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Abstract. Using modifications of Lindeberg’s interpolation technique, I propose a new
identification-robust test for the structural parameter in a heteroskedastic instrumental
variables model. My analysis accommodates both scenarios where the number of instru-
ments is much larger than the sample size and scenarios with few instruments, thus making
the test broadly applicable. The proposed test statistic has a limiting chi-squared distribu-
tion so long as an auxiliary parameter can be consistently estimated. This is possible with
standard methods when the number of instruments is small or using machine learning
methods when the intruments are high-dimensional. To improve power, a simple combina-
tion with the sup-score statistic is proposed. I point out that first-stage F-statistics calculated
on LASSO-selected variables may be misleading indicators of identification strength and
demonstrate favorable performance of my proposed methods in both empirical data and
simulation study.
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1. Introduction

When instruments are suspected to be weak, researchers may want to test hypotheses about
structural parameters using testing procedures that are robust to identification strength. These
procedures typically rely on some conditions on the rate of growth of the number of instru-
ments, 𝑑𝑧 , in relation to the sample size, 𝑛. The initial identification robust tests developed
in Staiger and Stock (1997), Moreira (2003), and Kleibergen (2005) are shown by Andrews and
Stock (2007) to control size under heteroskedasticity when the number of instruments cubes
is small relative to the sample size, 𝑑3

𝑧/𝑛 → 0. Meanwhile, recent and interesting “many-
instrument” tests (Crudu et al. (2021), Mikusheva and Sun (2021), Matsushita and Otsu (2022),
Lim et al. (2022)) allow the number of instruments to be proportional to the sample size,
𝑑𝑧/𝑛 → 𝜚 ∈ [0, 1), but require that the number of instruments itself be large, 𝑑𝑧 →∞.

In practice, these conditions can be difficult to interpret and the variety of tests available under
alternate regimes may make it difficult for the researcher to know which test, if any, should be
applied in her exact setting. As examples, consider settings such as that of Derenoncourt (2022),
where 𝑑𝑧 = 9 and 𝑛 = 130, Paravisini et al. (2014), where 𝑑𝑧 = 10 and 𝑛 = 5,995, and Gilchrist
and Sands (2016) where 𝑑𝑧 = 52 and 𝑛 = 1,671. In all three cases, the number of instruments
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cubed, 𝑑3
𝑧 = 729, 1,000 and 140,608, respectively, cannot be treated as negligible relative to the

sample size. Indeed, all of these papers use post-LASSO estimates of the first-stage, suggesting
concern about the large number of instruments by the authors. However as the number of
instruments is only moderately large in all of these settings, asymptotic approximations that
rely on 𝑑𝑧 → ∞ may not accurately resemble the finite sample distribution of the test statistic.
This can make size control of many-instrument tests questionable.1

By comparison, the test proposed in this paper can be applied in any of the settings listed
above as well as when the instruments are high-dimensional, 𝑑𝑧 ≫ 𝑛, a setting for which there
has been limited progress on identification robust testing to this point. The main problem
in these settings has been that the limiting behaviors of the regularized first-stage estimators
used when 𝑑𝑧 ≫ 𝑛 are difficult to analyze and usually unknown. Existing analyses sidestep
this issue by assuming strong identification and exploiting a certain orthogonality – termed
“Neyman Orthogonality” by Chernozhukov et al. (2018) – of the structural parameter estimate
to the first-stage estimation error (Belloni et al., 2012). This approach is explicitly not applicable
under weak identification where the first-stage estimation error is of a weakly greater order
than the signal from the instruments and thus relevant to asymptotic analysis. As such, the
few existing proposals for identification robust testing that allow 𝑑𝑧 ≫ 𝑛 either fail to fully
incorporate first-stage information (Belloni et al. (2012), Doví et al. (2024), Lim et al. (2024)) or
rely on sample splitting (Mikusheva (2023)), both of which may reduce power.

To construct the test statistic I adapt an idea from Kleibergen (2002, 2005) and leverage a
conditional slope parameter, which can be simply estimated using regularized methods even
when 𝑑𝑧 ≫ 𝑛, to partial out the structural error from the endogenous variable. I then use these
partialled out versions of the endogenous variables to construct first-stage estimates. The key
insight is that, if variables in the model followed a jointly Gaussian distribution, these first-stage
estimates would be independent of the structural errors under the null – a fact resulting from
the statistical independence of uncorrelated jointly Gaussian random variables. Thus, even
under weak identification where their behavior is relevant to the distribution of the proposed
test statistic, the limiting 𝜒2 distribution of the proposed test statistic could be easily derived
by conditioning on these estimates. Deriving the limiting distribution of the test statistic in the
general model then reduces to showing that one can treat all observations as if they followed a
jointly Gaussian distribution.

Because the number of instruments is allowed to be large, standard asymptotic approaches
based on central limit theorems cannot be easily applied. My asymptotic analysis thus takes
a different tack and directly shows that variables can be treated as if they followed a jointly
Gaussian distribution via modifications of Lindeberg’s interpolation argument (Lindeberg,
1922). Roughly, I proceed by showing to be negligible the total change in distribution from
a one-by-one replacement of each observation in the expression of the test statistic with a
Gaussian version. The modifications of Lindeberg’s original interpolation method are non-

1Under fixed 𝑑𝑧 with homoskedastic errors, Mikusheva and Sun (2021) show their proposed test statistic’s 95th
quantile is close to that of the standard normal. Lim et al. (2024) propose a bootstrap critical value that controls size
under heteroskedasticity when the number of instruments are fixed, however, as discussed in Section 6, this test
does not fully incorporate first-stage information when the number of instruments is large.
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trivial and required to deal with the fact that derivatives of the test statistic with respect
to individual observations may be unbounded, an issue arising from the “divide-by-zero”
problem of weak identification (Andrews et al., 2019).2 This interpolation argument requires
some conditions on the first-stage estimates. In particular, I require that the first-stage estimates
take on a “jackknife-linear” form and suggest using a jackknife ridge regression in practice to
allow 𝑑𝑧 ≫ 𝑛. Interestingly, though, these first-stage estimates are not required to converge
to limiting values which allows the researcher some flexibility if she wanted to use a different
approach.

Through the Gaussian approximation result, I examine the power properties of my proposed
testing procedure in local neighborhoods of the null. These local neighborhoods are character-
ized by a bounded local power index. In the case of a single endogenous variable I show that,
under an additional regularity condition, the local power index diverging implies that the test
is consistent. Unfortunately, the process of partialling out the structural error can introduce
bias into the first-stage estimate under the alternative hypothesis. Against certain alternatives,
this bias can be particularly pronounced and erase the first-stage signal from the instruments,
a problem pointed out by Andrews (2016) in the context of the Kleibergen (2005) K-statistic.
To address this, I propose a simple combination with the sup-score test of Belloni et al. (2012),
which can also allow 𝑑𝑧 ≫ 𝑛. As with the Anderson-Rubin test, while the sup-score statistic
does not incorporate first-stage information it does not face a power decline against particular
alternatives.

