁2] → ∞ so we move to show
that Var(𝑁) = 𝑂(1) and then apply Lemma A.7 to conclude. To this end, recall the definition
of 𝜂𝑖 = 𝜖𝑖(𝛽0) − E[𝜖𝑖(𝛽0)], define 𝜇𝑖 = E[𝜖𝑖(𝛽0)] = Π𝑖(𝛽 − 𝛽0), and let

𝑁1 B
1√
𝑛

𝑛∑
𝑖=1

𝜂𝑖

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗 𝑁2 B
1√
𝑛

𝑛∑
𝑖=1

𝜇𝑖

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗

Notice that 𝑁 = 𝑁1 + 𝑁2. To show that Var(𝑁1) = 𝑂(1), define a𝑖 = 𝜂𝑖
∑𝑛
𝑗=1 ℎ̃𝑖 𝑗𝑟 𝑗 . Since

E[𝜂𝑖𝑟𝑖] = 0, we have that Cov(a𝑖 ,a𝑗) = 0 for 𝑖 ≠ 𝑗. Thus,

Var(𝑁1) = Var(
𝑛∑
𝑖=1

a𝑖/
√
𝑛) = 𝑛−1

𝑛∑
𝑖=1

Var(a𝑖) = 𝑛−1
𝑛∑
𝑖=1

Var(𝜂𝑖)E[(
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗)2] ≤ 𝑐2

where the final inequality follows from an upper bound on Var(𝜂𝑖) from Assumption 3.1 and
by definition of ℎ̃𝑖 𝑗 = 𝑠𝑛ℎ𝑖 𝑗 from Assumption 3.2.

To show that Var(𝑁2) = 𝑂(1) let b𝑖 =
∑𝑛
𝑗=1 ℎ̃ 𝑗𝑖Π̃𝑗(𝛽 − 𝛽0) and rewrite 𝑁2 = 1√

𝑛

∑𝑛
𝑖=1 𝑟𝑖b𝑖 . Under

Assumption 3.3(ii), |b𝑖 | = |E[∑𝑛
𝑗=1 ℎ̃ 𝑗𝑖𝜖 𝑗(𝛽0)]| ≤ 𝑐1/2, so we can bound

Var(𝑁2) = Var(
𝑛∑
𝑖=1

𝑟𝑖b𝑖/
√
𝑛) = 𝑛−1

𝑛∑
𝑖=1

b2
𝑖 Var(𝑟𝑖) ≤ 𝑐2

Since Var(𝑁) ≤ 2 Var(𝑁1) + 2 Var(𝑁2), we can conclude. □

Lemma A.7. Suppose that𝑋𝑛 is a sequence of random variables such thatE[𝑋2
𝑛] → ∞while Var(𝑋𝑛) =

𝑂(1). Then, for any 𝑀 ≥ 0, Pr(|𝑋𝑛 | ≤ 𝑀) → 0.

Proof. First, note that Var(|𝑋𝑛 |) ≤ Var(𝑋𝑛) so Var(|𝑋𝑛 |) = 𝑂(1). Moreover Var(|𝑋𝑛 |) = E[𝑋2
𝑛] −

(E[|𝑋𝑛 |])2, so E[𝑋2
𝑛] → ∞ and Var(|𝑋𝑛 |) = 𝑂(1) implies that E[|𝑋𝑛 |] → ∞. Then,

Pr(|𝑋𝑛 | ≤ 𝑀) = Pr(|𝑋𝑛 | − E[|𝑋𝑛 |] ≤ 𝑀 − E[|𝑋𝑛 |])
= Pr(E[|𝑋𝑛 |] − |𝑋𝑛 | ≥ E[|𝑋𝑛 | −𝑀)
≤ Pr(|E[|𝑋𝑛 |] − |𝑋𝑛 | | ≥ E[|𝑋𝑛 |] −𝑀)

≤ Var(|𝑋𝑛 |)
E[|𝑋𝑛 |] −𝑀

Since Var(|𝑋𝑛 |) = 𝑂(1) but E[|𝑋𝑛 |] → ∞, this tends to zero. □

Lemma A.8. Suppose that 𝑋𝑛 and 𝑌𝑛 are random variables such that 𝑌𝑛 = 𝑂𝑝(1) and, for any 𝑀 ≥ 0,
Pr(|𝑋𝑛 | ≤ 𝑀) → 0. Then, for any 𝑀1 ≥ 0, Pr(𝑋2

𝑛 − 𝑌𝑛 ≤ 𝑀1) → 0.

Proof. Pick any 𝜖 > 0. We want to show that, eventually, Pr(𝑋2
𝑛 − 𝑌𝑛 > 𝑀1) ≥ 1 − 𝜖. Since 𝑌𝑛 =

𝑂𝑝(1), there is a fixed constant 𝑀𝑌 such that Pr(|𝑌𝑛 | ≤ 𝑀𝑌) ≥ 1 − 𝜖/2. Since Pr(|𝑋𝑛 | ≤ 𝑀) → 0
for any 𝑀 ≥ 0, there exists an 𝑁𝑋 such that, for 𝑛 ≥ 𝑁𝑋 , Pr(𝑋2

𝑛 ≤ 𝑀1 + 𝑀𝑌) ≤ 𝜖/2. A union
bound completes the argument (on the eventuality 𝑛 ≥ 𝑁𝑋):

Pr(𝑋2
𝑛 − 𝑌𝑛 > 𝑀) ≥ Pr(𝑋2

𝑛 > 𝑀1 +𝑀𝑌 , |𝑌𝑛 | ≤ 𝑀𝑌)
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= 1 − Pr({𝑋2
𝑛 < 𝑀1 +𝑀𝑌} ∪ {|𝑌𝑛 | > 𝑀𝑌})

≥ 1 − 𝜖/2 − 𝜖/2 = 1 − 𝜖

□

A.3. Proof of Lemma 3.2

Proof of Lemma 3.2. For 𝑁 and 𝐷 defined at the top of Appendix A.1 define 𝑁 = 𝑁 + Δ𝑁 and
𝐷 = 𝐷 + Δ𝐷 . We can then write JK(𝛽0) = 𝑁2/𝐷 and rewrite

JK(𝛽0) − JK𝐼(𝛽0) =
2𝑁𝐷Δ𝑁 + 𝐷Δ𝑁 − 𝑁2Δ𝐷

𝐷2 + 𝐷Δ𝐷

Apply Lemma F.2 to see that 𝑁2 = 𝑂𝑝(1) while under Assumption 3.2, 𝐷 = 𝑂𝑝(1). Thus,
2𝑁𝐷Δ𝑛 + 𝐷Δ𝑛 − 𝑁2Δ𝐷 = 𝑜𝑝(1). Meanwhile, by Lemma A.11, Pr(𝐷2 ≤ 𝛿𝑛) → 0 for any
sequence 𝛿𝑛 → 0. Apply Lemma A.9 to conclude. □

Lemma A.9. Let𝐴𝑛 , 𝐵𝑛 and𝑌𝑛 be sequences of random variables such that𝐴𝑛 = 𝑜𝑝(1) and 𝐵𝑛 = 𝑜𝑝(1).
If 𝑌𝑛 is such that for any sequence 𝛿𝑛 → 0, Pr(|𝑌𝑛 | ≤ 𝛿𝑛) → 0, then,���� 𝐴𝑛

𝑌𝑛 + 𝐵𝑛

���� = 𝑜𝑝(1)

Proof. Fix any 𝜖 > 0. We show that ���� 𝐴𝑛

𝑌𝑛 + 𝐵𝑛

���� ≤ 𝜖

on an intersection of events whose probability tends to one. By Lemma G.1 there is a sequence
𝜖𝑛 ↘ 0 such that

Pr(|𝐴𝑛 | ≤ 𝜖𝑛) → 1 and Pr(𝜖 |𝐵𝑛 | ≤ 𝜖𝑛) → 1

Consider the intersection of events Ω1 ∩Ω2 ∩Ω3 where

Ω1 := {𝜖 |𝑌𝑛 | ≥ 2𝜖𝑛}, Ω2 := {𝜖 |𝐵𝑛 | ≤ 𝜖𝑛}, Ω3 := {|𝐴𝑛 | ≤ 𝜖𝑛}

By assumption, Pr(Ω1 ∩ Ω2 ∩ Ω3) → 1. On this event |𝑌𝑛 + 𝐵𝑛 | ≥ 𝜖𝑛/𝜖 > 0 and |𝐴𝑛 | ≤ 𝜖𝑛 so
that |𝐴𝑛/(𝑌𝑛 + 𝐵𝑛)| ≤ |𝜖𝑛/(𝜖𝑛/𝜖)| ≤ 𝜖. □

Lemma A.10 (Denominator Interpolation). Suppose that Assumptions 3.1 and 3.2 hold. Let 𝜑(·) :
R→ R be such that 𝜑(·) ∈ 𝐶3

𝑏
(R) with 𝐿2(𝜑) = sup𝑥 |𝜑′′(𝑥)| and 𝐿3(𝜑) = sup𝑥 |𝜑′′′(𝑥)|. Then there

is a constant 𝑀 that depends only on the constant 𝑐 such that:

|E[𝜑(𝐷) − 𝜑(�̃�)]| ≤ 𝑀√
𝑛
(𝐿2(𝜑) + 𝐿3(𝜑))

Proof of Lemma A.10. We inherit the definitions of 𝐷−𝑖 , Δ𝑎2𝑖 , Δ
𝑏
2𝑖 , Δ̃

𝑎
2𝑖 , and Δ̃𝑏2𝑖 from the proof of

Lemma A.1 with 𝑎 = 1. Then, as before we can write

E[𝜑(𝐷) − 𝜑(�̃�)] =
𝑛∑
𝑖=1
E[𝜑(𝐷−𝑖 + 𝑛−1Δ𝑎2𝑖 + 𝑛

−1Δ𝑏2𝑖)]

− E[𝜑(𝐷−𝑖 + 𝑛−1Δ̃𝑎2𝑖 + 𝑛
−1Δ̃𝑏2𝑖)]
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We examine each term via a second-order Taylor expansion around 𝐷−𝑖

E[Term𝑖] =
1
𝑛
E[𝜑′(𝐷−𝑖){(Δ𝑎2𝑖 − Δ̃𝑎2𝑖) + (Δ𝑏2𝑖 − Δ̃𝑏2𝑖)}]

+ 1
2𝑛2E[𝜑

′′(𝐷−𝑖){((Δ𝑎2𝑖)
2 − (Δ̃𝑎2𝑖)

2) + 2(Δ𝑎2𝑖Δ
𝑏
2𝑖 − Δ̃𝑎2𝑖Δ̃

𝑏
2𝑖) + ((Δ𝑏2𝑖)

2 − (Δ𝑏2𝑖)
2)}]

+ 𝑅𝑖 + �̃�𝑖

where 𝑅𝑖 and �̃�𝑖 are remainder terms to be analyzed later. Using the restrictions in (A.4) we
can simplify the above display:

E[Term𝑖] = 0.5𝑛−2E[𝜑′′(𝐷−𝑖)((Δ𝑎2𝑖)
2 − (Δ̃𝑎2𝑖)

2)]︸                                      ︷︷                                      ︸
¤A𝑖

+ 𝑛−2E[𝜑′′(𝐾−𝑖)(Δ𝑎2𝑖Δ
𝑏
2𝑖 − Δ̃𝑎2𝑖Δ̃

𝑏
2𝑖)︸                                  ︷︷                                  ︸

¤B𝑖

+ 𝑅𝑖 + �̃�𝑖

Using Lemma F.1 we can bound

|A𝑖 | ≤
𝑀

𝑛2 𝐿2(𝜑) |B𝑖 | ≤
𝑀

𝑛3/2
𝐿2(𝜑)

For some �̄�1𝑖 and �̄�2𝑖 we can express

𝑅𝑖 = E[𝜑′′′(�̄�1𝑖){𝑛−1Δ𝑎2𝑖 + Δ𝑏2𝑖}
3] ≤ 𝑀

𝑛3/2
𝐿3(𝜑) +

𝑀

𝑛3 𝐿3(𝜑)

𝑅𝑖 = E[𝜑′′′(�̄�2𝑖){𝑛−1Δ̃𝑎2𝑖 + Δ̃𝑏2𝑖}
3] ≤ 𝑀

𝑛3/2
𝐿3(𝜑) +

𝑀

𝑛3 𝐿3(𝜑)

where the inequalities again come from applications of Lemma F.1. Combining these bounds
and summing over the 𝑛 terms gives the result. □

Lemma A.11 (Denominator anti-concentration). Suppose that Assumptions 3.1 and 3.2 hold. Then,
for any sequence 𝛿𝑛 ↘ 0,

Pr(𝐷 ≤ 𝛿𝑛) → 0

Proof of Lemma A.11. Let �̃�(·) : R→ R be three times continuously differentiable with bounded
derivatives up to the third order such that �̃�(𝑥) is 1 if 𝑥 ≤ 0, �̃�(𝑥) is decreasing if 𝑥 ∈ (0, 1),
and �̃�(𝑥) is zero if 𝑥 ≥ 1. Consider a second sequence 𝛾𝑛 ↘ 0 slowly enough such that
(𝛾−2
𝑛 + 𝛾−3

𝑛 )/
√
𝑛 → 0. Take 𝜑𝑛(𝑥) = �̃�( 𝑥−𝛿𝑛𝛾𝑛

). By Lemma A.10 and since �̃�(·) has bounded
derivatives up to the third order, there is a fixed constant 𝑀1 > 0 that depends only on 𝑐 such
that

Pr(𝐷 ≤ 𝛿𝑛) ≤ Pr(�̃� ≤ 𝛿𝑛 + 𝛾𝑛) +
𝑀1√
𝑛
(𝛾−2
𝑛 + 𝛾−3

𝑛 )

Let 𝛾𝑛 be a sequence tending to zero such that (𝛾−2
𝑛 + 𝛾−3

𝑛 )/
√
𝑛 → 0 and conclude by applying

Lemma A.2. □

A.4. Proof of Lemma 3.3

For any 𝑗 = 1, . . . , 𝑑𝑏 define the matrix 𝐵 𝑗 = diag(𝑏 𝑗(𝑧1), . . . , 𝑏 𝑗(𝑧𝑛)) and collect observations
𝜖(𝛽0) = (𝜖1(𝛽0), . . . , 𝜖𝑛(𝛽0))′ ∈ R𝑛 , 𝑟 = (𝑟1 , . . . , 𝑟𝑛)′ ∈ R𝑛 , 𝑟 = (𝑟1 , . . . , 𝑟𝑛)′ ∈ R𝑛 , and 𝜉 =

(𝜉1 , . . . , 𝜉𝑛)′ ∈ R𝑛 . In addition, collect 𝑏𝜖 = (𝑏𝜖1 , . . . , 𝑏𝜖𝑛) ∈ R𝑑𝑏×𝑛 where 𝑏𝜖𝑖 = 𝜖𝑖(𝛽0)𝑏(𝑧𝑖) ∈ R𝑑𝑏 .
Finally, let H =

𝑠𝑛√
𝑛
𝐻, �̃� = 𝑠𝑛𝐻 and ℎ̃𝑖 𝑗 = 𝑠𝑛ℎ𝑖 𝑗 .
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Step 1: Δ𝑁 →𝑝 0. To show that Δ𝑁 →𝑝 0 write

Δ𝑁 = |𝜖(𝛽0)′H(𝑟 − 𝑟)|
= |𝜖(𝛽0)′H(𝑏′𝜖 �̂� − 𝑏′𝜖𝛾) − 𝜖(𝛽0)′H𝜉|
≤ max

1≤ 𝑗≤𝑑𝑏
|𝜖(𝛽0)′H𝐵 𝑗𝜖(𝛽0)|∥�̂� − 𝛾∥1︸                                    ︷︷                                    ︸

A

+ ∥𝜖(𝛽0)′H ∥2∥𝜉2∥2︸                ︷︷                ︸
B

To bound A we move to apply Theorem H.1 to the quadratic form 𝜖(𝛽0)′(H𝐵 𝑗)𝜖(𝛽0). First notice
that, under Assumption 3.4(v), we have

∥E[H𝑏 𝑗𝜖(𝛽0)]∥2 =
1
𝑛

𝑛∑
𝑖=1

(E[𝑠𝑛
∑
𝑗≠𝑖

ℎ𝑖 𝑗𝑏(𝑧 𝑗)𝜖 𝑗(𝛽0)])2 ≤ 𝑐2

In the notation of Theorem H.1 this give us an upper bound on ∥E 𝑓 (1)(𝑋)∥HS. Next, Assump-
tion 3.2 gives us that the Frobenius norm of H =

𝑠𝑛√
𝑛
H is bounded, since the rows of 𝑠𝑛𝐻 are

square summable,
∑
𝑗≠𝑖(𝑠𝑛ℎ𝑖 𝑗)2 ≤ 𝑐 for all 𝑖 = 1, . . . , 𝑛. In the notation of Theorem H.1 this

gives us an upper bound on ∥E 𝑓 (2)(𝑋)∥HS. Applying Theorem H.1 and a union bound then
gives us that

max
1≤ 𝑗≤𝑑𝑏

|𝜖(𝛽0)′H𝐵 𝑗𝜖(𝛽0) − E[𝜖(𝛽0)′H𝐵 𝑗𝜖(𝛽0)]| = 𝑂𝑝(log2/𝑎(𝑑𝑏)) (A.13)

Since max1≤ 𝑗≤𝑑𝑏 |E[𝜖(𝛽0)′H𝐵 𝑗𝜖(𝛽0)]| ≤ 𝑐 under Assumption 3.4(v), (A.13) gives that

max
1≤ 𝑗≤𝑑𝑏

|𝜖(𝛽0)′H𝐵 𝑗𝜖(𝛽0)| = 𝑂𝑝(log2/𝑎(𝑑𝑏))

Since log2/𝑎(𝑑𝑏)∥�̂� − 𝛾∥1 →𝑝 0 by assumption, this yields that A →𝑝 0.

To bound B see that ∥𝜖(𝛽0)′H ∥2 =
𝑠2
𝑛

𝑛

∑𝑛
𝑖=1(

∑
𝑗≠𝑖 ℎ𝑖 𝑗𝜖𝑖(𝛽0))2 = 𝑂𝑝(1) under Assumption 3.3(ii)

while under Assumption 3.4 ∥𝜉∥2 = 𝑜(1).

Step 2: Δ𝐷 →𝑝 0. Notice that 𝑎2 − 𝑏2 = 2𝑏(𝑎 − 𝑏) + (𝑎 − 𝑏)2 and bound:

|Δ𝐷 | ≤
1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)

��∑
𝑗≠𝑖

ℎ̃𝑖 𝑗𝑟 𝑗
��

︸                      ︷︷                      ︸
E

×max
𝑖

|
∑
𝑗≠𝑖

ℎ̃𝑖 𝑗(𝑟 𝑗 − 𝑟 𝑗)|

+ 1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)︸        ︷︷        ︸

F

×max
𝑖

|
∑
𝑗≠𝑖

ℎ̃𝑖 𝑗(𝑟 𝑗 − 𝑟 𝑗)|2

Since both E = 𝑂𝑝(1) and F = 𝑂𝑝(1) under Assumptions 3.1 and 3.2, it suffices to show that

max
𝑖

|
∑
𝑗≠𝑖

ℎ̃𝑖 𝑗 (̂𝑟 𝑗 − 𝑟 𝑗)| →𝑝 0
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To do so write

max
𝑖

��∑
𝑗≠𝑖

ℎ̃𝑖 𝑗{𝑟 𝑗 − 𝑟 𝑗}
�� ≤ max

1≤𝑖≤𝑛
1≤ 𝑗≤𝑑𝑏

��∑
𝑗≠𝑖

ℎ̃𝑖 𝑗𝑏(𝑧 𝑗)𝜖 𝑗(𝛽0)
��∥�̂� − 𝛾∥1︸                                      ︷︷                                      ︸

A

+ max
1≤𝑖≤𝑛
1≤ 𝑗≤𝑑𝑏

��∑
𝑗≠𝑖

ℎ̃𝑖 𝑗𝑏(𝑧 𝑗)𝜉𝑗
��

︸                     ︷︷                     ︸
B

To bound A, note that by Assumption 3.4(v) max𝑖 , 𝑗 |E[
∑
𝑗≠𝑖 ℎ̃𝑖 𝑗𝑏(𝑧 𝑗)𝜖 𝑗(𝛽0)| ≤ 𝑐. Under Assump-

tions 3.2 and 3.4(ii), max𝑖 , 𝑗
∑
𝑗≠𝑖 ℎ̃

2
𝑖 𝑗
𝑏2(𝑧 𝑗) ≤ 𝑐2 so we can apply Theorem H.1 and a union bound

to obtain that
max
1≤𝑖≤𝑛
1≤ 𝑗≤𝑑𝑏

��∑
𝑗≠𝑖

ℎ̃𝑖 𝑗𝑏(𝑧 𝑗)𝜖 𝑗(𝛽0)
�� = 𝑂𝑝(log1/𝑎(𝑑𝑏𝑛))

Along with the implied rate on ∥�̂� − 𝛾∥1 from Assumption 3.4(iv) this shows that A →𝑝 0.

To show that B → 0, use Cauchy-Schwarz,
∑
𝑗≠𝑖 ℎ̃

2
𝑖 𝑗
𝑏2(𝑧 𝑗) ≤ 𝑐 for any 𝑖 , 𝑗 by Assumptions 3.2

and 3.4(ii), and
∑𝑛
𝑖=1 𝜉

2
𝑖
= 𝑜(1) by Assumption 3.4(iii).

A.5. Proof of Theorem 3.1

Apply Lemma A.12 with 𝑋𝑛 = JK(𝛽0), 𝑌𝑛 = JK𝐼(𝛽0) and 𝑍𝑛 = JK𝐺(𝛽0). The density of 𝑍𝑛 is
uniformly bounded by Lemma F.3.

Lemma A.12. Let 𝑋𝑛 , 𝑌𝑛 , and 𝑍𝑛 be sequences of random variables such that |𝑋𝑛 − 𝑌𝑛 | →𝑝 0, the
distribution of 𝑍𝑛 is absolutely continuous with respect to Lebesgue measure and the density functions
of 𝑍𝑛 are uniformly bounded and sup𝑎∈R |Pr(𝑌𝑛 ≤ 𝑎) − Pr(𝑍𝑛 ≤ 𝑎)| → 0. Then sup𝑎∈R |Pr(𝑋𝑛 ≤
𝑎) − Pr(𝑍𝑛 ≤ 𝑎)| → 0.

Proof. For any 𝑎 ∈ R and 𝜖 > 0 we have that {𝑋𝑛 ≤ 𝑎} ⊆ {𝑌𝑛 ≤ 𝑎 + 𝜖} ∪ {|𝑋𝑛 − 𝑌𝑛 | > 𝜖}; thus,
by applying union bound and rearranging we obtain:

Pr(𝑋𝑛 ≤ 𝑎) ≤ Pr(𝑌𝑛 ≤ 𝑎 + 𝜖) + Pr(|𝑌𝑛 − 𝑋𝑛 | > 𝜖)
≤ Pr(𝑍𝑛 ≤ 𝑎 + 𝜖) + |Pr(𝑌𝑛 ≤ 𝑎 + 𝜖) − Pr(𝑍𝑛 ≤ 𝑎 + 𝜖)|

+ Pr(|𝑌𝑛 − 𝑋𝑛 | > 𝜖)

so that

Pr(𝑋𝑛 ≤ 𝑎) − Pr(𝑍𝑛 ≤ 𝑎) ≤ Pr(𝑎 < 𝑍𝑛 ≤ 𝑎 + 𝜖) + |Pr(𝑌𝑛 ≤ 𝑎 + 𝜖) − Pr(𝑍𝑛 ≤ 𝑎 + 𝜖)|
+ Pr(|𝑌𝑛 − 𝑋𝑛 | > 𝜖)

Let 𝜖𝑛 → 0 be a sequence tending to zero such that Pr(|𝑋𝑛 − 𝑌𝑛 | > 𝜖𝑛) → 0 (Lemma G.1).
Applying a supremum to the above display yields

sup
𝑎∈R

Pr(𝑋𝑛 ≤ 𝑎) − Pr(𝑍𝑛 ≤ 𝑎) ≤ sup
𝑎∈R

Pr(𝑎 < 𝑍𝑛 ≤ 𝑎 + 𝜖𝑛)

+ sup
𝑎∈R

|Pr(𝑌𝑛 ≤ 𝑎 + 𝜖𝑛) − Pr(𝑍𝑛 ≤ 𝑎 + 𝜖𝑛)|

+ Pr(|𝑌𝑛 − 𝑋𝑛 | > 𝜖𝑛)

The first term goes to zero as 𝜖𝑛 → 0 since 𝑍𝑛 has a uniformly bounded density; the second
term goes to zero by sup𝑎∈R |Pr(𝑌𝑛 ≤ 𝑎) − Pr(𝑍𝑛 ≤ 𝑎)| → 0 and the third term goes to zero by
definition of 𝜖𝑛 and |𝑌𝑛 − 𝑋𝑛 | →𝑝 0.

We can apply a symmetric argument to show that sup𝑎∈R Pr(𝑍𝑛 ≤ 𝑎)−Pr(𝑋𝑛 ≤ 𝑎) ≤ 𝑜(1) which
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completes the claim of the lemma. □

B. Proofs of Results in Section 4

The statement of Theorem 4.1 relies on showing

sup
(𝑎1 ,𝑎2)∈R2

��Pr(JK(𝛽0) ≤ 𝑎1 , 𝐶 ≤ 𝑎2) − Pr(JK𝐺(𝛽0) ≤ 𝑎1 , 𝐶𝐺 ≤ 𝑎2)
�� → 0

and sup
(𝑎1 ,𝑎2)∈R2

��Pr(S(𝛽0) ≤ 𝑎1 , 𝐶 ≤ 𝑎2) − Pr(S𝐺(𝛽0) ≤ 𝑎1 , 𝐶𝐺 ≤ 𝑎2)
�� → 0

In particular, since (JK𝐺(𝛽0) ⊥ 𝐶𝐺) and (S𝐺(𝛽0) ⊥ 𝐶𝐺) under 𝐻0, showing the above will imply
the test based on 𝑇(𝛽0; 𝜏) has asymptotic size 𝛼 for any choice of cutoff 𝜏. The second line in the
above display follows imediately from Theorem H.5 after verifying Assumption H.2, below.

The first line in the top display relies on a joint interpolation of the infeasible JK𝐼(𝛽0) test statistic
and the infeasible conditioning statistic 𝐶𝐼 , which could be constructed if 𝜌(𝑧𝑖) was known to
the researcher.

𝐶𝐼 B max
1≤𝑖≤𝑛

�� 1√
𝑛

𝑛∑
𝑖=1

ℎ𝑖 𝑗𝑟 𝑗
/
(𝑛−1

𝑛∑
𝑖=1

ℎ2
𝑖 𝑗)

1/2�� (B.1)

This joint interpolation argument is rather involved however, and deferred to Appendix D.
The interpolation argument for the conditioning statistic very closely follows the results in
Chernozhukov et al. (2013). The results of Section 4 rely on showing that the difference between
𝐶 and 𝐶𝐼 can be treated as negligible. This in turn reduces to verifying Assumption H.2, which
is done in Lemma B.1, below.

Lemma B.1. Suppose that Assumption 3.4 holds. Then there are sequences 𝛿𝑛 ↘ 0, 𝛽𝑛 ↘ 0 such that

Pr
(
max
𝑖∈[𝑛]

𝑛−1
𝑛∑
𝑗=1

¤ℎ2
𝑖 𝑗 (̂𝑟 𝑗 − 𝑟 𝑗)

2 > 𝛿2
𝑛/log2(𝑛)

)
≤ 𝛽𝑛

where ¤ℎ𝑖 𝑗 = ℎ𝑖 𝑗/(𝑛−1 ∑𝑛
𝑗=1 ℎ

2
𝑖 𝑗
)1/2.

Proof. In view of Lemma G.1 it suffices to show

max
1≤𝑖≤𝑛

1
𝑛

𝑛∑
𝑗=1

¤ℎ2
𝑖 𝑗(𝑟𝑖 − 𝑟𝑖)

2 = 𝑜𝑝(1/log2(𝑛)) (B.2)

Notice that we can bound

max
1≤𝑖≤𝑛

1
𝑛

𝑛∑
𝑗=1

(𝑟𝑖 − 𝑟𝑖)2 = max
1≤𝑖≤𝑛

��(�̂� − 𝛾)′𝑛−1
𝑛∑
𝑗=1

𝜖2
𝑗 (𝛽0)𝑏(𝑧𝑖)𝑏(𝑧 𝑗)′(�̂� − 𝛾)

��
+ max

1≤𝑖≤𝑛
|𝑛−1

𝑛∑
𝑗=1

¤ℎ2
𝑖 𝑗𝜉

2
𝑗 |

≤ max
1≤𝑖≤𝑛

1≤ 𝑗 ,𝑘≤𝑑𝑏

��𝑛−1
𝑛∑
𝑗=1

𝜖2
𝑗 (𝛽0)𝑏 𝑗(𝑧 𝑗)𝑏𝑘(𝑧 𝑗)

��
︸                            ︷︷                            ︸

A𝑖 𝑗𝑘

∥�̂� − 𝛾∥2
1
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+ 𝑛−1/2 max
1≤𝑖≤𝑛

(𝑛−1
𝑛∑
𝑗=1

¤ℎ4
𝑖 𝑗)

1/2(
𝑛∑
𝑗=1

𝜉4
𝑗 )

1/2

Under Assumption 3.4(i,ii) each A𝑖 𝑗𝑘 is 𝜐-sub-exponential by Theorem H.1 (that is ∥A𝑖 𝑗𝑘 ∥𝜓𝜐

is bounded). An application of Lemma G.2 then yields that max𝑖 , 𝑗 ,𝑘 |A𝑖 𝑗𝑘 | = 𝑂𝑝(log1/𝜈(𝑑𝑏𝑛)).
Along with Assumption 3.4(iv) this gives that max𝑖 , 𝑗 ,𝑘 |A𝑖 𝑗𝑘 |∥�̂� − 𝛾∥1 = 𝑂𝑝(log−3/(𝑣∧1)(𝑑𝑏𝑛)) =
𝑜𝑝(log−2(𝑛)). Meanwhile by definition of ¤ℎ𝑖 𝑗 , max𝑖(𝑛−1 ∑𝑛

𝑗=1
¤ℎ4
𝑖 𝑗
)1/2 = 𝑂(1) while by Assump-

tion 3.4(iii) (∑𝑛
𝑗=1 𝜉

4
𝑗
)1/2 = 𝑜(1). Since log2(𝑛)/

√
𝑛 → 0 this shows (B.2). □

B.1. Proof of Theorem 4.1

The first result in Theorem 4.1 with JK(𝛽0) and 𝐶 replaced with their infeasible analogs JK𝐼(𝛽0)
and 𝐶𝐼 follows from the argument in Appendix D. After verifying that |JK(𝛽0) − JK(𝛽0)| →𝑝 0
via Lemma 3.3 and that Assumption H.2 is satisfied via Lemma B.1 follow the same steps as
in the proof of Belloni et al. (2018), Theorem 2.1 to see that approximation result holds for the
feasible JK(𝛽0) and 𝐶.

For the second statement, I show that the conditions of Theorem H.6 are satisfied. To see
that Assumption H.1(i,ii) is satisfied under Assumption 3.1 use (i) the definition of ¤ℎ𝑖 𝑗 =

ℎ𝑖 𝑗
/
(𝑛−1 ∑𝑛

𝑗=1 ℎ
2
𝑖 𝑗
)1/2; (ii) that the variance of each 𝑟 𝑗 is bounded away from zero and (iii) that

the fourth moments of 𝑟 𝑗 are bounded from above. Assumption H.1(iii) is satisfied with
𝐵𝑛 = log1/𝜐(𝑛) by Assumption 4.1(i,iii) and Lemma G.2. Finally Assumption H.2 is satisfied by
applying Lemma B.1. Apply Theorem H.6 to conclude.

C. Proofs of Results in Section 5

Throughout this section, define the scaled elements of the infeasible and gaussian numerators
and denominators

𝑁ℓ =
𝑠𝑛,ℓ√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟 𝑗 �̃�ℓ =
𝑠𝑛,ℓ√
𝑛

𝑛∑
𝑖=1

�̃�𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟 𝑗

𝐷ℓ 𝑘 =
𝑠ℓ ,𝑛𝑠𝑚,𝑘

𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)(

𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟ℓ 𝑗)(
𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟𝑘 𝑗) �̃�ℓ 𝑘 =
𝑠ℓ ,𝑛𝑠𝑚,𝑘

𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)(

𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟ℓ 𝑗)(
𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟𝑘 𝑗)

Collect these in 𝑁 = (𝑁1 , . . . 𝑁𝑑𝑥 )′ ∈ R𝑑𝑥 , �̃� = (�̃�1 , . . . , �̃�𝑑𝑥 )′ ∈ R𝑑𝑥 , 𝐷 = [𝐷ℓ 𝑘]ℓ ,𝑘∈[𝑑𝑥] ∈ R𝑑𝑥×𝑑𝑥 ,
and �̃� = [�̃�ℓ 𝑘]ℓ ,𝑘∈[𝑑𝑥] ∈ R𝑑𝑥×𝑑𝑥 . After multiplying by scaling matrix diag(𝑠1,𝑛 , . . . , 𝑠𝑑𝑥 ,𝑛) and the
inverse of the scaling matrix we rewrite the infeasible and gaussian test statistics

JK𝐼(𝛽0) = 𝑁′𝐷−1𝑁1{𝜆min(𝐷)>0} JK𝐺(𝛽0) = �̃�′�̃�−1�̃�

These are the representations of the test statsitics we will largely work through in this section.

C.1. Proof of Lemma 5.1

Lemma 5.1 follows immediately from the joint gaussian approximation argument established
in Appendix D.
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C.2. Proof of Lemma 5.2

Define the matrix Δ𝐷 = [(Δ𝐷)ℓ 𝑘]ℓ ,𝑘∈[𝑑𝑥] and the vector Δ𝑁 = [(Δ𝑁 )ℓ ]ℓ∈[𝑑𝑥] where

(Δ𝐷)ℓ 𝑘 B
𝑠ℓ ,𝑛𝑠𝑘,𝑛

𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)

(
Π̂ℓ ,𝑖Π̂𝑘,𝑖 − Π̂𝐼

ℓ ,𝑖Π̂
𝐼
𝑘,𝑖

)
(Δ𝑁 )ℓ B

𝑠ℓ ,𝑛√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)(Π̂ℓ ,𝑖 − Π̂𝐼
ℓ ,𝑖)

Under the conditions of Lemma 5.2 we have that ∥Δ𝐷 ∥ →𝑝 0 and ∥Δ𝑁 ∥ →𝑝 0. Using this
notation, we can write the infeasible version of the test statistic as JK𝐼(𝛽0) = 𝑁′𝐷−1𝑁 while the
feasible version is written JK(𝛽0) = (𝑁 +Δ𝑁 )′(𝐷 +Δ𝐷)−1(𝑁 +Δ𝑁 ). Add and subtract 𝐷−1 to get

JK(𝛽0) =
(
𝑁 + Δ𝑁

)′ ((𝐷 + Δ𝐷)−1 ± 𝐷−1) (𝑁 + Δ𝑁
)

= JK𝐼(𝛽0) + 𝑁′ ((𝐷 + Δ𝐷)−1 − 𝐷−1)𝑁 + Δ𝑁
(
(𝐷 + Δ𝐷)−1 − 𝐷−1)𝑁

+ Δ′
𝑁

(
(𝐷 + Δ𝐷)−1 − 𝐷−1)Δ𝑁 + 𝑁′𝐷−1Δ𝑁 + Δ𝑁𝐷

−1𝑁 + Δ𝑁𝐷
−1Δ𝑁

Via Lemma D.2 we have that ∥𝐷−1∥ = (𝜆min(𝐷))−1 = 𝑂𝑝(1) and by assumption we have that
Δ𝑁 →𝑝 0. It therefore suffices to show that

∥(𝐷 + Δ𝐷)−1 − 𝐷−1∥ →𝑝 0 (C.1)

To do so, we can use the following equality from Horn and Johnson (2012), p. 381.