Identification-robust testing procedures may be of particular interest in high-dimensional set-
tings due to a lack of clarity on how to pretest for weak identification. When using post-LASSO
estimates of the first stage, current empirical practice appears to be conducting standard t-test
inference if the first stage F-statistic calculated on the LASSO-selected variables is larger than
10 (Paravisini et al. (2014), Gilchrist and Sands (2016), Derenoncourt (2022)). Using a sim-
ple numerical demonstration, I argue that first stage F-statistics calculated on LASSO selected
variables may not be reliable indicators of identification strength. Given uncertainty about
the strength of identification I apply the newly proposed testing procedures to the data of
Gilchrist and Sands (2016) and generate weak instrument-robust confidence intervals for the
effect of social spillovers on movie consumption. The newly proposed confidence intervals
are substantially smaller than those obtained by inverting the many instrument tests across all
specifications. To verify these results, I also generate confidence intervals in the data of Angrist
and Krueger (1991), again finding that the newly proposed methods generate confidence bands
about half the size of the many instruments methods. I discuss how these improvements in
power compared to existing tests can be explained by the proposed test statistic’s use of higher
quality first-stage estimators and individual scores that are uncorrelated across observations.

Finally, I examine the applicability of the theoretical results in this paper through a simulation
study. While existing tests seem to face size distortions in alternate regimes, the test based

2Existing interpolation results require these derivatives to be bounded while in this setting they may not even have
finite moments. Given this, these modified approaches may be of independent interest to a growing literature on
direct Gaussian approximation techniques (Chatterjee (2006), Chernozhukov et al. (2013), Pouzo (2015), Celentano
et al. (2020)).
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on my proposed test statistic has nearly exact size in a variety of settings. While this new test
may have diminished power against certain alternatives, this deficiency is ameliorated through
combination with the sup-score test. After combining the new test statistic with the sup-score
statistic, the newly proposed testing procedures again demonstrate favorable power properties
compared to the many instruments and sup-score tests

The outline of this paper is as follows. Section 2 formally defines the model considered
and introduces the new test as well as it’s combination with the sup-score test. Section 3
demonstrates the usefulness of the proposed testing procedures in two empirical applications
while Section 4 provides evidence from simulation study. Section 5 provides an overview of the
Gaussian approximation approach and characterizes the limiting behavior of the test statistic.
Section 6 uses this characterization to examine the power properties of the test, establishes
the validity of the combination test, and provides potential explanations for observed power
improvements compared to the many-instrument tests. Proofs of the main results as well as
the presentation of some auxiliary results are deferred to the Appendix.

Notation. For any 𝑛 ∈ N let [𝑛] denote the set {1, . . . , 𝑛}. I work with a sequence of probability
measures 𝑃𝑛 on the data {(𝑦𝑖 , 𝑥𝑖 , 𝑧𝑖) : 𝑖 ∈ [𝑛]}. To accommodate independent but not identically
distributed observations, let E𝑛[ 𝑓𝑖] = 𝑛−1 ∑𝑛

𝑖=1 𝑓𝑖 denote the empirical expectation and Ē[ 𝑓 ] =
E𝑛[E[ 𝑓𝑖]] denote the average expectation operator.

2. Model and Setup

Though the analysis below allows for exogenous regressors, to simplify the exposition I follow
Mikusheva and Sun (2021) and assume that they have already been partialed out of both the
outcome, 𝑦𝑖 , and the endogenous regressors, 𝑥𝑖 . As the controls are assumed to only grow
slowly with the sample size, this is without loss of generality.1 Along with the first stage, the
IV model can then be written as a system of simultaneous equations:

𝑦𝑖 = 𝑥′𝑖𝛽 + 𝜖𝑖
𝑥𝑖 = Π𝑖 + 𝑣𝑖

(2.1)

The researcher observes the outcome 𝑦𝑖 ∈ R, the endogenous variable 𝑥𝑖 ∈ R𝑑𝑥 , and the
instruments 𝑧𝑖 ∈ R𝑑𝑧 but neither the structural error 𝜖𝑖 ∈ R nor the first-stage errors 𝑣𝑖 ∈
R𝑑𝑥 . The structural error is assumed to be conditional-mean independent of the instruments,
E[𝜖𝑖|𝑧𝑖] = 0. I denote E[𝑥𝑖|𝑧𝑖] as Π𝑖 B E[𝑥𝑖|𝑧𝑖] and make no assumptions about the functional
form of the conditional expectation so the instruments are allowed to affect the endogenous
variable in a nonlinear fashion.

The random variables {(𝑧𝑖 , 𝜖𝑖 , 𝑣𝑖)}𝑛𝑖=1 are assumed to be independent across observations. Ob-
servations need not be identically distributed but the errors are assumed to have a common

1Appendix G provides a formal treatment of the model with controls allowing for the number of controls, 𝑑𝑐 ,
to grow so long as 𝑑3

𝑐/𝑛 → 0. For settings with high-dimensional controls, Doví (2025) proposes a modification of
the sup-score test that controls size under a sparsity assumption. However, at present it is unclear how a test could
be constructed that allows for high-dimensional controls and incorporates first stage information.
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covariance structure conditional on the instruments 𝑧𝑖 :

Var((𝜖𝑖 , 𝑣𝑖)′|𝑧𝑖) B Ω(𝑧𝑖) =
(
𝜎2
𝜖𝜖(𝑧𝑖) Σ𝑣𝜖(𝑧𝑖)

Σ𝜖𝑣(𝑧𝑖) Σ𝑣𝑣(𝑧𝑖)

)
∈ R(1+𝑑𝑥)×(1+𝑑𝑥)

As Ω(𝑧𝑖) is otherwise left unrestricted, the errors are allowed to be heteroskedastic. All results
in this paper hold conditionally on a realization of the instruments z := (𝑧′1 , . . . , 𝑧′𝑛) ∈ R𝑛 × 𝑑𝑧

so from this point forth they are treated as fixed and all expectations can be understood as
conditional on the instruments.

Under this setup, the researcher wishes to test a two-sided restriction on the structural param-
eter:

𝐻0 : 𝛽 = 𝛽0 vs. 𝐻1 : 𝛽 ≠ 𝛽0

I am interested in constructing powerful tests for this null-alternate pair that are asymptotically
valid under arbitrarily weak identification and with minimal restrictions on the number of
instruments 𝑑𝑧 . To this end, define the null errors 𝜖𝑖(𝛽0) B 𝑦𝑖 − 𝑥′𝑖𝛽0. Using these, I con-
struct a variable, 𝑟𝑖 , that is a “partialed-out” version of the endogenous variable satisfying
Cov(𝑟𝑖 , 𝜖𝑖(𝛽0)) = 0:

𝑟𝑖 B 𝑥𝑖 − 𝜌(𝑧𝑖)𝜖𝑖(𝛽0), 𝜌(𝑧𝑖) B
Cov(𝜖𝑖(𝛽0), 𝑥𝑖)

Var(𝜖𝑖(𝛽0))
∈ R𝑑𝑥

=
Σ𝑣𝜖(𝑧𝑖) + Σ𝑣𝑣(𝑧𝑖)(𝛽 − 𝛽0)
(1, 𝛽 − 𝛽0)′Ω(𝑧𝑖)′(1, 𝛽 − 𝛽0)

.