∥(𝐷 + Δ𝐷)−1 − 𝐷−1∥ ≤ ∥𝐷−1∥2∥Δ𝐷 ∥
1 − ∥𝐷−1Δ𝐷 ∥

Since ∥𝐷−1∥ = 𝑂𝑝(1) and Δ𝐷 →𝑝 0, this gives (C.1).

C.3. Proof of Theorem 5.1

Under Assumption 5.4, the conditions of Lemma 5.2 can be verified following the same steps
as the proof of Lemma 3.3. Combine Lemma 5.2 and Lemma 5.1 as in the proof of Theorem 3.1
to conclude.

C.4. Proof of Theorem 5.2

Follows from the same argument as the proof of Theorem 5.1 using the joint interpolation of
JK(𝛽0) and 𝐶 established in Appendix D.

D. Joint Gaussian Approximation of JK(𝛽0) and 𝐶

The main results of Sections 4 and 5 rely on a joint interpolation of the conditioning and
testing statistics as well as a joint interpolation of the conditioning and testing statistics. The
joint interpolation of JK(𝛽0) and the conditioning statistic 𝐶 is given in Appendix D.2 after
introducing some notation in Appendix D.1. The joint gaussian approximation of 𝑆(𝛽0) and
𝐶 follows immediately from results in Belloni et al. (2018), Chernozhukov et al. (2017). The
result is presented below for the general form of the JK(𝛽0) statistic under𝐻0 however the proof
strategy is very similar when using the decomposed form of JK(𝛽0) when 𝑑𝑥 = 1. This proof is
available on request.



Joint Gaussian Approximation of JK(𝛽0) and 𝐶 Page 54

D.1. Notation

Jackknife Statistic Definitions. Define ℎ̃ℓ ,𝑖 𝑗 = 𝑠𝑛,ℓ ℎ𝑖 𝑗 for each ℓ = 1, . . . , 𝑑𝑥 and the scaled
leave-one-out quasi-numerator and denominators

𝑈−𝑖 =

[
1√
𝑛

𝑛∑
𝑗=1

¤𝜖 𝑗(𝛽0)
∑
𝑘≠𝑖

ℎ̃ℓ , 𝑗𝑘 ¤𝑟ℓ 𝑘
]

1≤ℓ≤𝑑𝑥
∈ R𝑑𝑥

𝐷−𝑖 =

[
1
𝑛

𝑛∑
𝑗=1

¥𝜖2
𝑖 (𝛽0)

(∑
𝑘≠𝑖

ℎ̃ℓ ,𝑖 𝑗 ¤𝑟ℓ 𝑗
) (∑

𝑘≠𝑖

ℎ̃ℓ ,𝑖 𝑗 ¤𝑟𝑚𝑗
) ]

1≤ℓ≤𝑑
1≤𝑚≤𝑑𝑥

∈ R𝑑𝑥×𝑑𝑥

where ¤𝜖 𝑗(𝛽0) is equal to �̃� 𝑗(𝛽0) if 𝑗 < 𝑖 and equal to 𝜖 𝑗(𝛽0) if 𝑗 > 𝑖, ¤𝑟ℓ 𝑗 is equal to 𝑟ℓ 𝑗 if 𝑗 < 𝑖 and
equal to 𝑟 𝑗 if 𝑗 > 𝑖, and ¥𝜖 𝑗(𝛽0) is equal to E[𝜖2

𝑗
(𝛽0)] if 𝑗 < 𝑖 and equal to 𝜖 𝑗(𝛽0) if 𝑗 > 𝑖. As in the

proof of Lemma 3.1 while the definitions of ¤𝜖 𝑗(𝛽0), ¤𝑟ℓ 𝑗 , and ¥𝜖 𝑗(𝛽0) depend on 𝑖 this dependence
is suppressed to conslidate notation and since we only consider one step deviations at a time.

Also define the one step deviations

Δ𝑈𝑖 =
[
𝜖𝑖(𝛽0)

𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗 ¤𝑟ℓ 𝑗 + 𝑟ℓ 𝑖
𝑛∑
𝑗=1

ℎ̃ℓ , 𝑗𝑖 ¤𝜖 𝑗(𝛽0)
]

1≤ℓ≤𝑑 ∈ R
𝑑

Δ̃𝑈𝑖 =
[
�̃�𝑖(𝛽0)

𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗 ¤𝑟ℓ 𝑗 + 𝑟ℓ 𝑖
𝑛∑
𝑗=1

ℎ̃ℓ , 𝑗𝑖 ¤𝜖 𝑗(𝛽0)
]

1≤ℓ≤𝑑 ∈ R
𝑑

Δ𝐷𝑖 =
[
(Δ𝑎𝐷𝑖)ℓ𝑚

]
1≤ℓ≤𝑑
1≤𝑚≤𝑑︸             ︷︷             ︸

Δ𝑎
𝐷𝑖

+
[
(Δ𝑏𝐷𝑖)ℓ𝑚

]
1≤ℓ≤𝑑
1≤𝑚≤𝑑︸             ︷︷             ︸

Δ𝑏
𝐷𝑖

Δ̃𝐷𝑖 =
[
(Δ̃𝑎𝐷𝑖)ℓ𝑚

]
1≤ℓ≤𝑑
1≤𝑚≤𝑑︸             ︷︷             ︸

Δ̃𝑎
𝐷𝑖

+
[
(Δ̃𝑏𝐷𝑖)ℓ𝑚

]
1≤ℓ≤𝑑
1≤𝑚≤𝑑︸             ︷︷             ︸

Δ̃𝑏
𝐷𝑖

where

(Δ𝑎𝐷𝑖)ℓ𝑚 = 𝜖2
𝑖 (𝛽0)

( 𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗𝑟ℓ 𝑗
) ( 𝑛∑

𝑗=1
ℎ̃ℓ ,𝑖 𝑗 ¤𝑟ℓ 𝑗

) ( 𝑛∑
𝑗=1

ℎ𝑚,𝑖𝑗𝑟𝑚,𝑖𝑗
)2 + 𝑟ℓ 𝑖𝑟𝑘𝑖

𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗 ℎ̃𝑚,𝑖𝑗 ¥𝜖2
𝑗 (𝛽0)

(Δ̃𝑎𝐷𝑖)ℓ𝑚 = �̃�2
𝑖 (𝛽0)

( 𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗𝑟ℓ 𝑗
) ( 𝑛∑

𝑗=1
ℎ̃ℓ ,𝑖 𝑗 ¤𝑟ℓ 𝑗

) ( 𝑛∑
𝑗=1

ℎ𝑚,𝑖𝑗𝑟𝑚,𝑖𝑗
)2 + 𝑟ℓ 𝑖𝑟𝑘𝑖

𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗 ℎ̃𝑚,𝑖𝑗 ¥𝜖2
𝑗 (𝛽0)

(Δ𝑏𝐷𝑖)ℓ𝑚 = 𝑟ℓ 𝑖

𝑛∑
𝑗=1

¥𝜖2
𝑗 (𝛽0)

∑
𝑘≠𝑖

ℎ̃ℓ , 𝑗𝑖 ℎ̃𝑚,𝑗𝑘 ¤𝑟𝑚𝑘 + 𝑟𝑘𝑖
𝑛∑
𝑗=1

¥𝜖2
𝑗 (𝛽0)

∑
𝑘≠𝑖

ℎ̃ℓ , 𝑗𝑖 ℎ̃𝑚,𝑗𝑘 ¤𝑟ℓ 𝑘

(Δ̃𝑏𝐷𝑖)ℓ𝑚 = 𝑟ℓ 𝑖

𝑛∑
𝑗=1

¥𝜖2
𝑗 (𝛽0)

∑
𝑘≠𝑖

ℎ̃ℓ , 𝑗𝑖 ℎ̃𝑚,𝑗𝑘 ¤𝑟𝑚𝑘 + 𝑟𝑘𝑖
𝑛∑
𝑗=1

¥𝜖2
𝑗 (𝛽0)

∑
𝑘≠𝑖

ℎ̃ℓ , 𝑗𝑖 ℎ̃𝑚,𝑗𝑘 ¤𝑟ℓ 𝑘

Notice that in this notation we can write the test statistic and gaussian test statistics, after scaling
by diag(𝑠𝑛,1 , . . . , 𝑠𝑛,𝑑𝑥 ), as

𝐶(𝛽0) = (𝑈−1 + Δ𝑈1/
√
𝑛)′(𝐷−1 + Δ𝐷1/𝑛)−1(𝑈−1 + Δ𝑈1/

√
𝑛)1{𝜆min(𝐷−1 + Δ𝐷1)−1) > 0}
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�̃�(𝛽0) = (𝑈−𝑛 + Δ̃𝑈𝑛/
√
𝑛)′(�̃�−1 + Δ̃𝐷1/𝑛)−1(𝑈−𝑛 + Δ̃𝑈1/

√
𝑛)

In this proof we will use these representations for the test statistics. Finally define

𝑈 = 𝑈−1 + Δ𝑈1/
√
𝑛 �̃� = 𝑈−𝑛 + Δ̃𝑈𝑛/

√
𝑛

𝐷 = 𝐷−1 + Δ𝐷1/𝑛 �̃� = 𝐷−𝑛 + Δ𝐷𝑛/𝑛

Conditioning Statistic Definitions. Let ℎℓ ,𝑖𝑖 = 0 for any ℓ = 1, . . . , 𝑑𝑥 and 𝑖 = 1, . . . , 𝑛. Define
ℎ̃ℓ ,𝑖 𝑗 = ℎℓ ,𝑖 𝑗/𝜔ℓ 𝑖 for 𝜔ℓ 𝑖 = 𝑛−1 ∑𝑛

𝑗=1 |ℎℓ ,𝑖 𝑗 |. Also define the one-step deviations:

Δ𝐶𝑖 B (ℎ̃1, 𝑗𝑖𝑟1𝑖 ,−ℎ̃1, 𝑗𝑖𝑟1𝑖 , . . . , ℎ̃𝑑𝑥 , 𝑗𝑖𝑟𝑑𝑥 𝑖 ,−ℎ̃𝑑𝑥 , 𝑗𝑖𝑟𝑑𝑥 𝑖)′1≤ 𝑗≤𝑛 ∈ R2𝑛𝑑𝑥

Δ𝐶𝑖 B (ℎ̃1, 𝑗𝑖𝑟1𝑖 ,−ℎ̃1, 𝑗𝑖𝑟1𝑖 , . . . , ℎ̃𝑑𝑥 , 𝑗𝑖𝑟𝑑𝑥 𝑖 ,−ℎ̃𝑑𝑥 , 𝑗𝑖𝑟𝑑𝑥 𝑖)′1≤ 𝑗≤𝑛 ∈ R2𝑛𝑑𝑥

And the leave-one-out vector

𝐶−𝑖 B
1√
𝑛

∑
𝑗<𝑖

Δ̃𝐶𝑗 +
1√
𝑛

∑
𝑗>𝑖

Δ𝐶𝑗 ∈ R2𝑛𝑑𝑥

Notice that 𝐶 = max1≤𝜄≤2𝑛𝑑𝑥 (𝐶−1 + 1√
𝑛
Δ𝐶1)𝜄 while �̃� = max1≤𝜄≤2𝑛𝑑𝑥 (𝐶−𝑛 + Δ𝐶𝑛)𝜄.

Function Definitions. As in Chernozhukov et al. (2013) consider the “smooth max” function,
𝐹𝛽 : R𝑝 → R defined

𝐹𝛽(𝑧) = 𝛽−1 log
( 𝑛∑
𝑖=1

exp(𝛽𝑧𝑖)
)

which satisfies
0 ≤ 𝐹𝛽(𝑧) − max

1≤𝑖≤𝑛
𝑧𝑖 ≤ 𝛽−1 log 𝑝.

Appendix F.2 notes some useful properties of the smooth max function which we will use in
the joint interpolation argument. In addition let 𝜑(·) ∈ 𝐶3

𝑏
(R) be such that 𝜑(𝑥) = 1 if 𝑥 ≤ 0,

𝜑′(𝑥) < 0 for 𝑥 ∈ (0, 1), and 𝜑(𝑥) = 0 for 𝑥 ≥ 1. For any 𝛾 > 0 and 𝑎 = (𝑎1 , 𝑎2)′ ∈ R2 define the
function �̃�(·, ·, ·) : R𝑑𝑥 × vec(R𝑑𝑥×𝑑𝑥 ) × R2𝑛𝑑𝑥 → R via

�̃�𝛾,𝑎(𝑢, vec(𝑑), 𝑐) B 𝜙𝛾,𝑎1(𝑢, vec(𝑑))𝜏𝛾,𝑎2(𝑐) (D.1)

where

𝜙𝛾,𝑎1(𝑢, vec(𝑑)) B 𝜑

(
𝑢′𝑑−1𝑢 − 𝑎1

𝛾𝜆5
min(𝑑)

)
𝜏𝛾,𝑎(𝑐) B 𝜑

(
𝐹1/𝛾(𝑐) − 𝑎2

𝛾

)
The function �̃�𝛾,𝑎(·, ·, ·) is meant to approximate the indicator function 1{𝐾(𝛽0) ≤ 𝑎1}1{𝐶 ≤ 𝑎2}
with 𝛾 governing the quality of approximation. Where it is obvious, we will supress the
subscripts 𝛾, 𝑎 from our notation.
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D.2. Main Argument

Lemma D.1 (Joint Lindeberg Interpolation). Suppose that Assumptions 5.1–5.3 hold. Then there is
a fixed constant 𝑀���E[�̃�𝛾,𝑎(𝑈, vec(𝐷), 𝐶) − �̃�𝛾,𝑎(�̃� , vec(�̃�), �̃�)]

��� ≤ 𝑀1 log𝑀2(𝑛)
√
𝑛

(𝛾−1 + 𝛾−2 + 𝛾−3) (D.2)

Proof of Lemma D.1. We can bound the difference on the left hand side of (D.2) using the tele-
scoping sum

𝑛∑
𝑖=1

��E[�̃�𝛾,𝑎(𝑈−𝑖 + Δ𝑈𝑖/
√
𝑛, vec(𝐷−𝑖 + Δ𝐷𝑖/𝑛), 𝐶−𝑖 + Δ𝐶𝑖/

√
𝑛)]

− E[�̃�𝛾,𝑎(𝑈−𝑖 + Δ𝑈𝑖/
√
𝑛, vec(𝐷−𝑖 + Δ𝐷𝑖/𝑛), 𝐶−𝑖 + Δ𝐶𝑖/

√
𝑛)]

�� (D.3)

By second degree Taylor expansion, we break each of the summands in (D.3) into first order,
second order, and remainder terms; each of which are bounded below. We make use of the
following moment conditions implied by (i) indpendence of observations across 𝑖 = 1, . . . , 𝑛
and (ii) the mean and covariance matrix of (𝜖𝑖(𝛽0), 𝑟𝑖) being equal to the mean and covariance
matrix of (�̃�𝑖(𝛽0), 𝑟𝑖)

0 = E[Δ𝑈𝑖 − Δ̃𝑈𝑖 |ℱ−𝑖] = E[Δ𝑈𝑖Δ′
𝑈𝑖 − Δ̃𝑈𝑖Δ̃

′
𝑈𝑖 |ℱ−𝑖] = E[vec(Δ𝐷𝑖) − vec(Δ̃𝐷𝑖)|ℱ−𝑖]

= E[Δ𝐶𝑖 − Δ̃𝐶𝑖 |ℱ−𝑖] = E[Δ𝑈𝑖 ⊗ vec(Δ𝑏𝐷𝑖)
′ − Δ̃𝑈𝑖 ⊗ vec(Δ̃𝑏𝐷𝑖)

′ |ℱ−𝑖]
= E[Δ𝐶𝑖 ⊗ Δ𝑈𝑖 − Δ̃𝐶𝑖 ⊗ Δ̃𝑈𝑖 |ℱ−𝑖] = E[Δ𝐶𝑖 ⊗ vec(Δ̃𝑏𝐷𝑖) − Δ̃𝐶𝑖 ⊗ vec(Δ̃𝑏𝐷𝑖)|ℱ−𝑖]
= E[vec(Δ𝑏𝐷𝑖)vec(Δ𝑏𝐷𝑖)

′ − vec(Δ̃𝑏𝐷𝑖)vec(Δ̃𝑏𝐷𝑖)
′ |ℱ−𝑖]

(D.4)

where ℱ−𝑖 denotes the sub-sigma algebra generated by all observations not equal to 𝑖, ⊗ denotes
the Kronecker product, and I apologize for the abuse of the equal sign in the above display.

First Order Terms. First order terms can be expressed

First Order𝑖 =
𝑑𝑥∑
ℓ=1
E

[
𝜕

𝜕𝑈ℓ
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝑈𝑖)ℓ − (Δ̃𝑈𝑖)ℓ )

]
/
√
𝑛

+
𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1
E

[
𝜕

𝜕𝐷ℓ𝑚
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝐷𝑖)ℓ𝑚 − (Δ̃𝐷𝑖)ℓ𝑚)

]
/𝑛

+
2𝑛𝑑𝑥∑
ℓ=1
E

[
𝜕

𝜕𝐶ℓ
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝐶𝑖)ℓ − (Δ̃𝐶𝑖)ℓ )

]
/
√
𝑛

These terms are all equal to zero after applying the matched moments in (D.4).
Second Order Terms. After canceling out terms using the matched moments in (D.4) the
second order terms that remain can be expressed

2nd Order𝑖 =
1
𝑛3/2

𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1
E

[
𝜕2

𝜕𝑈ℓ𝜕𝐷𝑚𝑛
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝑈𝑖)ℓ (Δ𝑎𝐷𝑖)𝑚𝑛 − (Δ̃𝑈𝑖)ℓ (Δ̃𝑎𝐷𝑖)𝑚𝑛)

]
︸                                                                                      ︷︷                                                                                      ︸

Aℓ𝑚𝑛

=
1
𝑛2

𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1

𝑑𝑥∑
𝑜=1
E

[
𝜕2

𝜕𝑈ℓ𝜕𝐷𝑚𝑛
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝑎𝐷𝑖)ℓ𝑚(Δ

𝑎
𝐷𝑖)𝑛𝑜 − (Δ̃𝑎𝐷𝑖)ℓ𝑚(Δ̃

𝑎
𝐷𝑖)𝑛𝑜)

]
︸                                                                                        ︷︷                                                                                        ︸

Bℓ𝑚𝑛𝑜
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=
2
𝑛2

𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1

𝑑𝑥∑
𝑜=1
E

[
𝜕2

𝜕𝑈ℓ𝜕𝐷𝑚𝑛
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝑏𝐷𝑖)ℓ𝑚(Δ

𝑎
𝐷𝑖)𝑛𝑜 − (Δ̃𝑎𝐷𝑖)ℓ𝑚(Δ̃

𝑏
𝐷𝑖)𝑛𝑜)

]
︸                                                                                        ︷︷                                                                                        ︸

Cℓ𝑚𝑛𝑜

=
1
𝑛3/2

2𝑛𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1
E

[
𝜕2

𝜕𝐶ℓ𝜕𝐷𝑚𝑛
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝐶𝑖)ℓ (Δ𝑎𝐷𝑖)𝑚𝑛 − (Δ̃𝐶𝑖)ℓ (Δ̃𝑎𝐷𝑖)𝑚𝑛)

]
︸                                                                                     ︷︷                                                                                     ︸

Dℓ𝑚𝑛

To bound each Aℓ𝑚𝑛 , Bℓ𝑚𝑛𝑜 , and Cℓ𝑚𝑛𝑜 we use the fact that the second order derivatives of
�̃� are bounded up to a log power of 𝑛 via repeated application of Lemmas F.12 and F.15.
Under Assumption 5.1 the absolute value of terms (Δ𝑈𝑖)ℓ ,|Δ𝑎𝐷𝑖 |𝑚𝑛 , and (Δ𝑏

𝐷𝑖
/
√
𝑛)𝑛𝑜 can also be

shown to have bounded third moments via the exact same steps as in the proof of Lemma F.1.
Putting these together with generalized Holder’s inequality will yield a finite constants 𝑀1
and 𝑀2 such that |A𝑙𝑚𝑛 | ≤ 𝑀1 log𝑀2(𝑛)(𝛾−1 + 𝛾−2), Bℓ𝑚𝑛𝑜 ≤ 𝑀1 log𝑀2(𝑛)(𝛾−1 + 𝛾−2), and
|Cℓ𝑚𝑛𝑜 | ≤ 𝑀1 log𝑀2(𝑛)𝑛1/2(𝛾−1 + 𝛾−2). To bound Dℓ𝑚𝑛 terms notice that

2𝑛𝑑𝑥∑
ℓ=1

Dℓ𝑚𝑛 =

2𝑛𝑑𝑥∑
ℓ=1
E

[
𝜕

𝜕𝐷𝑚𝑛
𝜙(𝑈−𝑖 , vec(𝐷−𝑖))

𝜕

𝜕𝐶ℓ
𝜏(𝐶−𝑖)((Δ𝐶−𝑖)ℓ (Δ𝑎𝐷𝑖)𝑚𝑛 − (Δ̃𝐶𝑖)ℓ (Δ̃𝑎𝐷𝑖)𝑚𝑛))

]
Apply Lemma F.1 to bound Δ𝑎

𝐷𝑖
, and Lemmas F.12 and F.15 to bound the derivative of 𝜙(·) and Cauchy-

Schwarz to split up the Δ𝐶𝑖 and Δ𝐷𝑖 terms

≤
√
𝑀1 log𝑀2(𝑛)𝛾−2E

[ 2𝑛𝑑𝑥∑
ℓ=1

(𝜕ℓ𝜏(𝐶−𝑖))2((Δ𝐶𝑖)ℓ + (Δ̃𝐶𝑖)ℓ )2
]1/2

≤
√
𝑀1 log𝑀2(𝑛)𝛾−2E

[
max
1≤ℓ≤𝑛

((Δ𝐶𝑖)2ℓ + (Δ̃𝐶𝑖)2ℓ )2
2𝑛𝑑𝑥∑
ℓ=1

(𝜕ℓ𝜏(𝐶−𝑖))2
]1/2

By Lemma F.8 and chain rule we have that
∑2𝑛𝑑𝑥
ℓ=1 (𝜕ℓ𝜏(𝐶−𝑖))2 ≤ 𝛾−2. Moreover (Δ𝐶𝑖)𝑎/2

ℓ
is sub-exponential

so via Lemma G.2 the second moment of the maximum is bounded by a power of log(𝑛). After updating
the constant 𝑀1 and 𝑀2 this yields

≤ 𝑀1 log𝑀2(𝑛)𝛾−2

Putting these all together and summing over the remaining indices gives

|Second Order𝑖 | ≤
𝑀1 log𝑀2(𝑛)

𝑛3/2
(𝛾−1 + 𝛾−2) (D.5)

Remainder Terms. The first remainder term can be expressed

Remainder𝑖 =
1
𝑛3/2

𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1
E

[
𝜕3

𝜕𝑈ℓ𝜕𝑈𝑚𝜕𝑈𝑛
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝑈𝑖)ℓ (Δ𝑈𝑖)𝑚(Δ𝑈𝑖)𝑛

]
+ 1
𝑛3

∑
(ℓ ,𝑚)

∑
(𝑛,𝑜)

∑
(𝑞,𝑝)
E

[
𝜕3

𝜕𝐷ℓ𝑚𝜕𝐷𝑛𝑜𝜕𝐷𝑝𝑞
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐷𝑖)ℓ𝑚(Δ𝐷𝑖)𝑛𝑜(Δ𝐷𝑖)𝑞𝑝

]
+ 1
𝑛3/2

2𝑛𝑑𝑥∑
ℓ=1

2𝑛𝑑𝑥∑
𝑚=1

2𝑛𝑑𝑥∑
𝑛=1
E

[
𝜕3

𝜕𝐶ℓ𝜕𝐶𝑚𝜕𝐶𝑛
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐶𝑖)ℓ (Δ𝐶𝑖)𝑚(Δ𝐶𝑖)𝑛

]
+ 1
𝑛2

𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

∑
(𝑛,𝑜)
E

[
𝜕3

𝜕𝑈ℓ𝜕𝑈𝑚𝜕𝐷𝑛𝑜
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝑈𝑖)ℓ (Δ𝑈𝑖)𝑚(Δ𝐷𝑖)𝑛𝑜

]
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+ 1
𝑛5/2

𝑑𝑥∑
ℓ=1

∑
(𝑚,𝑛)

∑
(𝑜,𝑝)
E

[
𝜕3

𝜕𝑈ℓ𝜕𝐷𝑚𝑛𝜕𝐷𝑜𝑝
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝑈𝑖)ℓ (Δ𝐷𝑖)𝑚𝑛(Δ𝐷𝑖)𝑜𝑝

]
+ 1
𝑛5/2

2𝑛𝑑𝑥∑
ℓ=1

∑
(𝑚,𝑛)

∑
(𝑜,𝑝)
E

[
𝜕3

𝜕𝐶ℓ𝜕𝐷𝑚𝑛𝜕𝐷𝑜𝑝
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐶𝑖)ℓ (Δ𝐷𝑖)𝑚𝑛(Δ𝐷𝑖)𝑜𝑝

]
+ 1
𝑛2

2𝑛𝑑𝑥∑
ℓ=1

2𝑛𝑑𝑥∑
𝑚=1

∑
(𝑛,𝑜)
E

[
𝜕3

𝜕𝐶ℓ𝜕𝐶𝑚𝜕𝐷𝑛𝑜
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐶𝑖)ℓ (Δ𝐶𝑖)𝑚(Δ𝐷𝑖)𝑛𝑜

]
+ 1
𝑛3/2

2𝑛𝑑𝑥∑
ℓ=1

2𝑛𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1
E

[
𝜕3

𝜕𝐶ℓ𝜕𝐶𝑚𝜕𝑈𝑛
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐶𝑖)ℓ (Δ𝐶𝑖)𝑚(Δ𝑈𝑖)𝑛

]
+ 1
𝑛2

2𝑛𝑑𝑥∑
ℓ=1

2𝑛𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1
E

[
𝜕3

𝜕𝐶ℓ𝜕𝐶𝑚𝜕𝑈𝑛
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐶𝑖)ℓ (Δ𝐶𝑖)𝑚(Δ𝑈𝑖)𝑛

]

where �̄� , vec(�̄�), and �̄� vary term by term but are always in the hyper-rectangles [𝑈−𝑖 , 𝑈 +
Δ𝑈𝑖], [vec(𝐷−𝑖), vec(𝐷−𝑖 + Δ𝐷𝑖)], and [𝐶−𝑖 , 𝐶−𝑖 + Δ𝐶𝑖], respectively. As such, any moment
conditions that apply to 𝑈, 𝐷, 𝐶 also apply to (�̄� , �̄�, �̄�). Repeated application of generalized
Hölder inequality, Lemma F.1 to bound moments of Δ𝑈𝑖 and (Δ𝐷𝑖/

√
𝑛), Lemma F.15 to bound

moments of the second and third derivatives of 𝜙(�̃� , vec(�̃�)), Lemma F.11 to bound the sums
of derivatives of 𝜏(�̃�), and Lemma G.2 to bound moments of max1≤ℓ≤𝑛(Δ𝐶𝑖)ℓ will yield that

|Remainder𝑖 | ≤
𝑀1 log𝑀2(𝑛)

𝑛3/2
(𝛾−1 + 𝛾−2 + 𝛾−3) (D.6)

Symmetric logic will bound the other remainder term. Summing (D.5) and (D.6) over indices
gives the result. □

Lemma D.2 (Denominator Anticoncentration). Suppose that Assumptions 5.1–5.3 hold. Then for
any sequence 𝛿𝑛 → 0 we have that Pr(𝜆min(�̃�) ≤ �̃�𝑛) → 0.

Proof. By Lemma D.4 it suffices to show that for any fixed 𝑎 ∈ 𝒮𝑑𝑥−1 and any 𝛿𝑛 → 0, Pr(𝑎′𝐷𝑎 ≤
𝛿𝑛) → 0. For any such 𝑎 write:

𝑎′�̃�𝑎 =
1
𝑛

𝑛∑
𝑖=1
E[𝜖2

𝑖 (𝛽0)]
( 𝑑𝑥∑
ℓ=1

𝑛∑
𝑗=1

𝑎ℓ ℎ̃ℓ ,𝑖 𝑗𝑟ℓ , 𝑗
)2

≥ 1
𝑐𝑛

𝑛∑
𝑖=1

( 𝑑𝑥∑
ℓ=1

𝑛∑
𝑗=1

𝑎ℓ ℎ̃ℓ ,𝑖 𝑗𝑟ℓ , 𝑗
)2

Define ¤𝑠𝑛,𝑗 = max{ℓ :𝑎ℓ≠0} 𝑠𝑛,ℓ and ¤ℎ𝑖 𝑗 = 𝑠𝑛ℎ𝑖 𝑗

=
1
𝑐𝑛

𝑛∑
𝑖=1

( 𝑛∑
𝑗=1

¤ℎ𝑖 𝑗
𝑑𝑥∑
ℓ=1

𝑎ℓ 𝑠𝑛,ℓ

𝑠𝑛
𝑟ℓ , 𝑗

)2

By Assumption 5.1 we have that 𝜆min(E[𝐷]) ≥ 𝑐 so that E[ 1
𝑛

∑𝑛
𝑖=1

( ∑𝑑𝑥
ℓ=1

∑𝑛
𝑗=1 𝑎ℓ ℎ̃ℓ ,𝑖 𝑗𝑟ℓ , 𝑗

)2] ≥ 𝑐−1.
Moreover, by Assumption 5.1, Var(∑𝑑𝑥

ℓ=1
𝑎ℓ 𝑠𝑛,ℓ
𝑠𝑛

) is bounded from above and below. Define the
matrix �̃� = [ ¤ℎ𝑖 𝑗]𝑖 𝑗 and follow the same steps as Lemma D.2 to conclude. □
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Lemma D.3 (Gaussian Approximation). Suppose that Assumptions 5.1–5.3 hold. Then

sup
𝑎∈R

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
�� → 0

Proof. Let 𝑎 = (𝑎1 , 𝑎2) and �̃�𝛾,𝑎 be as in (D.1):

Pr(𝑁′𝐷−1𝑁 ≤ 𝑎1 , 𝐶 ≤ 𝑎2) ≤ E[�̃�𝛾,𝑎(𝑈, vec(𝐷), 𝐶)]

≤ E[�̃�𝛾,𝑎(�̃� , vec(�̃�), �̃�)] +
𝑀1 log𝑀2 (𝑛)

√
𝑛

(𝛾−1 + 𝛾−2)

≤ Pr(�̃�′�̃�−1�̃� ≤ 𝑎1 , �̃� ≤ 𝑎2) + Pr(𝑎1 ≤ �̃�′�̃�−1𝑁 ≤ 𝑎1 + 𝛾𝜆5
min(𝐷))

+ Pr(𝑎2 ≤ 𝐶 ≤ 𝑎2 + 𝛾) +
𝑀1 log𝑀2

2 (𝑛)
√
𝑛

(𝛾−1 + 𝛾−2 + 𝛾−3)

≤ Pr(�̃�′�̃�−1�̃� ≤ 𝑎1 , �̃� ≤ 𝑎2) + Pr(𝑎1 ≤ �̃�′�̃�−1𝑁 ≤ 𝑎1 + 𝛾𝜆5
min(𝐷))

+ Pr(𝑎2 ≤ 𝐶 ≤ 𝑎2 + 𝛾) +
𝑀1 log𝑀2

2 (𝑛)
√
𝑛

(𝛾−1 + 𝛾−2 + 𝛾−3)

Let 𝛾 → 0 at a rate such that log𝑀2 (𝑛)√
𝑛

𝛾−3 → 0 and apply Lemmas D.1 and D.2 to conclude as in
the proof of Lemma A.6. A symmetric argument shows that the lower bound tends to zero.

□

Lemma D.4. Let Σ𝑛 ∈ R𝑑×𝑑 be a sequence of random positive-semidefinite matrices. Suppose that for
any fixed 𝑎 ∈ 𝒮𝑑−1 and any 𝛿𝑛 → 0 we have that Pr(𝑎′Σ𝑛𝑎 ≤ 𝛿𝑛) → 0 and Pr(𝜆2

max(Σ𝑛) ≥ 𝛿−1
𝑛 ) → 0.

Then for any 𝛿𝑛 → 0, Pr(𝜆2
min(Σ𝑛) ≤ 𝛿𝑛) → 0.

Proof. Take any preliminary sequence 𝛿𝑛 → 0. It suffices to show that there is another sequence
�̃�𝑛 weakly larger than 𝛿𝑛/2 such that Pr(𝜆2

min(Σ𝑛) ≤ �̃�𝑛) → 0. For any 𝑚 ∈ N let 𝒜𝑚 be a set of
points in 𝒮𝑑−1 such that

max
𝑎∈𝒮𝑑−1

min
�̃�∈𝒜𝑚

∥𝑎 − �̃�∥ ≤ 𝛿2
𝑚

From here let �̃� 𝑗 be defined

�̃� 𝑗 = inf{𝑛 ≥ 𝑗 : min
�̃�∈𝒜𝑛,𝑗

Pr(�̃�′Σ𝑛𝑎 ≤ 2𝛿𝑛 𝑗 ) < 𝛿𝑛 𝑗 }

Define a new sequence �̃�𝑛 → 0, weakly larger than 𝛿𝑛 , via

�̃�𝑛 =

{
1 if 0 ≤ 0 ≤ 𝑛 < �̃�1

𝛿𝑖 if �̃�𝑖 ≤ 𝑛 < �̃�𝑖+1

and notice that, by definition Pr(min𝑎∈𝒜�̃� 𝑗
𝑎′Σ𝑛𝑎 ≤ 2�̃�𝑛) < 𝛿�̃� 𝑗 . We wish to show that𝜆2

min(Σ𝑛) >
�̃�𝑛 on an intersection of events whose probability tends to one. SinceΣ𝑛 is positive semi-definite,
∥𝑥∥2

Σ𝑛
= 𝑥′Σ𝑛𝑥 defines a seminorm. By triangle inequality

𝜆2
min(Σ𝑛 𝑗 ) ≥ min

𝒜𝑛𝑗

𝑎′Σ𝑛 𝑗 𝑎 − 𝜆2
max(Σ𝑛)�̃�2

𝑛 𝑗
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Define the events

Ω1 = {min
𝒜�̃� 𝑗

𝑎′Σ𝑛𝑎 ≥ 2�̃�𝑛} and Ω2 = {𝜆max(Σ𝑛) ≤ �̃�−1/2
𝑛 }

On the intersection of these events, whose probabilities tend to one, we have 𝜆2
min(Σ𝑛) ≥ �̃�𝑛 . □



E. Incorporating Exogenous Controls

In this section, I analyze the model with exogeneous controls. To this end, define the vector
𝑧2 = (𝑧′21 , . . . , 𝑧

′
2𝑛)′ ∈ R𝑛×𝑑𝑐 . Let 𝑃2 = 𝑧2(𝑧′2𝑧2)−1𝑧′2 ∈ R𝑛×𝑛 denote the projection onto the column

space of 𝑧2 and 𝑀2 = 𝐼𝑛 − 𝑃2 denote the projection onto to orthocomplement of the column
space. Focus will be on the case where 𝑑𝑥 = 1 to simplify notation, but the basic concepts apply
generally to 𝑑𝑥 > 1.