Each element of the nuisance parameter 𝜌(𝑧𝑖), 𝜌ℓ (𝑧𝑖) for ℓ = 1, . . . , 𝑑𝑥 , can be interpreted as the
(conditional) slope coefficient from a simple linear regression of 𝑥ℓ 𝑖 on 𝜖𝑖(𝛽0). Thus, if 𝜌ℓ (·) falls
in some function class Φ, it can be estimated directly under 𝐻0 by solving empirical analogs
of:2

𝜌ℓ (𝑧𝑖) = arg min
𝜑∈Φ

Ē[(𝑥ℓ 𝑖 − 𝜖𝑖(𝛽0)𝜑(𝑧𝑖))2].

While other estimators of 𝜌(·) are possible (see Section 5.3), I focus on ℓ1-penalized/LASSO
estimators. These estimators are consistent under the assumption that 𝜌(𝑧𝑖) has an ap-
proximately sparse representation in some basis 𝑏(𝑧𝑖) B (𝑏1(𝑧𝑖), . . . , 𝑏𝑑𝑏 (𝑧𝑖))′ ∈ R𝑑𝑏 , that is
𝜌ℓ (𝑧𝑖) = 𝑏(𝑧𝑖)′𝜙ℓ + 𝜉ℓ 𝑖 where 𝜉ℓ 𝑖 represents an approximation error that tends to zero with the
sample size and 𝜙ℓ is sparse in the sense that many of its coefficients are zero. This allows for
nesting of low-dimensional case and the high dimensional cases under a unified estimation
procedure. Interestingly, if errors are homoskedastic, 𝜌ℓ (𝑧𝑖) is a constant function and thus
has a spare representation in any basis that contains a constant term. In general, however, the
approximate sparsity assumption can either be interpreted as an assumption that there are only
a few instruments that are important for explaining variation in the covariance matrix Ω(𝑧𝑖) or
as an assumption that the function 𝜌(𝑧𝑖) can be accurately approximated using only a smaller
set of basis terms in 𝑏(𝑧𝑖).

2Under 𝐻1, 𝜌ℓ (𝑧𝑖) can be estimated directly by solving empirical analogs of 𝜌ℓ (𝑧𝑖) = arg min𝜙∈Φ E[(𝑥ℓ 𝑖 −
𝜂𝑖(𝛽0)𝜙(𝑧𝑖))2]where 𝜂𝑖(𝛽0) = 𝜖𝑖(𝛽0) − E[𝜖𝑖(𝛽0)|𝑧𝑖]. This requires an initial estimate of E[𝜖𝑖(𝛽0)|𝑧𝑖], however.
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The parameter 𝜙ℓ can be estimated via LASSO:

�̂�ℓ = arg min
𝜙∈R𝑑𝑏

E𝑛[(𝑥ℓ 𝑖 − 𝜖𝑖(𝛽0)𝑏(𝑧𝑖)′𝜙)2] + 𝜆∥𝜙∥1 , (2.2)

or via post-LASSO, refitting an unpenalized version of (2.2) using only the basis terms associated
with nonzero coefficients in the initial LASSO regression. The estimating procedure in (2.2) is
a simple ℓ1-penalized regression of 𝑥ℓ 𝑖 against 𝜖𝑖(𝛽0)𝑏(𝑧𝑖). It can be easily implemented using
out-of-the-box software available on most platforms. Under standard conditions, this leads
to a consistent estimate of 𝜌ℓ (𝑧𝑖) as long as the sparsity condition 𝑠2 log𝑀(𝑑𝑏𝑛)/𝑛 → 0 where
𝑠 is the number of nonzero elements of 𝜙ℓ and 𝑀 is a positive constant that depends on the
moment bounds imposed. The estimation procedure is discussed in more detail in Section 5.3.
With �̂�(𝑧𝑖) B 𝑏(𝑧𝑖)′�̂�ℓ , I construct the estimated version of 𝑟ℓ 𝑖 , 𝑟ℓ 𝑖 B 𝑥𝑖 − �̂�(𝑧𝑖)𝜖𝑖(𝛽0) for each
ℓ ∈ [𝑑𝑥].

2.1. Test Statistic

The test statistic is based on an arbitrary jackknife-linear estimate of the first stage,

Π̂ℓ 𝑖 =

∑
𝑗≠𝑖

ℎ𝑖 𝑗𝑟ℓ 𝑗 , ℓ ∈ [𝑑𝑥]

for some “hat” matrix 𝐻 = [ℎ𝑖 𝑗] ∈ R𝑛×𝑛 . The phrase “hat matrix” is borrowed from ordinary
least squares (OLS) where the projection matrix, z(z′z)−1z′, is sometimes referred to as the
hat matrix in the sense that �̂� = z(z′z)−1z′𝑥. In practice, the hat matrix, 𝐻, can be any matrix
that depends only on z. It is important to note that while Π̂ℓ 𝑖 does not depend on 𝑟ℓ 𝑖 , it may
depend on 𝑧𝑖 through the hat matrix 𝐻. This gives the test power against alternatives where
E[𝜖𝑖(𝛽0)𝑧𝑖] ≠ 0. For technical reasons, I will assume that ℎ𝑖𝑖 = 0 for each 𝑖 ∈ [𝑛] so that Π̂ℓ 𝑖 can
be written as Π̂ℓ 𝑖 =

∑𝑛
𝑗=1 ℎ𝑖 𝑗𝑟ℓ 𝑗 .

Formally, the only structure I require on the hat matrix 𝐻 is a balanced-design condition
described in Section 5. However, for reasons explained in Section 6 it may be optimal to
introduce some regularization in estimating the first-stage models Π̂ℓ 𝑖 so I suggest using a
jackknife ridge regression procedure setting:

Π̂𝑖 = 𝑧′𝑖�̂�(−𝑖)(𝜆★) (2.3)

where �̂�(−𝑖)(𝜆) is the coefficient estimate from a ridge regression of 𝑟 on z, leaving out ob-
servation 𝑖 and with penalty parameter set equal to 𝜆.3 Following recommendations in van
Wieringen (2023), the penalty parameter 𝜆★ is set so that the effective degrees of freedom is no
more than a fraction of the sample size:

𝜆★ = inf{𝜆 ≥ 0 : trace(z(z′z + 𝜆𝐼𝑑𝑧 )−1z′) ≤ 𝑛/5}
3A ridge regression coefficient estimate from a regression of ỹ ∈ R𝑛 on x̃ ∈ R𝑘×𝑛 with penalty parameter 𝜆 ∈ R+

solves �̂� ∈ arg min𝜋∈R𝐾 ∥ỹ − 𝜋′x̃∥22 + 𝜆∥𝜋∥
2
2. Nyquist (1988) shows how the fitted values from a jackknife ridge

regression can be calculated without having to recompute �̂�(−𝑖) for each observation. Angrist et al. (1999) provides
a similar analysis for jackknife OLS.
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The jackknife ridge estimate has the benefit of being well defined even when the number of
instruments is larger than the sample size. I stress, though, that the Π̂ℓ 𝑖 estimators are not
required to be consistent and the researcher may use any other hat matrices that she believes
will lead to plausible first-stage estimates. Other possible choices of first stage estimator include
the jackknife OLS procedure of Angrist et al. (1999) or estimators based on selecting instruments
via some preliminary unsupervised technique such as principal component analysis (PCA).
Remark 5.1 below discusses how the balanced-design condition may be verified for arbitrary
choices of hat matrices.