For 𝑦 B (𝑦1 , . . . , 𝑦𝑛)′ ∈ R𝑛 and 𝑥 B (𝑥′1 , . . . , 𝑥′𝑛)′ ∈ R𝑛× define 𝑦⊥ B 𝑀2𝑦 and 𝑥⊥ B 𝑀2𝑥 as the
“partialled out” versions of 𝑦 and 𝑥, respectively. Let 𝑦⊥

𝑖
be the 𝑖th element of 𝑦⊥ and 𝑥⊥

𝑖
be the

𝑖th element of 𝑥⊥. From here we can define 𝜖(𝛽0) B 𝑦 − 𝑥𝛽0, 𝜖⊥(𝛽0) = 𝑀2𝜖(𝛽0) and 𝑟⊥ B 𝑀2𝑟
where as in the main text 𝑟 = (𝑟1 , . . . , 𝑟𝑛)′ is constructed 𝑟𝑖 = 𝑥𝑖 − 𝜌(𝑧𝑖)𝜖𝑖(𝛽0). The definition
of 𝜌(𝑧𝑖) does not change after partialling out 𝑧2 since all expectations are understood to be
conditional on the instruments 𝑧. Notice that 𝜖⊥(𝛽0) is mean zero. Finally I assume that the
controls have been partialled out of hat matrix so that the effective hat matrix is 𝑀2𝐻 and the
vector Π̂ ∈ R𝑛 is defined Π̂ = (𝑀2𝐻)(𝑀2𝑟). This does not make a difference for the numerator
of the JK(𝛽0) statistic but does affect the denominator slightly. When this is not done, inference
may be conservative.

Using matrix notation in the numerator to make things clear, we can write the version of the
JK(𝛽0) statistic with the partialled out vectors, 𝜖⊥(𝛽0) and 𝑟⊥, in terms of the original vectors,
𝜖(𝛽0) and 𝑟,

JK𝐼(𝛽0) =

( 1√
𝑛
𝜖(𝛽0)′𝑀2�̃�𝑀2𝑟

)2

1
𝑛

∑𝑛
𝑖=1(𝜖⊥𝑖 (𝛽0))2

( ∑𝑛
𝑗=1 h𝑖 𝑗𝑟 𝑗

)2

=

( 1√
𝑛

∑𝑛
𝑖=1 𝜖𝑖(𝛽0)

∑𝑛
𝑗=1 h𝑖 𝑗𝑟 𝑗

)2

1
𝑛

∑𝑛
𝑖=1(𝜖⊥𝑖 (𝛽0))2

( ∑𝑛
𝑗=1 h𝑖 𝑗𝑟 𝑗

)2

where h𝑖 𝑗 = [𝑀2�̃�𝑀2]𝑖 𝑗 , �̃� = 𝑠𝑛𝐻, and 𝑚𝑖 𝑗 = [𝑀2]𝑖 𝑗 . I seek to characterize the limiting
distribution of JK(𝛽0) under 𝐻0. To do so, we show that quantiles JK(𝛽0) can be approximated
by quantiles of the gaussian analog statistic

JK𝐺(𝛽0) =

( 1√
𝑛
�̃�(𝛽0)′𝑀2�̃�𝑀2𝑟

)2

1
𝑛

∑𝑛
𝑖=1 Var(𝜖𝑖)

( ∑𝑛
𝑗=1 h𝑖 𝑗𝑟 𝑗

)2

where (�̃�𝑖 , �̃�𝑖(𝛽0), 𝑟𝑖) are generated gaussian independent of the data and with the same mean
and covariance as (𝜖𝑖 , 𝜖𝑖(𝛽0), 𝑟𝑖). Since Var(�̃�(𝛽0)) = Var(𝜖𝑖) under 𝐻0, E[�̃�(𝛽0)′𝑀2] = 0, and
𝑟 ⊥ �̃�(𝛽0), this gaussian analog statistic has a 𝜒2

1 distribution conditional on any realization of
𝑟 and thus its unconditional distribution is also 𝜒2

1.

Showing that quantiles of JK(𝛽0) can be approximated by quantiles of ˜JK(𝛽0) proceeds in two
steps. In the first step, we show that JK(𝛽0) converges in probability to an intermediate statistic.

JKint(𝛽0) =

( 1√
𝑛

∑𝑛
𝑖=1 𝜖𝑖(𝛽0)

∑𝑛
𝑗=1 h𝑖 𝑗𝑟 𝑗

)2

1
𝑛

∑𝑛
𝑖=1 𝜖

2
𝑖
(∑𝑗≠𝑖 h𝑖 𝑗𝑟 𝑗)2

We will then show that quantiles of this intermediate statistic can be approximated by quantiles
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of ˜JK(𝛽0). In view of Lemma 3.2, it suffices to show for the first step that Δ𝐷 →𝑝 0, where

Δ𝐷 =
1
𝑛

𝑛∑
𝑖=1

((𝜖⊥𝑖 (𝛽0))2 − 𝜖2
𝑖 )Π̂

2
𝑖

To do this, notice that under 𝐻0 we can write 𝜖⊥
𝑖
(𝛽0) = 𝜖𝑖 + 𝑧′2𝑖(Γ̂− Γ) where Γ̂ = (𝑧′2𝑧2)−1𝑧2𝜖(𝛽0)

is a
√
𝑛-consistent estimate of Γ. Exploiting this fact we get

Δ𝐷 = (Γ̂ − Γ)′ 1
𝑛

𝑛∑
𝑖=1

(Π̂𝑖)2𝑧2𝑖𝑧
′
2𝑖(Γ̂ − Γ) + 2(Γ̂ − Γ)′ 1

𝑛

𝑛∑
𝑖=1

𝜖𝑖𝑧2𝑖Π̂𝑖

Both of these terms will tend to zero by the consistency Γ̂ to Γ, giving that Δ𝐷 →𝑝 0.

In our second step, we argue that quantiles of JKint(𝛽0) can be approximated by quantiles
of JK𝐺(𝛽0). To make this comparasion, we can follow almost exactly the same steps as in
Appendix A. The only difference between analysis in this case and analysis in the original case
is that the partialling out of controls leads the test statistic to not strictly have a jackknife form;
the effective hat matrix 𝑀2𝐻𝑀2 no longer has a deleted diagonal. However, as I will argue
below, this will not make a difference in the interpolation argument since the diagonal terms
of [𝑃2]𝑖𝑖 are small in the sense that they sum to 𝑑𝑐 .

The (A.2) analog one step deviations for the numerator are given

Δ1𝑖 = 𝜖𝑖(𝛽0)
∑
𝑗≠𝑖

h𝑖 𝑗 ¤𝑟 𝑗 + 𝑟𝑖
∑
𝑗≠𝑖

h𝑗𝑖 ¤𝜖 𝑗(𝛽0) + h𝑖𝑖𝜖𝑖(𝛽0)𝑟𝑖

Δ̃1𝑖 = �̃�𝑖(𝛽0)
∑
𝑗≠𝑖

h𝑖 𝑗 ¤𝑟 𝑗 + 𝑟 𝑗
∑
𝑗≠𝑖

h𝑗𝑖 ¤𝜖 𝑗(𝛽0) + h𝑖𝑖 �̃�𝑖(𝛽0)𝑟𝑖

where as Appendix A, a dotted variable is equal to the gaussian analog if 𝑗 > 𝑖 but equal to
the standard version otherwise. The first and second moments of the first two terms in Δ1𝑖 can
be matched with their gaussian analog terms as in the proof of Lemma A.1. While we cannot
match seconds moments of the third term in the one step deviation, this sum of all these third
terms can be treated as negligible after scaling by 1/

√
𝑛 as

∑𝑛
𝑖=1 |h𝑖𝑖 | ≲ 𝑑𝑐 . This is because

𝑀2�̃�𝑀2 = �̃� − 𝑃2�̃� − �̃�𝑃2 − 𝑃2�̃�𝑃2. The matrix �̃� has zeros on it’s diagonal. Meanwhile

|[𝑃2�̃�]𝑖𝑖 |2 =

��� 𝑛∑
𝑗=1

[𝑃2]𝑖 𝑗�̃�𝑗𝑖

���2 ≤
( 𝑛∑
𝑗=1

[𝑃2]2𝑖 𝑗
) (∑

𝑗≠𝑖

𝐻2
𝑗𝑖

)
≲ [𝑃2]𝑖𝑖

where the final inequality comes because the matrix 𝑃2 is symmetric and idempotent and
since

( ∑
𝑗≠𝑖 𝐻

2
𝑗𝑖

)
≲ 1 by Assumption 3.2(ii). A similar argument can be used to show that

[𝑃2�̃�𝑃2]2𝑖𝑖 ≲ [𝑃2]𝑖𝑖 . Since 𝑃2 is a projection matrix we must have that ∥𝑃2𝐻𝑒 𝑗 ∥ ≤ ∥𝐻𝑒 𝑗 ∥ for any
basis vector 𝑒 𝑗 ∈ R𝑛 . Thus

∑𝑛
𝑗=1[𝑃2𝐻]2

𝑗𝑖
≤ ∑𝑛

𝑗=1[𝐻]2
𝑗𝑖
. Finally, we can use the fact that the trace

of 𝑃2 is equal to its rank to show that
∑𝑛
𝑖=1 |h𝑖𝑖 | ≲ 𝑑𝑐

The one step deviations in the denominator can be bounded using the same logic. These one
step deviations are given

Δ2𝑖 = 𝜖2
𝑖 (
∑
𝑗≠𝑖

h𝑖 𝑗 ¤𝑟 𝑗)2 + 𝑟2
𝑖

∑
𝑗≠𝑖

h2
𝑗𝑖 ¥𝜖

2
𝑗 + 𝑟𝑖

∑
𝑗≠𝑖

¥𝜖 𝑗
( ∑
𝑘≠𝑗 ,𝑖

h𝑗𝑖h𝑗𝑘𝑟𝑘
)
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+ 𝜖2
𝑖

(
h2
𝑖𝑖𝑟

2
𝑖 + 2h𝑖𝑖𝑟 𝑗

∑
𝑗≠𝑖

h𝑖 𝑗𝑟 𝑗)2

Δ̃2𝑖 = �̃�2
𝑖 (
∑
𝑗≠𝑖

h𝑖 𝑗 ¤𝑟 𝑗)2 + 𝑟2
𝑖

∑
𝑗≠𝑖

h2
𝑗𝑖 ¥𝜖

2
𝑗 + 𝑟𝑖

∑
𝑗≠𝑖

¥𝜖 𝑗
( ∑
𝑘≠𝑗 ,𝑖

h𝑗𝑖h𝑗𝑘𝑟𝑘
)

+ 𝜖2
𝑖

(
h2
𝑖𝑖𝑟

2
𝑖 + 2h𝑖𝑖𝑟 𝑗

∑
𝑗≠𝑖

h𝑖 𝑗𝑟 𝑗)2

where ¥𝜖 𝑗 is equal to Var(𝜖 𝑗) if 𝑗 < 𝑖 and equal to 𝜖 𝑗 if 𝑗 > 𝑖. The first three terms in this expansion
are can be dealt with exactly as in the proof of Lemma A.1. The fourth term is new, however
summing over the fourth terms and scaling by 1/𝑛 will be negligible as

∑𝑛
𝑖=1 |h𝑖𝑖 | ≲ 𝑑𝑐 . After

showing the lindeberg interpolation step, the rest of the proof follows exactly as in Appendix A.

F. Relevant Moment Bounds

F.1. Moment Bounds for Section 3

Here I provide some lemmas that are useful in the proof of Lemmas A.1–A.6

Lemma F.1. Let Δ1𝑖 , Δ̃1𝑖 ,Δ
𝑎
2𝑖 , Δ̃

𝑎
2𝑖 ,Δ

𝑏
2𝑖 ,Δ̃

𝑏
2𝑖 be as in (A.2). Then under Assumptions 3.1 and 3.2 there

is a constant 𝑀 > 0 such that for any 𝑘 = 1, . . . , 6:

E[|Δ1𝑖 |𝑘] ≤ 𝑀 E[|Δ̃1𝑖 |𝑘] ≤ 𝑀

and for any 𝑘 = 1, . . . , 3:

E[|Δ𝑎2𝑖 |
𝑘] ≤ 𝑀𝛼𝑘 E[|Δ̃𝑘2𝑖 |] ≤ 𝑀𝛼𝑘

E[|Δ𝑏2𝑖/
√
𝑛 |𝑘] ≤ 𝑀𝛼𝑘 E[|Δ̃𝑏2𝑖/

√
𝑛 |𝑘] ≤ 𝑀𝛼𝑘

Proof. First, since
𝑛∑
𝑗=1

ℎ2
𝑖 𝑗E[(𝑟 𝑗 − E[𝑟 𝑗])

2 ≤ E[(
𝑛∑
𝑖=1

ℎ̃𝑖 𝑗𝑟 𝑗)2] ≤ 1

the constants are bounded,
∑𝑛
𝑖=1 ℎ̃

2
𝑖 𝑗
≤ 𝑐. Applying Lemma F.4 with𝑋𝑖 = ℎ𝑖 𝑗𝑟 𝑗 and𝑋𝑖 = ℎ𝑖 𝑗𝜖 𝑗(𝛽0)

we see that there is a constant 𝐴 such that for any 𝑘 = 1, . . . , 6

E
[�� 𝑛∑
𝑖=1

ℎ̃𝑖 𝑗𝑟 𝑗
��𝑘 ] ≤ 𝐴 and E

[�� 𝑛∑
𝑖=1

ℎ̃𝑖 𝑗𝜖 𝑗(𝛽0)
��𝑘 ] ≤ 𝐴 (F.1)

The bounds on E[|Δ𝑘1𝑖 |] and E[|Δ̃𝑘1𝑖 |] immediately follow from this result and the bounds on
moments of 𝑟𝑖 and 𝜖𝑖(𝛽0) in Assumption 3.1. The bounds on E[|Δ𝑎2𝑖 |𝑘] and E[|Δ̃𝑎2𝑖 |𝑘] also follow
from (F.1) after noting that there is a finite constant 𝐵 such that:

E[(
𝑛∑
𝑖=1

ℎ̃2
𝑖 𝑗𝜖

2
𝑖 (𝛽0))𝑘] ≤ 𝐵

Finally to bound E[|Δ𝑏2𝑖/
√
𝑛 |𝑘] and E[|Δ̃𝑏2𝑖/

√
𝑛 |𝑘] apply Lemma F.6 with 𝑣 𝑗 = 𝜖2

𝑗
(𝛽0)

∑
𝑘≠𝑖 , 𝑗 ℎ̃ 𝑗𝑘𝑟𝑘 ,

noting that E[|𝑣 𝑗 |3] is bounded by (F.1). □

Lemma F.2. Let 𝑁 and 𝑁−𝑖 be defined as in Appendix A.1. Under Assumptions 3.1–3.3 there is a fixed
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constant 𝑀 such that for all 𝑖 = 1, . . . , 𝑛 and any 𝑘 = 1, . . . , 6,

E[|𝑁 |𝑘] + E[|𝑁−𝑖 |𝑘] ≤ 𝑀

Proof. We show the bound for E[|𝑁 |𝑘] and note that the bound for 𝑁−𝑖 follows from symmetric
logic. Write 𝜖𝑖(𝛽0) = 𝜂𝑖 + 𝛾𝑖 where 𝛾𝑖 = Π𝑖(𝛽 − 𝛽0) and 𝜂𝑖 is mean zero. Decompose 𝑁 =

𝑁1 + 𝑁2 + 𝑁3:

𝑁1 =
1√
𝑛

𝑛∑
𝑖=1

𝜂𝑖

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗 ¤𝑟 𝑗 , 𝑁2 =
1√
𝑛

𝑛∑
𝑖=1

𝑟𝑖

𝑛∑
𝑗=1

ℎ̃ 𝑗𝑖𝛾𝑗 , and 𝑁3 =
1√
𝑛

𝑛∑
𝑖=1

𝜂𝑖

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗E[𝑟 𝑗]

where ¤𝑟 𝑗 = 𝑟 𝑗 − E[𝑟 𝑗].

Since via Assumption 3.2,
∑𝑛
𝑖=1 ℎ

2
𝑗𝑖
≤ 𝑐 and via Assumption 3.1, |𝛾𝑗 | ≤ 𝑐, we can bound,

(
𝑛∑
𝑗=1

ℎ 𝑗𝑖𝛾𝑗/
√
𝑛)4 ≤ ( 𝑐√

𝑛

𝑛∑
𝑖=1

|ℎ 𝑗𝑖 |)4 ≤ 𝑐8 =⇒ (
𝑛∑
𝑗=1

ℎ 𝑗𝑖𝛾𝑗/
√
𝑛)6 ≤ 𝑐8(

𝑛∑
𝑗=1

ℎ 𝑗𝑖𝛾𝑗/
√
𝑛)2

Under Assumption 3.3, E[𝑁2
2 ] ≤ 𝑐 while Assumption 3.2 implies that (∑𝑛

𝑖=1 ℎ𝑖 𝑗E[𝑟 𝑗])2 ≤ 𝑐 so
that E[𝑁2

3 ] ≤ 𝑐2.

An absolute bound on the higher moments of𝑁2 then follows from an application of Lemma F.4
with 𝑋𝑖 = 𝑟𝑖

∑𝑛
𝑗=1 ℎ 𝑗𝑖𝛾𝑗/

√
𝑛. An absolute bound on the higher moments of 𝑁3 follows from

symmetric logic.

To bound higher moments of 𝑁1 define 𝑣𝑖 =
∑
𝑗<𝑖{𝜂𝑖ℎ𝑖 𝑗𝑟 𝑗 + ¤𝑟𝑖ℎ 𝑗𝑖𝜂 𝑗} and write 𝑁1 = 1√

𝑛

∑𝑛
𝑖=2 𝑣𝑖 .

The sequence 𝑣2 , . . . , 𝑣𝑛 is a martingale difference array. Via the same procedure as the bounds
onE[|Δ1𝑖 |𝑘] as in Lemma F.1 one can verify that there is a fixed constant𝑀 such thatE[|𝑣𝑖 |𝑘] ≤ 𝑀

for all 𝑘 = 1, . . . , 6. The bound on the higher moments of 𝑁 then follows from Lemma F.7.

The bounds for moments of 𝑁−𝑖 follow symmetric logic. □

Lemma F.3. Let �̃� and �̃� be defined as in Appendix A.1. Let 𝑓 (·, 𝑟) be the density function of �̃�

�̃�1/2 |𝑟.
Under Assumptions 3.1 and 3.3 there is a constant 𝑀 > 0 such that sup𝑥 | 𝑓 (𝑥, 𝑟)| ≤ 𝑀 for almost all
𝑟.

Proof. Recall that

�̃� =
1√
𝑛

𝑛∑
𝑖=1

�̃�𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗 and �̃�1/2 =

√√√
1
𝑛

𝑛∑
𝑖=1

𝜅2
𝑖
(𝛽0)(

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗)2

The distribution of �̃�𝑖(𝛽0)|𝑟𝑖 is

�̃�𝑖(𝛽0)|𝑟 ∼ 𝑁
(
𝜇𝑖(𝑟𝑖), (1 − 𝜌2

𝑖 )Var(𝜖𝑖(𝛽0))
)

where𝜇𝑖(𝑟𝑖) = Π𝑖(𝛽−𝛽0)+ Cov(𝜖𝑖(𝛽0),𝑟𝑖)
Var(𝑟𝑖) (𝑟𝑖−E[𝑟𝑖]) and 𝜌𝑖 = corr(𝜖𝑖(𝛽0), 𝑟𝑖). Define Π̄𝑖 :=

∑𝑛
𝑗=1 ℎ̃𝑖 𝑗𝑟 𝑗 .

Then, conditional on 𝑟,

�̃�

�̃�1/2
∼ 𝑁

( 1√
𝑛

∑𝑛
𝑖=1 𝜇𝑖(𝑟𝑖)Π̄𝑖√

1
𝑛

∑𝑛
𝑖=1 𝜅

2
𝑖
(𝛽0)Π̄2

𝑖

,

1
𝑛

∑𝑛
𝑖=1(1 − 𝜌2

𝑖
)Var(𝜖𝑖(𝛽0))Π̄2

𝑖

1
𝑛

∑𝑛
𝑖=1 𝜅

2
𝑖
(𝛽0)Π̄2

𝑖

)
(F.2)
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The maximum of the normal density is proportional to the inverse of the standard deviation
so it suffices to show that the variance in (F.2) is bounded away from zero. To this end, notice
that under Assumptions 3.1 and 3.3

(1 − 𝛿2)𝑐−2 ≤ (1 − 𝜌2
𝑖 )

Var(𝜖𝑖(𝛽0))
𝜅2
𝑖
(𝛽0)

≤ 𝑐2

By Lemma G.8 to this gives that the conditional variance is also larger than (1 − 𝛿2)𝑐−2 > 0.

□

Lemma F.4. Let 𝑋1 , . . . , 𝑋𝑛 be random variables such that E[𝑋𝑖] = 𝜇𝑖 and E[(∑𝑛
𝑖=1 𝑋𝑖)2] ≤ 𝐶.

Suppose that for any 𝑖 = 1, . . . , 𝑛 there is a constant𝑈 such that

E[(𝑋𝑖 − 𝜇𝑖)3] ≤ 𝑈E[(𝑋𝑖 − 𝜇𝑖)2] and E[(𝑋𝑖 − 𝜇𝑖)6]1/3 ≤ 𝑈E[(𝑋𝑖 − 𝜇𝑖)2]

Then E[(∑𝑛
𝑖=1 𝑋𝑖)6] ≤ 64𝑈3𝐶3 + 32𝐶3.

Proof. First write

E[(
𝑛∑
𝑖=1

𝑋𝑖)2] =
𝑛∑
𝑖=1
E(𝑋𝑖 − 𝜇𝑖)2 + (

𝑛∑
𝑖=1

𝜇𝑖)2 ≤ 𝐶

To bound E[(∑𝑛
𝑖=1 𝑋𝑖)6] expand out

E[(
𝑛∑
𝑖=1

𝑋𝑖)6] = E[(
𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖) +
𝑛∑
𝑖=1

𝜇𝑖)6]

≲ E[(
𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖))6] + (
𝑛∑
𝑖=1

𝜇𝑖)6

=

𝑛∑
𝑖=1
E[(𝑋𝑖 − 𝜇𝑖)6] +

𝑛∑
𝑖=1

𝑛∑
𝑗=1
E[(𝑋𝑖 − 𝜇𝑖)3(𝑋𝑗 − 𝜇𝑗)3]

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1
E[(𝑋𝑖 − 𝜇𝑖)4(𝑋𝑗 − 𝜇𝑗)2]

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1

∑
𝑘≠𝑖 , 𝑗

E[(𝑋𝑖 − 𝜇𝑖)2(𝑋𝑗 − 𝜇𝑖)2(𝑋𝑘 − 𝜇𝑘)2] + (
𝑛∑
𝑖=1

𝜇𝑖)6

≤
𝑛∑
𝑖=1
E[(𝑋𝑖 − 𝜇𝑖)6] +

𝑛∑
𝑖=1

𝑛∑
𝑗=1
E[(𝑋𝑖 − 𝜇𝑖)3]E[(𝑋𝑗 − 𝜇𝑗)3]

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1
E[(𝑋𝑖 − 𝜇𝑖)6]4/6E[(𝑋𝑗 − 𝜇𝑗)6]2/6

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1

∑
𝑘≠𝑖 , 𝑗

E[(𝑋𝑖 − 𝜇𝑖)6]1/3E[(𝑋𝑗 − 𝜇𝑖)6]1/3E[(𝑋𝑘 − 𝜇𝑘)6]1/3

+ 𝐶3

=

( 𝑛∑
𝑖=1

(E[(𝑋𝑖 − 𝜇𝑖)6])1/3
)3

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1
E[(𝑋𝑖 − 𝜇𝑖)3]E[(𝑋𝑗 − 𝜇𝑗)3] + 𝐶3
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≤
( 𝑛∑
𝑖=1

(E[(𝑋𝑖 − 𝜇𝑖)6])1/3
)3

+
( 𝑛∑
𝑖=1
E[(𝑋𝑖 − 𝜇𝑖)3]

)2
+ 𝐶3

≤ 2𝑈3
( 𝑛∑
𝑖=1
E[(𝑋𝑖 − 𝜇𝑖)2]

)3
+ 𝐶3

≤ 2𝑈3𝐶3 + 𝐶3

where the implied constant in the second line is 32 by an application of Lemma G.8, the
third line comes from expanding out the power, the first inequality by application of Hölder’s
inequality, and the penultimate inequality comes from applying bounds on the third and sixth
central moments in terms of the second moments. □

Lemma F.5. Let ℎ = (ℎ1 , . . . , ℎ𝑛) ∈ R𝑛 be such that
∑𝑛
𝑖=1 ℎ

2
𝑖
≤ 𝑏. Suppose that 𝑋1 , . . . , 𝑋𝑛 are such

that E[|𝑋𝑖 |𝑘] ≤ 𝑀 for all 𝑘 = 1, 2, 3. Then

E
[�� 𝑛∑
𝑖=1

ℎ2
𝑖 𝑋𝑖

��3] ≤ 𝑏3𝑀3

Proof. We can expand out

E
[�� 𝑛∑
𝑖=1

ℎ2
𝑖 𝑋𝑖

��3] ≤ 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑛∑
𝑘=1

ℎ2
𝑖 ℎ

2
𝑗 ℎ

2
𝑘
E[|𝑋𝑖 | |𝑋𝑗 | |𝑋𝑘 |]

≤ 𝑀3
𝑛∑
𝑖=1

ℎ2
𝑖

𝑛∑
𝑗=1

ℎ2
𝑗

𝑛∑
𝑘=1

ℎ2
𝑘

≤ 𝑀3 ( 𝑛∑
𝑖=1

ℎ2
𝑖 )

3 ≤ 𝑐3𝑀3

□

Lemma F.6. Let 𝑣1 , . . . , 𝑣𝑛 be random variables such that E[|𝑣𝑖 |3] ≤ 𝑀 for all 𝑖 = 1, . . . , 𝑛. Let
ℎ = (ℎ1 , . . . , ℎ𝑛) ∈ R𝑛 be a vector of weights such that ∥ℎ∥2 ≤ 𝑐. Then

E
[�� 1√

𝑛

𝑛∑
𝑖=1

ℎ𝑖𝑣𝑖
��3] ≤ 𝑐3𝑀

Proof. We can expand out

E
[�� 1√

𝑛

𝑛∑
𝑖=1

ℎ𝑖𝑣𝑖
��3] ≤ 1

𝑛3/2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑛∑
𝑘=1

|ℎ𝑖 | |ℎ 𝑗 | |ℎ𝑘 |E[|𝑣𝑖 | |𝑣 𝑗 | |𝑣𝑘 |]

≤ 𝑀

𝑛3/2

𝑛∑
𝑖=1

|ℎ𝑖 |
𝑛∑
𝑗=1

|ℎ 𝑗 |
𝑛∑
𝑘=1

|ℎ𝑘 | ≤
𝑀

𝑛3/2
∥ℎ∥3

1 ≤ 𝑀𝑐3

where the second inequality follows from generalized Hölder’s inequality,

|E[ 𝑓 𝑔ℎ]| ≤ (E[| 𝑓 |3]E[|𝑔 |3]E[|ℎ |3])1/3

and the fourth inequality from ∥ℎ∥1 ≤
√
𝑛∥ℎ∥2. □
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Lemma F.7. Let 𝑣1 , . . . , 𝑣𝑛 be a martingale difference array such that E[|𝑣𝑖 | 𝑙] ≤ 𝑀 for all 𝑙 = 1, . . . , 𝑘.
Then there is a fixed constant 𝐶𝑘 that only depends on 𝑘 such that

E[( 1√
𝑛

𝑛∑
𝑖=1

𝑣𝑖)𝑘] ≤ 𝐶𝑘𝑀

Proof. We move to apply Theorem H.3 with 𝑋𝑡 =
∑𝑡
𝑖=1 𝑣𝑖/

√
𝑛.

E[( 1√
𝑛

𝑛∑
𝑖=1

𝑣𝑖)𝑘] ≤ E[(max
𝑠≤𝑛

𝑠∑
𝑡=1

𝑋𝑠)𝑘]

≤ 𝐶𝑘E
[ ( 𝑛∑

𝑖=1
𝑣2
𝑖 /𝑛

) 𝑘/2] ≤ 𝐶𝑘E
[ 1
𝑛

𝑛∑
𝑖=1

𝑣𝑘𝑖
]
≤ 𝐶𝑘𝑀

where the second inequality comes from Theorem H.3 and the third comes from an application
of Jensen’s inequality to the sample mean. □

F.2. Useful Properties of Smooth Max

Lemma F.8 (Chernozhukov et al. (2013), Lemma A.2). For every 1 ≤ 𝑗 , 𝑘, 𝑙 ≤ 𝑝,

𝜕𝑗𝐹𝛽(𝑧) = 𝜋 𝑗(𝑧), 𝜕𝑗𝜕𝑘𝐹𝛽(𝑧) = 𝛽𝑤 𝑗𝑘(𝑧), 𝜕𝑗𝜕𝑘𝜕𝑙𝐹𝛽(𝑧) = 𝛽2𝑞 𝑗𝑘𝑙(𝑧)

where for 𝛿 𝑗𝑘 := 1{ 𝑗 = 𝑘},

𝜋 𝑗(𝑧) := 𝑒𝛽𝑧 𝑗
/ 𝑛∑

𝑖=1
𝑒𝛽𝑧𝑖 , 𝑤 𝑗𝑘 := (𝜋 𝑗𝛿 𝑗𝑘 − 𝜋 𝑗𝜋𝑘)(𝑧)

𝑞 𝑗𝑘𝑙(𝑧) := (𝜋 𝑗𝛿 𝑗𝑙𝛿 𝑗𝑘 − 𝜋 𝑗𝜋𝑙𝛿 𝑗𝑘 − 𝜋 𝑗𝜋𝑘(𝛿 𝑗𝑙 + 𝛿𝑘𝑙) + 2𝜋 𝑗𝜋𝑘𝜋𝑙)(𝑧)

Moreover,

𝜋 𝑗(𝑧) ≥ 0,
𝑝∑
𝑗=1

𝜋𝑖(𝑧) = 1,
𝑝∑

𝑗 ,𝑘=1
|𝑤 𝑗𝑘(𝑧)| ≤ 2,

𝑝∑
𝑗 ,𝑘,𝑙=1

|𝑞 𝑗𝑘𝑙 | ≤ 6

Lemma F.9 (Chernozhukov et al. (2013), Lemma A.3). For every 𝑥, 𝑧 ∈ R𝑝 ,

|𝐹𝛽(𝑥) − 𝐹𝛽(𝑧)| ≤ max
1≤ 𝑗≤𝑝

|𝑥 𝑗 − 𝑧 𝑗 |.

Lemma F.10 (Chernozhukov et al. (2013), Lemma A.4). Let 𝜑(·) : R→ R be such that 𝜑 ∈ 𝐶3
𝑏
(R)

and define 𝑚 : R𝑝 → R, 𝑧 ↦→ 𝜑(𝐹𝛽(𝑧)). The derivatives (up to the third order) of 𝑚 are given

𝜕𝑗𝑚(𝑧) = (𝜕𝑔(𝐹(𝛽))𝜋 𝑗)(𝑧)
𝜕𝑗𝜕𝑘𝑚(𝑧) = (𝜕2𝑔(𝐹𝛽)𝜋 𝑗𝜋𝑘 + 𝜕𝑔(𝐹𝛽)𝛽𝑤 𝑗𝑘)(𝑧)

𝜕𝑗𝜕𝑘𝜕𝑙𝑚(𝑧) = (𝜕3𝑔(𝐹𝛽)𝜋 𝑗𝜋𝑘𝜋𝑙 + 𝜕2𝑔(𝐹𝛽)𝛽(𝑤 𝑗𝑘𝜋𝑙 + 𝑤 𝑗𝑙𝜋𝑘 + 𝑤𝑘𝑙𝜋 𝑗) + 𝜕𝑔(𝐹𝛽)𝛽2𝑞 𝑗𝑘𝑙)(𝑧)

where 𝜋 𝑗 , 𝑤 𝑗𝑘 , 𝑞 𝑗𝑘𝑙 are as described in Lemma F.8.

Lemma F.11 (Chernozhukov et al. (2013), Lemma A.5). Define 𝐿1(𝜑) = sup𝑥 |𝜑′(𝑥)|, 𝐿2(𝜑) =
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sup𝑥 |𝜑′′(𝑥)|, and 𝐿3(𝜑) = sup𝑥 |𝜑′′′(𝑥)|. For every 1 ≤ 𝑗 , 𝑘, 𝑙 ≤ 𝑝,

|𝜕𝑗𝜕𝑘𝑚(𝑧)| ≤ 𝑈 𝑗𝑘(𝑧) and |𝜕𝑗𝜕𝑘𝜕𝑙𝑚(𝑧)| ≤ 𝑈 𝑗𝑘𝑙(𝑧)

where for𝑊𝑗𝑘(𝑧) := (𝜋 𝑗𝛿 𝑗𝑘 + 𝜋 𝑗𝜋𝑘)(𝑧),

𝑈 𝑗𝑘(𝑧) := (𝐿2𝜋 𝑗𝜋𝑘 + 𝐿1𝛽𝑊𝑗𝑘(𝑧)
𝑈 𝑗𝑘𝑙(𝑧) := (𝐿3𝜋 𝑗𝜋𝑘𝜋𝑙 + 𝐿2𝛽(𝑊𝑗𝑘𝜋𝑙 +𝑊𝑗𝑙𝜋𝑘 +𝑊𝑘𝑙𝜋 𝑗) + 𝐿1𝛽

2𝑄 𝑗𝑘𝑙)(𝑧)
𝑄 𝑗𝑘𝑙(𝑧) := (𝜋 𝑗𝛿 𝑗𝑙𝛿 𝑗𝑘 + 𝜋 𝑗𝜋𝑘𝛿 𝑗𝑘 + 𝜋 𝑗𝜋𝑘(𝛿 𝑗𝑙 + 𝛿𝑘𝑙) + 2𝜋 𝑗𝜋𝑘𝜋𝑙)(𝑧).

Moreover,
𝑝∑

𝑗 ,𝑘=1
𝑈 𝑗𝑘(𝑧) ≤ (𝐿2 + 2𝐿1𝛽) and

𝑝∑
𝑗 ,𝑘,𝑙=1

𝑈 𝑗𝑘𝑙(𝑧) ≤ (𝐿3 + 6𝐿2𝛽 + 6𝐿1𝛽
2).

F.3. Moment Bounds for Sections 4 and 5

Lemma F.12. Suppose that Assumption 5.1 holds and let 𝑁 and 𝐷 be as defined at the top of Ap-
pendix D.2 Then under 𝐻0, for any 𝑘 there is a fixed constant 𝐶𝑘 such that for any ℓ = 1, . . . , 𝑑𝑥

E[|𝑁ℓ |𝑘] ≤ 𝐶𝑘 and E[|𝐷ℓℓ |𝑘] ≤ 𝐶𝑘 log2𝑘/𝑎(𝑛)

Proof. Let 𝜂ℓ 𝑖 = 𝑟𝑖 − E[𝑟𝑖] and write

𝑁ℓ =
1√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝜂ℓ 𝑗︸                        ︷︷                        ︸
𝑁1
ℓ

+ 1√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗E[𝑟ℓ 𝑗]︸                      ︷︷                      ︸
𝑁2
ℓ

To bound moments of𝑁1
ℓ

use the fact that𝑁1
ℓ

is a quadratic form in mean-zero 𝑎-sub-exponential
variables. By Theorem H.1, 𝑁1

ℓ
is therefore also 𝑎-sub-exponential with parameter 𝑎/2; thus

(𝑁1
ℓ
)𝑎/2 is sub-exponential and Lemma G.2 provides the moment bound for arbitrary moments.

To bound moments of 𝑁2
ℓ

we use the fact that max𝑖
�� ∑𝑛

𝑗=1 ℎ̃𝑖 𝑗E[𝑟ℓ 𝑗]
�� is bounded by assumption

and apply Burkholder-Davis-Gundy (Theorem H.3) after adding and subtracting E[𝜖𝑖(𝛽0)].