For each 𝑖 = 1, . . . , 𝑛, define Π̂𝑖 = (Π̂1𝑖 , . . . , Π̂𝑑𝑥 𝑖) ∈ R𝑑𝑥 and Π̂𝜖𝑖 = 𝜖𝑖(𝛽0)Π̂𝑖 . Collect these in the
matrices

𝜖(𝛽0) =
(
𝜖1(𝛽0), . . . , 𝜖𝑛(𝛽0)

) ′ ∈ R𝑛
Π̂ =

(
Π̂′1 , . . . , Π̂

′
𝑛

) ′ ∈ R𝑛 × 𝑑𝑥
Π̂𝜖 =

(
Π̂′𝜖1 , . . . , Π̂

′
𝜖𝑛

) ′ ∈ R𝑛 × 𝑑𝑥 (2.4)

The jackknife K-statistic can then be defined

JK(𝛽0) = 𝜖(𝛽0)′Π̂
(
Π̂′𝜖Π̂𝜖

)−1
Π̂′𝜖(𝛽0) × 1{𝜆min(Π̂′𝜖Π̂𝜖) > 0} (2.5)

If all variables were jointly Gaussian and 𝜌(·) was known to the researcher, the first stage
estimates, Π̂, would be independent of the implied errors, 𝜖(𝛽0).4 The researcher could then
easily derive the limiting 𝜒2

𝑑𝑥
distribution of JK(𝛽0) by conditioning on Π̂ and noticing that the

result looks like a self normalized sum (Peña et al., 2008). Deriving the limiting 𝜒2
𝑑𝑥

distribution
of JK(𝛽0) in the general model thus reduces to showing that all variables can be treated as
if they were jointly Gaussian and that estimation error in �̂�(·) can be safely ignored. I show
this is possible under appropriate moment bounds and conditions on the hat matrix, 𝐻. For
exposition, I will largely focus on the case where 𝑑𝑥 = 1, in which case the argument can
be simplified. The extension to 𝑑𝑥 > 1 is not immediate but is possible under strengthened
moment conditions.

Remark 2.1. Notice that, if errors are Gaussian to begin with, essentially estimator could be used
to construct the first-stage estimates without the need for jackknifing at all. Both jackknifing
and ridge regression are used only to show Gaussian approximation. Jackknifing ensures that
certain cross-terms, whose moments cannot be matched by Gaussian analogs, do not enter the
test-statistic, while ridge regression ensures that the estimator has the analytically tractable
linear form described at the top of this subsection. Remark 5.4 discusses further.

Remark 2.2. Importantly, the first-stage jackknife ridge estimate suggested in (2.3) is a “true”
jackknife ridge estimate. This contrasts to the psuedo-jackknife first-stage estimates used in
the many-instruments procedures and related papers by Doví et al. (2024) and Lim et al.
(2024) which are based on simply deleting the diagonal of the standard, full-sample OLS
or Ridge projection matrices. Using true jackknife ridge estimates complicates theoretical

4This is because Cov(𝑟𝑖 , 𝜖𝑖(𝛽0)) = 0 and uncorrelated jointly Gaussian random variables are independent. Since
the vector Π̂ is a function of {𝑟𝑖 : 𝑖 ∈ [𝑛]} and {𝑟𝑖 : 𝑖 ∈ [𝑛]} ⊥ 𝜖(𝛽0)we then have Π̂ ⊥ 𝜖(𝛽0).
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analysis because their asymptotic behavior in high-dimensional settings is less straightforward
to characterize. The ability to use the true jackknife ridge estimates of (2.3) is thus a feature of
the novel asymptotic approach in this paper, which allows a measure of flexibility in how the
first-stage estimates are constructed. As discussed further in Section 6 and demonstrated in
both the empirical applications of Section 3, use of the true vs. psuedo-jackknife ridge estimates
appears to have substantial implications for the power properties of the relevant tests.

Remark 2.3. While use of first-stage estimates that are uncorrelated with the structural error
is inspired by Kleibergen (2002, 2005), the form of the jackknife K-statistic is distinct from
that of the original K-statistics. One major difference is in how both test statistics account
for heteroskedasticity. The K-statistic of Kleibergen (2005) accounts for heteroskedastic errors
using a 𝑑𝑧 × 𝑑𝑧 matrix, which cannot be consistently estimated when 𝑑𝑧 is large. In contrast, the
jackknife K-statistic uses the heteroskedasticity robust variance estimate (Π̂′𝜖Π̂𝜖)−1 ∈ R𝑑𝑥 × 𝑑𝑥 .
Showing that these variance estimates can be used to account for heteroskedasticity is a feature
of the direct Gaussian approximation approach. Under weak identification the distribution of
the variance estimate is relevant to the distribution of the test-statistic. However, even when
𝑑𝑧 ≪ 𝑛, the distribution of this variance estimate would be difficult to analyze using traditional
methods as it is not a continuous function of a sample mean or even of a quadratic form.

2.2. Combination with Sup-Score Test

As will be discussed in Section 6, the test based on the JK(𝛽0) statistic can have deficient power
against certain alternatives. This loss of power is similar to that faced by tests based on the
K-statistics of Kleibergen (2002, 2005) and derives from the fact that the process of partialling
out the null errors, 𝜖(𝛽0), from the endogenous variables introduces bias into the first stage
estimates, Π̂, under the alternative hypothesis. Against certain alternatives, this bias can “erase”
the first stage signal from the instruments.

The power deficiency in tests based on the K-statistic is typically addressed by combining
the K-statistic with the Anderson-Rubin statistic based on a constructed conditioning variable.
Prominent examples of such combinations include the celebrated conditional likelihood test of
Moreira (2003), GMM-M test of Kleibergen (2005), and minimax regret tests of Andrews (2016).
I take a similar approach here in combining the newly proposed tests with tests based on the
sup-score statistic of Belloni et al. (2012),

𝑆(𝛽0) B sup
ℓ∈[𝑑𝑧]

����∑𝑛
𝑖=1 𝜖𝑖(𝛽0)𝑧ℓ 𝑖
(∑𝑛

𝑖=1 𝑧
2
ℓ 𝑖
)1/2

����. (2.6)

which have correct asymptotic size even when the instruments is much larger than the sample
size, 𝑑𝑧 ≫ 𝑛. A level 𝛼 ∈ (0, 1) test based on the sup-score statistic rejects whenever 𝑆(𝛽0) > 𝑐𝑆1−𝛼
where, for 𝑒1 , . . . , 𝑒𝑛 iid standard normal and generated independently of the data, 𝑐𝑆1−𝛼 is the
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simulated multiplier bootstrap critical value:5

𝑐𝑆1−𝛼 B (1 − 𝛼) quantile of sup
1≤ℓ≤𝑑𝑧

����∑𝑛
𝑖=1 𝑒𝑖𝜖𝑖(𝛽0)𝑧ℓ 𝑖
(∑𝑛

𝑖=1 𝑧
2
ℓ 𝑖
)1/2

���� conditional on {(𝑦𝑖 , 𝑥𝑖 , 𝑧𝑖)}𝑛𝑖=1.

As with the Anderson-Rubin test, tests based on the sup-score statistic may have suboptimal
power properties in overidentified models as it does not incorporate first-stage information.
However, the sup-score statistic does retain the benefit of directing power evenly in all direc-
tions, avoiding pitfalls of tests based on JK(𝛽0) against certain alternatives.