To bound moments of 𝐷ℓℓ we decompose

|𝐷 | ≤ 1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0) max

1≤𝑖≤𝑛

�� 𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟 𝑗
��2

Apply Theorem H.1 to see that
∑𝑛
𝑗=1 ℎ𝑖 𝑗𝑟 𝑗 is 𝛼-sub-exponential and Lemma G.2 to bound the

RHS by a log-power of 𝑛. □

F.4. Matrix Derivative Lemmas

The purpose of this section is largely to establish some matrix derivative expressions that will
be useful for the Lindeberg interpolation in

Lemma F.13. Let 𝐷 ∈ R𝑑×𝑑 be a symmetric, real matrix such that det(𝐷) ≠ 0. Let 𝑁 ∈ R𝑑 be a vector.
The derivatives up to the derivatives of quadratic form 𝑁′𝐷−1𝑁 are given.
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First Order:

𝜕

𝜕𝑁𝑙
= 2

𝑑∑
𝑗=1

(𝐷−1)𝑗𝑙𝑁𝑗 ,
𝜕

𝜕𝐷𝑙𝑚
= −2

𝑑∑
𝑗=1

𝑑∑
𝑘=1

(𝐷−1)𝑗𝑙(𝐷−1)𝑘𝑚𝑁𝑗𝑁𝑘 ,

Second Order:

𝜕2

𝜕𝑁𝑙𝑁𝑚
= 2(𝐷−1)𝑙𝑚 ,

𝜕2

𝜕𝑁𝑙𝜕𝐷𝑝𝑞
= −2

𝑑∑
𝑗=1

(𝐷−1)𝑗𝑝(𝐷−1)𝑞𝑙𝑁𝑗 ,

𝜕2

𝜕𝐷𝑙𝑚𝜕𝐷𝑞 𝑗
=

𝑑∑
𝑗=1

𝑑∑
𝑘=1

{
(𝐷−1)𝑙𝑝(𝐷−1)𝑞 𝑗)(𝐷−1)𝑘𝑚 + (𝐷−1)𝑘𝑝(𝐷−1)𝑚𝑞(𝐷−1)𝑙 𝑗

}
𝑁𝑗𝑁𝑘

Third Order:

𝜕3

𝜕𝑁𝑙𝜕𝑁𝑚𝜕𝑁𝑝
= 0, 𝜕3

𝜕𝑁𝑙𝜕𝑁𝑚𝜕𝐷𝑝𝑞
= −2(𝐷−1)𝑙𝑝(𝐷−1)𝑞𝑚

𝜕3

𝜕𝐷𝑙𝑚𝜕𝐷𝑝𝑞𝜕𝑁𝑟
= 2

𝑑∑
𝑗=1

{
(𝐷−1)𝑙𝑝(𝐷−1)𝑞 𝑗(𝐷−1)𝑟𝑚 + (𝐷−1)𝑟𝑝(𝐷−1)𝑚𝑞(𝐷−1)𝑙 𝑗

}
𝑁𝑗

𝜕3

𝜕𝐷𝑙𝑚𝐷𝑝𝑞𝐷𝑟𝑠
= 2

𝑑∑
𝑗=1

𝑑∑
𝑗=1

{
(𝐷−1)𝑙𝑟(𝐷−1)𝑝𝑠(𝐷−1)𝑞 𝑗(𝐷−1)𝑘𝑚 + (𝐷−1)𝑙𝑝(𝐷−1)𝑞𝑟(𝐷−1)𝑗𝑠(𝐷−1)𝑘𝑚

+ (𝐷−1)𝑙𝑝(𝐷−1)𝑞 𝑗(𝐷−1)𝑘𝑟(𝐷−1)𝑚𝑠 + (𝐷−1)𝑘𝑟(𝐷−1)𝑝𝑠(𝐷−1)𝑚𝑞(𝐷−1)𝑙 𝑗

+ (𝐷−1)𝑘𝑝(𝐷−1)𝑚𝑟(𝐷−1)𝑞𝑠(𝐷−1)𝑙 𝑗 + (𝐷−1)𝑟𝑝(𝐷−1)𝑚𝑞(𝐷−1)𝑙𝑟(𝐷−1)𝑗𝑠
}
𝑁𝑗𝑁𝑘

Proof. The derivative of an element of the the inverse of a matrix X can be expressed (Petersen
and Pedersen, 2012)

𝜕(X−1)𝑘𝑙
𝜕X𝑖 𝑗

= −(X−1)𝑘𝑖(X−1)𝑗𝑙 (F.3)

repeated application of this identity as well as the expression of the quadratic form

𝑁′𝐷−1𝑁 =

𝑑∑
𝑗=1

𝑑∑
𝑘=1

(𝐷−1)𝑗𝑘𝑁𝑗𝑁𝑘

leads to the result, bearing in mind that the inverse of a symmetric matrix is symmetric. □

Lemma F.14. Let D be a symmetric positive definite matrix. Then, for any 𝑝 > 3, the derivatives of
(det(𝐷))𝑝 are given up to the third order by

𝜕 (det(𝐷))𝑝
𝜕𝐷𝑙𝑚

= 𝑝(det(𝐷))𝑝−1(𝐷−1)𝑙𝑚

𝜕2 (det(𝐷))𝑝
𝜕𝐷𝑙𝑚𝜕𝐷𝑝𝑞

=
𝑝!

(𝑝 − 2)! (det(𝐷))𝑝−2(𝐷−1)𝑝𝑞(𝐷−1)𝑙𝑚

+ 𝑝(det(𝐷))𝑝−1(𝐷−1)𝑙𝑝(𝐷−1)𝑚𝑞
𝜕3 (det(𝐷))𝑝

𝜕𝐷𝑙𝑚𝜕𝐷𝑝𝑞𝜕𝐷𝑟𝑠
=

𝑝!
(𝑝 − 3)! (det(𝐷))𝑝−3(𝐷−1)𝑟𝑠(𝐷−1)𝑝𝑞(𝐷−1)𝑙𝑚

+
𝑝!

(𝑝 − 2)! (det(𝐷))𝑝−2
{
(𝐷−1)𝑝𝑞(𝐷−1)𝑙𝑟(𝐷−1)𝑝𝑠 + (𝐷−1)𝑝𝑟(𝐷−1)𝑞𝑠(𝐷−1)𝑙𝑚
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+ (𝐷−1)𝑟𝑠(𝐷−1)𝑙𝑝(𝐷−1)𝑚𝑞
}

+ 𝑝(det(𝐷))𝑝−1
{
(𝐷−1)𝑙𝑟(𝐷−1)𝑞𝑠(𝐷−1)𝑚𝑞 + (𝐷−1)𝑙𝑝(𝐷−1)𝑚𝑟(𝐷−1)𝑞𝑠

}
Proof. We can express the derivative of the detrminant (Petersen and Pedersen, 2012),

𝜕, det(X)
𝜕X𝑖 𝑗

= det(X)(X−1)𝑖 𝑗 (F.4)

Repeated application of this and (F.3) yields the result. □

Lemma F.15. For any 𝑝 > 4 define the function 𝛾(𝑁, vec(𝐷)) : R𝑑 × R𝑑2 by

𝛾(𝑁, vec(𝐷)) :=

{
(det(𝐷))𝑝(𝑁′𝐷−1𝑁 − 𝑐) if det(𝐷) ≠ 0
0 if det(𝐷) = 0

This function is thrice continously differentiable. Futher the 𝑘th moments of all partial derivatives of this
function up to the third order are bounded

E[(𝜕𝛼𝛾(𝑁, vec(𝐷))𝑘] ≤ 𝐶𝑘(max
𝜄≤𝑑
E[|𝐷𝜄𝜄 |2𝑝𝑑𝑘] ∨ max

𝜄≤𝑑
E[|𝑁𝜄𝜄 |6𝑘)

where 𝐶𝑘 is a positive constant that only depends on 𝑘 and 𝑑.

Proof. The first statement is clear by examination of the derivatives in Lemmas F.13 and F.14 as
well as the inequality (F.5) below. For the moment bounds, we may extensive use of following
bounds on elements of 𝐷−1 for a positive-definite 𝐷−1:

| det(𝐷)(𝐷−1)𝑗𝑘 | ≤ det(𝐷)trace(𝐷−1) ≤ 𝑑𝜆max(𝐷−1)
( 𝑑∏
𝑚=1

𝜆𝑚(𝐷)
)

= 𝑑

𝑑∏
𝑚=2

𝜆𝑚(𝐷)

≤ 𝑑
( 𝑑∑
𝑚=2

𝜆𝑚(𝐷)
)𝑑−1

≤ 𝑑(trace(𝐷))𝑑−1

(F.5)

where the first inequality uses the fact that the largest element of a positive semidefinite
matrix is on the diagonal and the fact that the diagonal elements of a positive semidefinite
matrix are weakly positive, the second inequality uses the fact that the trace is the sum of the
eigenvalues and the determinant is the product of the eigenvalues, the equality comes from

1
𝜆min(𝐷) = 𝜆max(𝐷−1), the third inequality uses the AM-GM inequality and the fourth again uses
that the trace is the sum of the (weakly positive) eigenvalues.

The moment bounds follow from (F.5) and the expressions in Lemmas F.13 and F.14. We give
an example of how this is done for the first order derivatives, higher order derivatives follow
from similar logic. For the following let 𝐴 be an arbitrary random variable. First Order.

E

����𝐴 𝜕𝛾

𝜕𝑁𝑙

����𝑘 ≲ 𝑑∑
𝑗=1
E|(trace(𝐷))𝑘𝑑𝑝𝑁 𝑘

𝑗 𝐴
𝑘 |
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≲
𝑑∑
𝑗=1

𝑑∑
𝜄=1
E[𝐷𝑘𝑑𝑝

𝜄𝜄 𝑁 𝑘
𝑗 𝐴

𝑘]

≤
𝑑∑
𝑗=1

𝑑∑
𝜄=1

𝛾2𝑘𝑑𝑝E[𝑁2𝑘
𝑗 𝐴

2𝑘]

E

����𝐴 𝜕𝛾

𝜕𝐷𝑙𝑚

����𝑘 = 𝑝E

����𝐴det(𝐷)𝑝−1
𝑑∑
𝑗=1

𝑑∑
𝑗′=1

(𝐷−1)𝑙𝑚(𝐷−1)𝑗 𝑗′𝑁𝑗𝑁𝑗′

����𝑘
≲ 𝑝

𝑑∑
𝑗=1

𝑑∑
𝑗′=1
E[|(trace(𝐷))2𝑘(𝑑−1)+(𝑝−3)𝑘𝑑𝐴𝑘𝑁 𝑘

𝑗 𝑁
𝑘
𝑗′ |

≤
𝑑∑
𝑗=1

𝑑∑
𝑗′=1

𝛾2𝑘𝑑(𝑝−1)E[𝐴2𝑘𝑁2𝑘
𝑗 𝑁

2𝑘
𝑗′ ]

□

G. Technical Lemmas

G.1. Probability Lemmas

Lemma G.1. Let 𝑋𝑛 be a sequence of random variables such that 𝑋𝑛 = 𝑜𝑝(1), that is for any 𝛿 > 0,
Pr(|𝑋𝑛 | ≥ 𝛿) → 0. Then, there is a sequence 𝛿𝑛 → 0 such that Pr(|𝑋𝑛 | ≥ 𝛿𝑛) → 0.

Proof. Take a preliminary sequence �̃�𝑛 → 0 and define

�̃� 𝑗 = inf{𝑛 : Pr(|𝑋𝑛 | > �̃� 𝑗) < �̃� 𝑗}

Because Pr(|𝑋𝑛 | > 𝛿) → 0 for any fixed 𝛿, we know that 𝑛 𝑗 is finite. Define a new sequence
𝛿𝑛 → 0 as below:

𝛿𝑛 =

{
1 if 0 ≤ 𝑛 < �̃�1

�̃�𝑖 if �̃�𝑖 ≤ 𝑛 < �̃�𝑖+1
(G.1)

By construction, this sequence satisfies Pr(𝑋𝑛 ≥ 𝛿𝑛) ≤ 𝛿𝑛 whenever 𝑛 ≥ 𝑛1. □

Lemma G.2. Suppose that 𝑋1 , . . . , 𝑋𝑛 are 𝛼-subexponential such that Pr(|𝑋𝑖 | ≥ 𝑡) ≤ 2 exp(−𝑡𝛼/𝐾)
for all 𝑡 ≥ 0 and fixed constants 𝐾. For any 𝑝 ≥ 1 there is a constant 𝐶 that depends only on 𝑝, 𝐾 such
that:

E

[
max
𝑖≤𝑛

|𝑋𝑗 |𝑝

(1 + log 𝑖)𝑝/𝛼

]
≤ 𝐶

As a consequence
E
[
max
𝑖≤𝑛

|𝑋𝑖 |𝑝
]
≤ 𝐶(log 𝑛)𝑝/𝛼

Proof. Argument below is provided for 𝛼 = 1. This can be extended to 𝛼 ≠ 1 by noting that if
Pr(|𝑋𝑖 | ≥ 𝑡) ≤ 2 exp(−𝑡𝛼/𝐾) for some 𝛼 > 0 then Pr(|𝑋𝑖 |𝛼 ≥ 𝑡) ≤ 2 exp(−𝑡/𝐾).

Emax
𝑖≤𝑛

|𝑋𝑖 |𝑝
(1 + log 𝑖)𝑝 =

∫ ∞

0
Pr

(
max
𝑖

|𝑋𝑖 |𝑝
(1 + log 𝑖)𝑝 > 𝑡

)
𝑑𝑡
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=

∫ 2𝑝/𝛼

0
Pr

(
max
𝑖

|𝑋𝑖 |𝑝
(1 + log 𝑖)𝑝 > 𝑡

)
𝑑𝑡 +

∫ ∞

2𝑝/𝛼
Pr

(
max
𝑖

|𝑋𝑖 |𝑝
(1 + log 𝑖)𝑝 > 𝑡

)
𝑑𝑡

≤ 2𝑝 +
∫ ∞

2𝑝/𝛼

𝑛∑
𝑖=1

Pr
(

|𝑋𝑖 |
1 + log 𝑖 > 𝑡1/𝑝

)
𝑑𝑡

≤ 2𝑝 +
∫ ∞

2𝑝

𝑛∑
𝑖=1

2 exp
(
−
𝑡1/𝑝(1 + log 𝑖)

𝐾

)
𝑑𝑡

= 2𝑝 + 2
𝑛∑
𝑖=1

∫ ∞

2𝑝
exp

(
− 𝑡1/𝑝

𝐾

)
𝑖−𝑡

1/𝑝
𝑑𝑡

≤ 2𝑝 + 2
𝑛∑
𝑖=1

∫ ∞

2𝑝
exp(−𝑡−1/𝑝/𝐾)𝑖−2 𝑑𝑡

≤ 2𝑝 + 2
( 𝑛∑
𝑖=1

𝑖−2
) ( ∫ ∞

2𝑝
exp(−𝑡−1/𝑝/𝐾) 𝑑𝑡

)
Both the integral and the summation are bounded, which gives the result. □

G.2. Matrix Lemmas

Lemma G.3. Given a matrix 𝑀 and a matrix 𝑃 of full rank, the matrix 𝑀 and the matrix 𝑃−1𝑀𝑃 have
the same eigenvalues.

Proof. Suppose 𝜆 is a eigenvalue of 𝑃−1𝑀𝑃 with eigenvector 𝑝. Then

𝑃−1𝑀𝑃𝑣 = 𝜆𝑣 =⇒ 𝑀(𝑃𝑣) = 𝜆𝑃𝑣

Hence 𝑃𝑣 is an eigenvector of 𝑀 with eigenvalue 𝜆. Similarly, given an eigenvector 𝑣 of 𝑀, it
can be shown that 𝑃−1𝑣 is an eigenvector of 𝑃−1𝑀𝑃;

𝑃−1𝑀𝑃(𝑃−1𝑣) = 𝑃−1𝑀𝑣 = 𝜆𝑃−1𝑣

□

Lemma G.4. Let 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑛 be real symmetric positive semidefinite matrices. For an
arbitary square matrix 𝑀 let 𝜆𝑘(𝑀) denote the 𝑘 th largest eigenvalue of 𝑀. Then for any 𝑘 = 1, . . . , 𝑛:

𝜆𝑘(𝐴)𝜆𝑛(𝐵) ≤ 𝜆𝑘(𝐴𝐵) ≤ 𝜆𝑘(𝐴)𝜆1(𝐵)

Lemma G.5. Let 𝐷 ∈ R𝑛×𝑛 be a diagonal real matrix such that 𝑑𝑖𝑖 ∈ [𝑢,𝑈] for all 𝑖 = 1, . . . , 𝑛. Let
𝐴 ∈ R𝑛×𝑛 be a symmetric real matrix. For an arbitrary square matrix 𝑀, let 𝜆𝑘(𝑀) denote the 𝑘 th

largest eigenvalue of 𝑀. Then for any 𝑘 = 1, . . . , 𝑛:

𝑢𝜆𝑘(𝐴2) ≤ 𝜆𝑘(𝐴𝐷𝐴) ≤ 𝑈𝜆𝑘(𝐴2)

Proof. Consider any vector 𝑎 ∈ R𝑛 and define a = 𝑎′𝐻. Then

𝛼′𝐻𝐷𝐻𝛼 = a′𝐷a =

𝑛∑
𝑖=1

𝑑𝑖𝑖(a𝑖)2 ∈
[
𝑢

𝑛∑
𝑖=1

(a𝑖)2 , 𝑈
𝑛∑
𝑖=1

(a𝑖)2
]

=

[
𝑢 × 𝑎′𝐻2𝑎, 𝑈 × 𝑎′𝐻2𝑎

]
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The result then follows from an application of Courant-Fischer-Weyl min-max principle. □

Lemma G.6. Let 𝑋1 , . . . , 𝑋𝑛 denote i.i.d standard normal random variables and 𝑎1 , . . . , 𝑎𝑛 denote
weakly positive constants. Then

Pr ©«
𝑛∑
𝑖=1

𝑎𝑖𝑋
2
𝑖 ≤ 𝜖

𝑛∑
𝑖=1

𝑎𝑖
ª®¬ ≤

√
𝑒𝜖

G.3. Miscellaneous Lemmas

Lemma G.7. Let 𝑎1 , . . . , 𝑎𝑛 and 𝑏1 , . . . , 𝑏𝑛 be two sequences of real numbers. If 𝑎𝑖 ≤ 𝑈𝑏𝑖 for some
𝑈 > 0, then

∑
𝑖 𝑎𝑖/

∑
𝑖 𝑏𝑖 ≤ 𝑈 . Conversely if 𝑎𝑖 ≥ 𝐿𝑏𝑖 for some 𝐿 > 0 then

∑
𝑖 𝑎𝑖/

∑
𝑖 𝑏𝑖 ≥ 𝐿.