The combination test decides which test to run based on an attempt to detect whether the
alternative 𝛽 is such that E[Π̂𝐼

ℓ ,𝑖
] = 0 for all 𝑖 ∈ [𝑛] and some ℓ ∈ [𝑑𝑥]. When this happens,

tests based on the JK(𝛽0) statistic have trivial power against deviations in the ℓ th coordinate of
𝛽, so in local neighborhoods of these values of 𝛽, tests based on the sup-score statistic may be
preferable. Detection of whether E[Π̂𝐼

ℓ ,𝑖
] = 0 is based on the conditioning statistic:

𝐶 = inf
ℓ∈[𝑑𝑥]

sup
𝑖∈[𝑛]

���� ∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟ℓ 𝑗

(∑𝑗≠𝑖 ℎ
2
𝑖 𝑗
)1/2

����. (2.7)

Under the assumption that E[Π̂𝐼
𝑖
] = 0 for all 𝑖 ∈ [𝑛], quantiles of the conditioning statistic can be

simulated analogously to the sup-score critical value. For a new set of {(𝑒ℓ1 , . . . , 𝑒ℓ𝑛) : ℓ ∈ [𝑑𝑥]}
iid standard normal and generated independently of the data, and for any 𝜃 ∈ (0, 1), define the
conditional quantile

𝑐𝐶1−𝜃 B (1 − 𝜃) quantile of inf
ℓ∈[𝑑𝑥]

sup
𝑖∈[𝑛]

����∑𝑗≠𝑖 𝑒𝑖ℎ𝑖 𝑗𝑟ℓ 𝑗

(∑𝑗≠𝑖 ℎ
2
𝑖 𝑗
)1/2

���� conditional on {(𝑦𝑖 , 𝑥𝑖 , 𝑧𝑖)}𝑛𝑖=1 (2.8)

The thresholding test decides which test to run by comparing the conditioning statistic 𝐶 to a
threshold value 𝜏,

𝑇(𝛽0; 𝜏) =

1{JK(𝛽0) > 𝜒2

𝑑𝑥 ,1−𝛼 if 𝐶 ≥ 𝜏

1{𝑆(𝛽0) > 𝑐𝑆1−𝛼 if 𝐶 < 𝜏
. (2.9)

In principle, the thresholding statistic has correct size for any (preset) choice of parameter 𝜏. In
practice, however, I find that setting 𝜏 = 𝑐𝐶0.75 leads to a reasonable balance of power between
local and distant alternatives.

3. Empirical Application

I apply the testing procedures proposed in this paper to the data of Gilchrist and Sands (2016),
who examine the effect of social spillovers in movie ticket sales, and to the data of Angrist
and Krueger (1991), who examine the returns to education. In both studies the number of
instruments, 𝑑𝑧 = 52 and 𝑑𝑧 = 180, respectively, cannot be treated as negligible relative to
the sample size (𝑛 = 1,671 and 𝑛 = 329,509, respectively). To deal with the large number of

5This conditional quantile can also be approximated using an empirical bootstrap procedure as demonstrated
by Deng and Zhang (2020).
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instruments, Gilchrist and Sands (2016) employ a post-LASSO estimate of the first stage. This
strategy is also shown to work well in the data of Angrist and Krueger (1991) by Angrist and
Frandsen (2022). Using a simple simulation study, I demonstrate that the first-stage F-statistics
on LASSO selected variables typically reported by authors can be misleading indicators of
identification strength.

When revisting the initial analyses using identification robust testing procedures, the con-
fidence intervals constructed by inverting the tests proposed in Section 2 are consistently
narrower than those constructed from inverting the sup-score and many-instrument testing
procedures. In particular, when using expanded instrument sets the new test delivers confi-
dence intervals that are consisistently half the size of the many instrument procedures, and
sometimes even smaller. Section 6, below, provides some explanations for these improvements
in power.

3.1. Application to Social Spillovers in Movie Consumption

The Gilchrist and Sands (2016) sample consists of 1,671 opening weekend days between January
1, 2002 and January 1, 2012. For each opening weekend, the authors observe gross ticket sales
for movies wide released in theaters in the United States with a run in theaters of at least six
weeks.1 The data are obtained through Box Office Mojo, a subsidiary of the Internet Movie
Database (IMDb).

The outcome variables of interest are gross ticket sales of movies that opened in a given weekend
in the second through sixth weeks of their run, while the endogenous variable is the gross ticket
sales of a movie in its opening weekend. To control for seasonal periodicity in both the supply
of and demand for movies, a vector of date controls are included. Formally, the authors are
interested in the parameters 𝛽𝑤 , 𝑤 = 2, . . . , 7 from the linear IV model(s):

Sales⊥𝑤𝑖 = 𝛽𝑤Sales⊥1𝑖 + 𝜖𝑤𝑖 (3.1)

where, for 𝑤 = 1, . . . , 6, Sales⊥𝑤𝑖 represents gross national ticket sales, after the partialing out of
date controls and a constant, 7(𝑤 − 1) days after day 𝑖, of movies that opened on the opening
weekend of 𝑖. The variable Sales⊥7𝑖 =

∑6
𝑤=1 Sales⊥𝑤𝑖 denotes the cumulative national ticket sales

in the second through sixth running weekends of movies who opened in weekend 𝑖, after the
partialing out of date controls and a constant. The parameter 𝛽𝑤 represents the social spillover
effect of strong opening weekend sales on sales in later weeks.

To instrument for sales on opening weekend the authors employ a vector of nationally aggre-
gated weather measures. These weather measures include the proportion of movie theaters
experiencing maximum temperatures in 5◦ Fahrenheit bins on the interval [10◦ , 100◦], the pro-
portion of movie theaters experiencing precipitation levels in 0.25 inch per hour increments
on the interval [0, 1.5], and the proportions of theaters experiencing any type of snow and of
theaters experiencing any type of rain. Since unusually poor weather may cause people to

1An opening weekend day is a Friday, Saturday, or Sunday of opening weekend and a wide released movie is
any movie that ever shows on 600 or more screens.
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Selected Instruments Oracle Estimator
Number of Instruments F-stat. Coverage Prob. F-stat. Coverage Prob.

One Instrument 12.539 0.302 4.911 0.904
Two Instruments 11.185 0.150 5.040 0.830

Three Instruments 10.060 0.070 4.820 0.810

Table 3.1: Comparasions of first-stage F-statistics and 95% con-
fidence interval coverage Probability using selected and oracle
instruments

substitute away from outdoor activities and into watching a movie, these measures provide a
source of exogenous variation in opening weekend sales that can be used to identify the effect
of social spillovers.

Putting together the nationally aggregated weather measures leaves Gilchrist and Sands (2016)
with 48 linearly independent instrumental variables.2 To handle the large number of instru-
ments, the authors employ a post-LASSO estimate of the first stage (Belloni et al., 2012); they
set the first-stage penalty parameter so that the number of instrument selected is one, two, or
three. The resulting first-stage F-statistics using the selected instrument(s), 38.80, 25.86, and
20.95, respectively, seem to indicate strong identification. However, the first-stage F-statistic on
the full set of instrumental variables is only 3.80. Moreover, since the LASSO objective is an
ℓ1 penalized version of the OLS loss, using the variables selected by LASSO may mechanically
lead to higher F-statistics even if the underlying relationship between the instruments and the
endogenous variables is weak.

Table 3.1 provides evidence from a simple simulation experiment to demonstrate this. For the
simulation experiment I generate an iid sample of size 𝑛 = 1000. For each 𝑖 ∈ [𝑛], I generate
10 mutually independent instruments 𝑍𝑘𝑖 ∼ 𝑁(0, 1) for 1 ≤ 𝑘 ≤ 10. The endogenous variable
is generated to only have a weak relationship with the instruments, 𝑋𝑖 = 2√

𝑛

∑10
ℓ=1 𝑍ℓ 𝑖 + 𝑣𝑖 , and

the outcome is generated 𝑌𝑖 = 𝑋𝑖 + 𝜖𝑖 where (𝜖𝑖 , 𝑣𝑖) are independent standard normals. From
the initial set of 10 instrumental variables I generate an additional 55 technical instruments
by squaring and taking all interactions between variables in the initial set. These generated
instruments are correlated with the initial instruments but do not directly enter the first stage.

I then set the LASSO penalty so that only a certain number of instruments are chosen and
report the resulting average first stage F-statistics and 95% confidence interval coverage over
one thousand simulations. As a comparasion I also report the average first-stage F-statistics
and 95% confidence interval coverage from the oracle estimator, which only uses the relevant
10 initial instruments. Despite the fact that the first-stage F-statstic on selected instruments is
more than double the first-stage F-statistic using the oracle first stage estimator, the coverage
rate of 95% confidence intervals based on LASSO selected instruments is significantly degraded
compared to both the nominal coverage probability and the coverage probability using the
oracle first-stage estimator.

Given a lack of clarity on the strength of identification, I seek to validate the results of Gilchrist
and Sands (2016) using the weak identification testing procedures proposed in this paper.

2There are 52 instruments in total, but four linearly dependent ones are ignored in the following.
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The setting is particularly suitable for weak IV testing using the jackknife K-statistic. With 48
instruments and a sample size of 1671, 𝑑3

𝑧 = 110,592 ≫ 𝑛, making the tests of Moreira (2003,
2009), Kleibergen (2005), and Andrews (2016) inapplicable. On the other hand, it is unclear
whether asymptotic approximations based on 𝑑𝑧 →∞will accurately describe the finite-sample
distribution of test statistics with 48 instruments. Moreover, since fluctuations in movie theater
attendance seem to be largely driven by either particularly cold or particularly hot weather (see
Figure 4 in Gilchrist and Sands (2016)), the nuisance parameter 𝜌(𝑧𝑖) is plausibly approximately
sparse.

I compare the 95% confidence intervals based on the jackknife K-statistic to those based on
the jackknife Lagrange-Multiplier (JLM) statistic of Matsushita and Otsu (2022) and the sup-
score statistic of Belloni et al. (2012). Confidence intervals based on the jackknife AR statistic
of Mikusheva and Sun (2021) are not reported as they were empty for all specifications, a
result that could indicate misspecification of the linear model. Similarly, confidence intervals
based on the thresholding statistic, implemented as recommended in Section 6, are also not
reported as they always align with the those of jackknife K-statistic. The narrower confidence
bands of the jackknife K-statistic in specifications where the sup-score confidence interval is
non-empty indicates higher power from the jackknife K-test in this setting, so the combination
test suggesting its use may be expected. The jackknife K-statistic is implemented using the
jackknife OLS hat matrix of Angrist et al. (1999), that is by setting 𝜆 = 0 in (2.3).

Tables 3.2 reports the 95% confidence intervals for 𝛽1 , . . . , 𝛽7 generated by weak-instrument
robust confidence intervals for three sets of instruments: the first is the initial set of 48 instru-
ments in Gilchrist and Sands (2016), the second set includes only the temperature instruments
for 𝑑𝑧 = 36, and the final includes the initial instruments as well as all interactions between the
temperature instruments and the remaining instruments for 𝑑𝑧 = 524. For reference, I also pro-
vide point estimates and standard errors for 𝛽1 , . . . , 𝛽7 from Gilchrist and Sands (2016), Table 2.
To facilitate comparison, these point estimates and standard errors come from a specification
that uses all the instruments in the first stage of a 2SLS procedure.

Qualitatively, the results from the weak-instrument robust confidence intervals are similar to
that of the author’s original analysis; indeed the Gilchrist and Sands (2016) point estimates are
always in the identification robust confidence intervals when using either the initial instrument
set (𝑑𝑧 = 48) or the reduced instrument set (𝑑𝑧 = 36). However, when using the larger
instrument set of 𝑑𝑧 = 524 we obtain confidence bands using the jackknife K-test that rule
out the author’s initial point estimates for the parameters 𝛽5 , 𝛽6 and 𝛽7 and suggest somewhat
smaller social spillover effects in movie consumption. Across all specifications and instrument
sets, confidence intervals obtained from inverting the jackknife K-test are consistently smaller
than those obtained from inverting both the sup-score and jackknife Lagrange Multiplier test.
These reductions in confidence interval length are most noticeable when using the complete
set of interactions, across all parameters the jackknife K-confidence intervals are nearly half the
length of their jackknife Lagrange Multiplier counterparts. As with the jackknife Anderson-
Rubin test, the sup-score confidence intervals are also often empty which again could suggest
misspecification of the linear IV model.
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Parameter 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7

Estimate
(s.e.)

0.475
(0.024)

0.269
(0.023)

0.164
(0.017)

0.121
(0.013)

0.093
(0.010)

1.222
(0.074)

Initial instrument set, 𝑑𝑧 = 48

JK(𝛽0)
←− 0.114−→
[0.441, 0.555]

←− 0.114−→
[0.234, 0.348]

←− 0.074−→
[0.127, 0.201]

←− 0.074−→
[0.936, 0.167]

←− 0.046−→
[0.0736, 0.120]

←− 0.375−→
[0.989, 1.365]

𝑆(𝛽0) ∅
←− 0.033−→
[0.294, 0.328] ∅ ∅ ∅

←− 0.561−→
[0.989, 1.551]

JLM
←− 0.140−→
[0.428, 0.569]

←− 0.127−→
[0.221, 0.348]

←− 0.087−→
[0.134, 0.221]

←− 0.074−→
[0.100, 0.174]

←− 0.060−→
[0.080, 0.140]

←− 0.441−→
[0.989, 1.384]

Temperature instruments only, 𝑑𝑧 = 36

JK(𝛽0)
←− 0.147−→
[0.462, 0.609]

←− 0.134−→
[0.268, 0.401]

←− 0.096−→
[0.158, 0.254]

←− 0.080−→
[0.114, 0.194]

←− 0.067−→
[0.094, 0.161]

←− 0.455−→
[1.117, 1.572]

𝑆(𝛽0) ∅ ∅ ∅ ∅ ∅ ∅

JLM
←− 0.161−→
[0.448, 0.609]

←− 0.161−→
[0.248, 0.408]

←− 0.107−→
[0.147, 0.254]

←− 0.087−→
[0.114, 0.200]

←− 0.067−→
[0.094, 0.161]

←− 0.542−→
[1.070, 1.612]

Initial instruments plus all interactions with temp. instruments, 𝑑𝑧 = 524

JK(𝛽0)
←− 0.040−→
[0.462, 0.502]

←− 0.033−→
[0.268, 0.301]

←− 0.020−→
[0.154, 0.174]

←− 0.013−→
[0.094, 0.107]

←− 0.007−→
[0.067, 0.074]

←− 0.120−→
[1.043, 1.164]

𝑆(𝛽0)
←− 0.047−→
[0.415, 0.462] ∅ ∅

←− 0.207−→
[0.040, 0.247]

←− 0.060−→
[0.161, 0.221] ∅

JLM
←− 0.080−→
[0.441, 0.522]

←− 0.060−→
[0.247, 0.308]

←− 0.040−→
[0.147, 0.187]

←− 0.027−→
[0.094, 0.120]

←− 0.013−→
[0.067, 0.080]

←− 0.227−→
[0.990, 1.217]

Table 3.2: 95% Confidence Intervals and Interval Lengths in the data of Gilchrist and Sands (2016).