Proof. Replace 𝑎𝑖 ≤ 𝑈𝑏𝑖 for the upper bound and 𝑎𝑖 ≥ 𝐿𝑏𝑖 for the lower bound. □

The following is a standard bound, but it is used a lot so it is restated here.

Lemma G.8. Let 𝑎1 , . . . , 𝑎𝑚 be constants and 𝑝 > 1. Then

|𝑎1 + . . . 𝑎𝑚 |𝑝 ≤ 𝑚𝑝−1
𝑚∑
𝑖=1

|𝑎𝑖 |𝑝

Proof. Apply Hölder’s inequality with 1
𝑝 + 𝑝−1

𝑝 = 1 to the vectors (𝑎1 , . . . , 𝑎𝑚) ∈ R𝑚 and
(1, . . . , 1) ∈ R𝑚 □

H. Assorted Results from Literature

H.1. Concentration Inequalities and Tail Bounds

Theorem H.1 (Gotze et al. (2021)*Theorem 1.2). Let 𝑋1 , . . . , 𝑋𝑛 be independent random variables
satisfying ∥𝑋𝑖 ∥Ψ𝑎 ≤ 𝑀 for some 𝑎 ∈ (0, 1] ∪ {2} and let 𝑓 : R𝑛 → R be a polynomial of total degree
𝐷 ∈ N. Then for all 𝑡 > 0;

Pr(| 𝑓 (𝑋) − E[ 𝑓 (𝑋)]| ≥ 𝑡) ≤ 2 exp
(
− 1
𝐶𝐷,𝑎

min
1≤𝑑≤𝐷

(
𝑡

𝑀𝑑∥E 𝑓 (𝑑)(𝑋)∥HS

) 𝑎/𝑑)
In particular, if ∥E 𝑓 (𝑑)(𝑋)∥HS ≤ 1 for 𝑑 = 1, . . . 𝐷, then

E exp
(
𝐶𝐷,𝑎

𝑀𝑎
| 𝑓 (𝑋)| 𝑎𝐷

)
≤ 2,

or equivalently
∥ 𝑓 (𝑋)∥Ψ 𝑎

𝐷
≤ 𝐶𝑑,𝑎𝑀

𝐷

Theorem H.2 (Hoeffding’s Inequality). Let 𝑋1 , . . . , 𝑋𝑛 be independent, mean-zero sub-gaussian
random variables, and let 𝑎 = (𝑎1 , . . . , 𝑎𝑛) ∈ R𝑛 . Then, for every 𝑡 ≥ 0, we have

Pr
{���� 𝑛∑

𝑖=1
𝑎𝑖𝑋𝑖

���� ≥ 𝑡

}
≤ 2 exp

(
− 𝑐𝑡2

𝐾2∥𝑎∥2
2

)
where 𝐾 = max𝑖 ∥𝑋𝑖 ∥𝜓2 .
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Theorem H.3 (Burkholder-Davis-Gurdy for Discrete Time Martingales). For any 1 ≤ 𝑘 < ∞
there exist positive constants 𝑐𝑘 and 𝐶𝑘 such that for all local martingales with 𝑋0 = 0 and stopping
times 𝜏

𝑐𝑘E
[ ( 𝜏∑

𝑡=1
(𝑋𝑡 − 𝑋𝑡−1)2

) 𝑘/2] ≤ E
[
(sup
𝑡≤𝜏

𝑋𝑡)𝑘
]
≤ 𝐶𝑘E

[ ( 𝜏∑
𝑡=1

(𝑋𝑡 − 𝑋𝑡−1)2
) 𝑘/2]

H.2. Anticoncentration Bounds

Let 𝜉 ∈ R𝑛 follow a normal distribution onR𝑛 with mean zero and covariance matrixΣ𝜉. Order
the eigenvalues of Σ𝜉 in non-increasing order 𝜆1𝜉 ≥ 𝜆2𝜉 ≥ ... ≥ 𝜆𝑛𝜉. Define the quantities

Λ2
𝑘𝜉 =

∞∑
𝑗=𝑘

𝜆2
𝑗𝜉 , 𝑘 = 1, 2

Theorem H.4 (Götze et al. (2019), Theorem 2.6). Let 𝜉 be a gaussian element with zero mean and
covariance Σ𝜉. Then it holds for any a ∈ R𝑛 that

sup
𝑥≥0

𝑝𝜉(𝑥,a) ≲ (Λ1𝜉Λ2𝜉)−1/2

where 𝑝𝜉(𝑥, 𝑎) denotes the p.df of ∥𝜉 − a∥2.

We use the following anticoncentration lemma from Nazarov (2003) noted in Chernozhukov
et al. (2017).

Lemma H.1. Let 𝑌 = (𝑌1 , . . . , 𝑌𝑝)′ be a centered Gaussian random vector in R𝑝 such that E[𝑌2
𝑗
] ≥ 𝑏

for all 𝑗 = 1, . . . , 𝑝 and some constant 𝑏 > 0. Then for every 𝑦 ∈ R𝑝 and 𝑎 > 0,

Pr(𝑌 ≤ 𝑦 + 𝑎) − Pr(𝑌 ≤ 𝑦) ≤ 𝐶𝑎

√
log(𝑝)

where 𝐶 is a constant only depending on 𝑏.

H.3. Gaussian Comparasions and Approximations

We also use the following gaussian approximation results from Belloni et al. (2018), Cher-
nozhukov et al. (2017). Let 𝑋1 , . . . , 𝑋𝑛 ∈ R𝑝 be independent, mean zero, random vectors and
let 𝑌1 , . . . , 𝑌𝑛 ∈ R𝑝 be independent random vectors such that 𝑌𝑖 ∼ 𝑁(0,E[𝑋𝑖𝑋′

𝑖
]). Suppose

that the researcher does not directly observe 𝑋1 , . . . , 𝑋𝑛 but instead observes noisy estimates
𝑋1 , . . . , 𝑋𝑛 ∈ R𝑝 .

Define the sums

𝑆𝑋𝑛 =
1√
𝑛

𝑛∑
𝑖=1

𝑋𝑖 𝑆𝑌𝑛 =
1√
𝑛

𝑛∑
𝑖=1

𝑌𝑖

Let 𝒜re be the class of all hyperrectangles in R𝑝 ; that is, 𝒜re consists of all sets 𝐴 of the form

𝐴 = {𝑤 ∈ R𝑝 : 𝑎 𝑗 ≤ 𝑤 𝑗 ≤ 𝑏 𝑗 for all 𝑗 = 1, . . . , 𝑝}

for some −∞ ≤ 𝑎 𝑗 ≤ 𝑏 𝑗 ≤ ∞, 𝑗 = 1, . . . , 𝑝. Define

𝜌𝑛(𝒜re) B sup
𝐴∈𝒜re

��Pr(𝑆𝑋𝑛 ∈ 𝐴) − Pr(𝑆𝑌𝑛 ∈ 𝐴)
��
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Bounding 𝜌𝑛(𝒜re) relies on the following moment conditions:

Assumption H.1. Suppose there are constants 𝐵𝑛 ≥ 1, 𝑏 > 0, 𝑞 > 0 such that

(i) 𝑛−1 ∑𝑛
𝑖=1 E[𝑋2

𝑖 𝑗
] ≥ 𝑏 for all 𝑗 = 1, . . . , 𝑝

(ii) 𝑛−1 ∑𝑛
𝑖=1 E[|𝑋𝑖 𝑗 |2+𝑘] ≤ 𝐵𝑘𝑛 for all 𝑗 = 1, . . . , 𝑝 and 𝑘 = 1, 2.

(iii) E[(max1≤ 𝑗≤𝑝 |𝑋𝑖 𝑗 |/𝐵𝑛)4] ≤ 1 for all 𝑖 = 1, . . . , 𝑛 and
(
𝐵4
𝑛 ln7(𝑝𝑛)
𝑛

)1/6
≤ 𝛿𝑛 .

as well as the following bounds on the estiamtion error

Assumption H.2. The estimates �̂�1 , . . . , �̂�𝑛 satisfy

Pr
(
max
1≤ 𝑗≤𝑝

E𝑛[(𝑋𝑖 𝑗 − 𝑋𝑖 𝑗)2] > 𝛿2
𝑛/log2(𝑝𝑛)

)
≤ 𝛽𝑛

Theorem H.5 (Belloni et al. (2018), Theorem 2.1). Suppose that Assumptions H.1 and H.2 hold.
Then there is a constant 𝐶 which depends only on 𝑏 such that

𝜌𝑛(𝒜re) ≤ 𝐶{𝛿𝑛 + 𝛽𝑛}

Let 𝑒1 , . . . , 𝑒𝑛
iid∼ 𝑁(0, 1) be generated independently of the data. A gaussian bootstrap draw is

defined

𝑆𝑋,★𝑛 B
1√
𝑛

𝑛∑
𝑖=1

𝑒𝑖𝑋𝑖

Theorem H.6 (Belloni et al. (2018), Theorem 2.2). Suppose that Assumptions H.1 and H.2 hold.
Then there is a constant 𝐶 which depends only on 𝑏 such that

sup
𝐴∈𝒜re

��Pr𝑒(𝑆𝑋,★𝑛 ∈ 𝐴) − Pr(𝑆𝑌𝑛 ∈ 𝐴)
�� ≤ 𝐶𝛿𝑛

with probability at least 1− 𝛽𝑛 − (log 𝑛)−2 where Pr𝑒(·) denotes the probability measure only taken with
respect to the variables 𝑒1 , . . . , 𝑒𝑛 conditional on the data used to estimate 𝑋.
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I. Additional Tables from Simulation Study

DGP Testing Procedure

𝑛 𝑑𝑧 𝜚1 𝜚2 JK(𝛽0) 𝑆(𝛽0) 𝑇(𝛽0; 𝜏0.3) 𝑇(𝛽0; 𝜏0.75) A.Rbn. JAR JLM
200 10 0.2 0.3 0.0516 0.0352 0.0406 0.0406 0.0296 0.0766 0.0502

0.2 0.6 0.0542 0.0306 0.0442 0.0384 0.0258 0.0748 0.0400
0.5 0.3 0.0470 0.0338 0.0416 0.0418 0.0238 0.0784 0.0460
0.5 0.6 0.0506 0.0350 0.0416 0.0390 0.0280 0.0676 0.0384

30 0.2 0.3 0.0570 0.0124 0.0422 0.0200 0.0088 0.1000 0.0382
0.2 0.6 0.0564 0.0126 0.0408 0.0208 0.0124 0.0962 0.0322
0.5 0.3 0.0498 0.0100 0.0366 0.0190 0.0096 0.1090 0.0318
0.5 0.6 0.0562 0.0118 0.0420 0.0216 0.0088 0.1104 0.0292

65 0.2 0.3 0.0542 0.0316 0.0428 0.0370 0.0314 0.0764 0.0420
0.2 0.6 0.0532 0.0366 0.0418 0.0398 0.0250 0.0780 0.0376
0.5 0.3 0.0474 0.0308 0.0388 0.0362 0.0244 0.0748 0.0354
0.5 0.6 0.0484 0.0324 0.0366 0.0388 0.0282 0.0708 0.0402

75 0.2 0.3 0.0512 0.0122 0.0364 0.0210 0.0150 0.0972 0.0422
0.2 0.6 0.0564 0.0162 0.0416 0.0272 0.0152 0.0974 0.0414
0.5 0.3 0.0488 0.0136 0.0368 0.0208 0.0168 0.1144 0.0380
0.5 0.6 0.0516 0.0128 0.0390 0.0224 0.0122 0.1166 0.0390

500 10 0.2 0.3 0.0590 0.0468 0.0478 0.0516 0.0376 0.0652 0.0452
0.2 0.6 0.0530 0.0420 0.0460 0.0466 0.0366 0.0692 0.0434
0.5 0.3 0.0496 0.0370 0.0408 0.0368 0.0338 0.0710 0.0464
0.5 0.6 0.0512 0.0426 0.0456 0.0438 0.0334 0.0696 0.0404

30 0.2 0.3 0.0522 0.0202 0.0386 0.0278 0.0238 0.0818 0.0322
0.2 0.6 0.0558 0.0208 0.0408 0.0310 0.0266 0.0888 0.0342
0.5 0.3 0.0554 0.0178 0.0392 0.0280 0.0174 0.0940 0.0272
0.5 0.6 0.0570 0.0156 0.0426 0.0236 0.0206 0.0984 0.0280

65 0.2 0.3 0.0542 0.0372 0.0434 0.0432 0.0384 0.0754 0.0464
0.2 0.6 0.0584 0.0442 0.0482 0.0470 0.0334 0.0676 0.0438
0.5 0.3 0.0614 0.0460 0.0504 0.0496 0.0316 0.0708 0.0434
0.5 0.6 0.0526 0.0378 0.0434 0.0420 0.0298 0.0692 0.0358

75 0.2 0.3 0.0522 0.0234 0.0428 0.0316 0.0280 0.0818 0.0430
0.2 0.6 0.0518 0.0252 0.0412 0.0318 0.0274 0.0916 0.0422
0.5 0.3 0.0500 0.0240 0.0400 0.0316 0.0274 0.1028 0.0470
0.5 0.6 0.0522 0.0220 0.0434 0.0328 0.0230 0.1002 0.0434

Table I.1: Simulated Size of Identification and Heteroskedasticity Robust Tests under Weak Identi-
fication. Each DGP is simulated 5000 times. Critical values of the sup-score statistic and quantiles
of the conditioning statistic are calculated using 1000 multiplier bootstrap simulations.
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DGP Testing Procedure

𝑛 𝑑𝑧 𝜚1 𝜚2 JK(𝛽0) 𝑆(𝛽0) 𝑇(𝛽0; 𝜏0.3) 𝑇(𝛽0; 𝜏0.75) A.Rbn. JAR JLM
200 10 0.2 0.2 0.0474 0.0420 0.0474 0.0468 0.0308 0.0728 0.0424

0.2 0.6 0.0512 0.0386 0.0512 0.0506 0.0304 0.0764 0.0378
0.5 0.2 0.0416 0.0318 0.0414 0.0414 0.0248 0.0794 0.0428
0.5 0.6 0.0446 0.0342 0.0446 0.0442 0.0244 0.0806 0.0384

30 0.2 0.2 0.0482 0.0122 0.0448 0.0264 0.0110 0.1048 0.0370
0.2 0.6 0.0498 0.0120 0.0480 0.0312 0.0118 0.0980 0.0378
0.5 0.2 0.0456 0.0126 0.0410 0.0262 0.0082 0.1146 0.0268
0.5 0.6 0.0482 0.0110 0.0474 0.0308 0.0094 0.1090 0.0302

65 0.2 0.2 0.0528 0.0380 0.0526 0.0510 0.0276 0.0696 0.0460
0.2 0.6 0.0464 0.0360 0.0464 0.0468 0.0302 0.0728 0.0416
0.5 0.2 0.0482 0.0298 0.0480 0.0466 0.0246 0.0738 0.0412
0.5 0.6 0.0396 0.0320 0.0390 0.0386 0.0258 0.0748 0.0356

75 0.2 0.2 0.0516 0.0120 0.0498 0.0406 0.0188 0.1070 0.0414
0.2 0.6 0.0444 0.0130 0.0436 0.0392 0.0198 0.1052 0.0408
0.5 0.2 0.0416 0.0100 0.0408 0.0328 0.0128 0.1094 0.0412
0.5 0.6 0.0480 0.0128 0.0474 0.0432 0.0122 0.1096 0.0430

500 10 0.2 0.2 0.0524 0.0444 0.0524 0.0524 0.0394 0.0684 0.0472
0.2 0.6 0.0476 0.0430 0.0476 0.0476 0.0400 0.0644 0.0490
0.5 0.2 0.0434 0.0410 0.0434 0.0434 0.0340 0.0702 0.0404
0.5 0.6 0.0448 0.0382 0.0448 0.0448 0.0350 0.0736 0.0432

30 0.2 0.2 0.0502 0.0214 0.0502 0.0498 0.0240 0.0854 0.0368
0.2 0.6 0.0522 0.0208 0.0522 0.0524 0.0224 0.0858 0.0392
0.5 0.2 0.0456 0.0202 0.0456 0.0434 0.0220 0.0918 0.0264
0.5 0.6 0.0500 0.0186 0.0500 0.0498 0.0204 0.0924 0.0268

65 0.2 0.2 0.0490 0.0426 0.0490 0.0490 0.0350 0.0742 0.0472
0.2 0.6 0.0522 0.0458 0.0522 0.0522 0.0436 0.0652 0.0442
0.5 0.2 0.0542 0.0476 0.0542 0.0542 0.0294 0.0712 0.0446
0.5 0.6 0.0438 0.0420 0.0438 0.0438 0.0306 0.0666 0.0500

75 0.2 0.2 0.0480 0.0220 0.0480 0.0480 0.0314 0.0880 0.0394
0.2 0.6 0.0492 0.0284 0.0492 0.0492 0.0278 0.0874 0.0470
0.5 0.2 0.0404 0.0190 0.0404 0.0404 0.0254 0.0992 0.0426
0.5 0.6 0.0470 0.0226 0.0470 0.0468 0.0182 0.0960 0.0418

Table I.2: Simulated Size of Identification and Heteroskedasticity Robust Tests under Strong Iden-
tification. Each DGP is simulated 5000 times. Critical values of the sup-score statistic and quantiles
of the conditioning statistic are calculated using 1000 multiplier bootstrap simulations.