3.2. Application to Returns to Education

For additional comparison, I revisit the setting of Angrist and Krueger (1991), who study the
effect of education on log-wages, instrumenting for education using various combinations of
quarter-of-birth (QOB), year-of-birth (YOB), and place-of-birth indicators (POB). This dataset
has the benefit of being used in the empirical studies of both Mikusheva and Sun (2021)
and Matsushita and Otsu (2022), facilitating an easy comparison of the performance of the
newly proposed testing procedure to these existing “many-instrument” methods. Moreover,
Angrist and Frandsen (2022) report reduced bias comared to 2SLS in this dataset when using
post-LASSO estimates in the first stage, suggesting that high-dimensional or machine-learning
techniques can be useful in this setting.

Table 3.3 displays the resulting identification robust confidence intervals using two set of
instruments. The first set, which contains all QOB × YOB and all QOB × POB interactions
for 𝑑𝑧 = 180, corresponds to the specification in Table VII of Angrist and Krueger (1991).
The second set of instruments, 𝑑𝑧 = 1,530, contains all QOB × YOB × POB interactions. The
confidence intervals for the jackknife Anderson-Rubin (JAR) and jackknife Lagrange-Multiplier
(JLM) tests are taken directly from Mikusheva and Sun (2021) and Matsushita and Otsu (2022),
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respectively. To implement the jackknife K-test I follow a similar procedure to that of the prior
empirical exercise, setting 𝜆 = 0 when constructing the Π̂𝑖 values. However, for computational
reasons I opt to split the data into 11 pieces when estimating Π̂𝑖 rather than using a true “leave-
one-out” jackknife approach. Confidence intervals from the combination test are not reported
as the sup-score confidence interval is empty in both specifications.

The results in Table 3.3 are similar to those in Table 3.2. In both specifications the confidence
intervals obtained from inverting the jackknife K-test are substantially smaller than those ob-
tained by inverting the “many-instrument” JAR and JLM tests. Indeed, the confidence intervals
obtained from inverting the jackknife K-statistic are nearly half the length of those obtained
from inverting the JLM test and less than a quarter the length of those obtained from invert-
ing the JAR test. It is notable that the range of plausible returns to education values implied
by the jackknife K-confidence interval with 𝑑𝑧 = 1,530 are strictly below that implied by the
jackknife-K confidence interval with 𝑑𝑧 = 180. This may be related to misspecification of the
linear model as indicated by the empty sup-score confidence interval. “Downward bias” of
the confidence intervals when using the larger instrument set is also seen for the JAR and JLM
confidence intervals, though to a lesser extent. Section 6.3, below, provides reasoning for why
confidence intervals based on the JK(𝛽0) statistic may be tighter than those based on the JAR
and JLM statistics.

Number of Instruments JAR JLM JK(𝛽0) 𝑆(𝛽0)

Initial Instrument Set
(𝑑𝑧=180)

←− 0.193−→
[0.008, 0.201]

←− 0.066−→
[0.067, 0.133]

←− 0.034−→
[0.067, 0.101] ∅

All Interactions
(𝑑𝑧=1,530)

←− 0.249−→
[−0.047, 0.202]

←− 0.098−→
[0.025, 0.123]

←− 0.034−→
[0.008, 0.042] ∅

Table 3.3: 95% Confidence Intervals and Interval Lengths in the data of Angrist and Krueger (1991).

Both here and throughout this paper, my results should not be interpreted as a critique of
Belloni et al. (2012), Mikusheva and Sun (2021), or Matsushita and Otsu (2022), whose prior
work I relied upon and was inspired by.

4. Simulation Study

In a simple simulation study, I examine the performance of tests based on the JK(𝛽0) statistic and
compare it with that of other tests that may be used in settings where the number of instruments
is nonnegligible as a fraction of sample size. I consider a reduced-form data-generating process
(DGP) similar to that of Matsushita and Otsu (2022). The outcome variable, 𝑦𝑖 , and endogenous
variable, 𝑥𝑖 , are generated according to

𝑦𝑖 = 𝑥𝑖 + 𝜖𝑖
𝑥𝑖 = Π𝑖 + 𝑣𝑖

(4.1)
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where Π𝑖 =
1
𝑟𝑛

∑5
𝑘=1

3
4 �̄�𝑘𝑖 + 1

4 �̄�
2
𝑘𝑖
+ 1

4 �̄�
3
𝑘𝑖

is a (dense) transformation of an initial set of instruments
�̄�𝑖 ∈ R15 generated as described below. The value of 𝑟𝑛 varies depending on the strength
of identification considered; under weak identification, 𝑟𝑛 = 𝑛−1/2 while for power curves I
consider an intermediate identification strength, 𝑟𝑛 = 𝑛−1/3.1 To model heteroskedasticity, the
errors (𝑒𝑖 , 𝑣𝑖) are generated 𝜖𝑖 = (1 + 𝜚1(�̄�2

1𝑖 + �̄�2
2𝑖 + �̄�2𝑖 �̄�3𝑖))𝑒1𝑖 , and 𝑣𝑖 = 𝜚2(1 + �̄�1𝑖)𝜖𝑖 + (1 −

𝜚2)2𝑒2𝑖 where 𝑒1𝑖 and 𝑒2𝑖 are generated independently of each other and other variables in the
model according to a Laplace distribution with location parameter 𝜇 = 0 and scale parameter
𝑏 = 1. Since the jackknife K-statistic has a nearly exact 𝜒2 distribution when the errors are
jointly Gaussian, I purposefully avoid normally distributed errors to investigate the quality of
asymptotic approximations. The parameters 𝜚1 and 𝜚2 control the degree of heteroskedasticity
and endogeneity, respectively.

DGP Testing Procedure

𝑛 𝑑𝑧 𝜚1 𝜚2 JK(𝛽0) 𝑆(𝛽0) 𝑇(𝛽0; 𝜏0.3) 𝑇(𝛽0; 𝜏0.75) A.Rbn. JAR JLM
200 15 0.2 0.3 0.0514 0.0356 0.0482 0.0454 0.0234 0.0454 0.0434

0.2 0.6 0.0500 0.0376 0.0460 0.0412 0.0258 0.0728 0.0436
0.5 0.3 0.0466 0.0384 0.0430 0.0402 0.0238 0.0784 0.0450
0.5 0.6 0.0454 0.032 0.0432 0.0394 0.0220 0.0734 0.0458

45 0.2 0.3 0.0430 0.0102 0.0372 0.0268 0.0062 0.0930 0.0386
0.2 0.6 0.0422 0.0102 0.0406 0.0302 0.0078 0.0890 0.0414
0.5 0.3 0.0446 0.0104 0.0372 0.0242 0.0074 0.1058 0.0306
0.5 0.6 0.0452 0.0110 0.0414 0.0308 0.0040 0.1052 0.0342

150 0.2 0.3 0.0490 0.0044 0.0416 0.0242 0.0000 0.1066 0.0460
0.2 0.6 0.0480 0.0068 0.0422 0.0288 0.0000 0.1074 0.0408
0.5 0.3 0.0482 0.0060 0.0424 0.0244 0.0000 0.1070 0.0458
0.5 0.6 0.0434 0.0070 0.0404 0.0268 0.0000 0.1120 0.0414

500 15 0.2 0.3 0.0540 0.0448 0.0510 0.0490 0.0374 0.0702 0.0512
0.2 0.6 0.0516 0.0424 0.0478 0.0488 0.0368 0.0674 0.0444
0.5 0.3 0.0474 0.0398 0.0452 0.0466 0.0294 0.0690 0.0488
0.5 0.6 0.0490 0.0392 0.0466 0.0464 0.0320 0.0718 0.0446

45 0.2 0.3 0.0554 0.0196 0.0480 0.0364 0.0198 0.0840 0.0340
0.2 0.6 0.0496 0.0206 0.0456 0.0392 0.0202 0.0812 0.0378
0.5 0.4 0.0552 0.0192 0.0514 0.0368 0.0166 0.0904 0.0330
0.5 0.6 0.0518 0.0224 0.0472 0.0346 0.0188 0.0950 0.0328

150 0.2 0.3 0.0476 0.0168 0.0456 0.0380 0.0044 0.0754 0.0432
0.2 0.6 0.0456 0.0146 0.0428 0.0386 0.0036 0.0730 0.0426
0.5 0.3 0.0540 0.0116 0.0486 0.0332 0.0052 0.0856 0.0380
0.5 0.6 0.0456 0.0180 0.0436 0.0364 0.0036 0.0784 0.0418

Table 4.1: Simulated Size of Identification and Heteroskedasticity Robust Tests under Weak Iden-
tification. Each DGP is simulated 5000 times.

I examine the size of the test under three different instrument regimes. In all three regimes,
I begin with an initial set of instruments �̄�𝑖 = (�̄�1𝑖 , . . . , �̄�15𝑖)′ generated independently across
indices according to a multivariate Gaussian distribution with Toeplitz covariance structure,

1Intermediate identification strength is considered to let the power curves come up to one at the boundaries of
the considered range of 𝛽 values. Power curves with 𝑟𝑛 = 𝑛−1/2 look similar, but shrunk towards zero.
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Cov(�̄�ℓ 𝑖 , �̄�𝑘𝑖) = 2−|ℓ−𝑘|. In the first regime, the instruments only include the initial set, 𝑧𝑖 = �̄�𝑖

so that 𝑑𝑧 = 15. In the second regime, the full set of instruments 𝑧𝑖 additionally includes all
quadratic and cubic terms, (𝑧2

ℓ 𝑖
, 𝑧3
ℓ 𝑖
), ℓ = 1, . . . , 15 so that in total 𝑑𝑧 = 45. In the third regime,

the full set of instrument includes the initial set of instruments, �̄�𝑖 , all quadratic and cubic terms
(30 additional terms) and interactions of the initial set of instruments (

(15
2
)
= 105 additional

terms), so that in total 𝑑𝑧 = 150. Under each regime, the full set of instruments is passed to
the test statistics with no indication about which instruments correspond to the initial set, and
thus no indication about which instruments are relevant to the DGP.

Figure 4.1: Calibrated Local Power Curves under Intermediate Identification Strength and 150
Instruments. Sample size is 200 and rejection probability is calculated on a grid of 100 (𝛽0 − 𝛽)
points between -4 and 4. At each point the DGP is simulated 1000 times.

In constructing the jackknife K-statistic, I opt to use the deleted diagonal ridge matrix,𝐻 = [ℎ𝑖 𝑗]
where ℎ𝑖 𝑗 = [z(z′z + 𝜆𝐼𝑑𝑧 )z′]𝑖 𝑗1{𝑖 ≠ 𝑗}, instead of a true jackknife ridge procedure in order to
make the simulations compuationally tractable. Following reccomendations in van Wieringen
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(2023), the penalty paramter 𝜆 is set so that effective degrees of freedom of the resulting hat
matrix is no more than 𝑛/5.2 To estimate the parameter 𝜌(𝑧𝑖), I implement the default cross-
validated ℓ1-penalized procedure of (2.2) via the glmnet package in R (Friedman et al., 2010). I
use the full vector of instruments as the basis to approximate 𝜌(𝑧𝑖).

I compare the simulated size of the jackknife K test and to the performance of the sup-score
test, 𝑆(𝛽0), of Belloni et al. (2012), the thresholding test introduced in Section 6.2, the standard
Anderson-Rubin (A.Rbn.) test of Anderson and Rubin (1949) and Staiger and Stock (1997),
the jackknife AR test (JAR) of Crudu et al. (2021) and Mikusheva and Sun (2021), and the
jackknife LM test (JLM) of Matsushita and Otsu (2022). Critical values of the sup-score and
conditioning statistic are simulated with the procedures described in Section 6 with 1000
bootstrap replications. For the combination test cutoff, I report results using two different
quantiles of the conditioning statistic under the assumption that E[Π̂𝐼

𝑖
] = 0 for all 𝑖 ∈ [𝑛]; 𝜏0.3

corresponding to the 30th quantile and 𝜏0.75 corresponding to the 75th quantile.

Table 4.1 reports the simulated size for all tests under weak and strong identification, re-
spectively. One can see that the JK(𝛽0) statistic has nearly exact size in almost all the setups
considered. In contrast, both the jackknife AR and jackknife LM test all exhibit moderate
size distortions in various regimes. The jackknife AR test in particular appears to overreject in
nearly all setups considered. This property also observed in the simulation study of Matsushita
and Otsu (2022) and so may be driven by the similarity of this simulation setup to theirs. The
jackknife LM statistic appears to have good size properties when 𝑑𝑧 = 10 and 𝑑𝑧 = 150 but is
consistently (though only moderately) undersized in the intermediate regime where 𝑑𝑧 = 45.
This size distortion does not improve when moving from 𝑛 = 200 to 𝑛 = 500, suggesting that
the requirement that 𝑑𝑧 →∞ is important for the quality of finite-sample approximation by its
limiting distribution. Though the good performance of the jackknife LM statistic when 𝑑𝑧 = 10
is notable, it should also be remarked that this is the setup with the least amount of correlation
between the instruments.

The sup-score and Anderson-Rubin test seem to be undersized in all regimes, with the
Anderson-Rubin test nearly never rejecting when 𝑑𝑧 = 150. However, and in line with the
theory, both of their size properties appear to improve when increasing the sample size from
𝑛 = 200 to 𝑛 = 500. It is possible that the size properties of the sup-score test could be improved
by using an empirical bootstrap based approach to simulate the critical value, as proposed by
Deng and Zhang (2020), however I do not consider that approach here. The threshholding
test appears to inherit the conservative nature of the sup-score test, though to a lesser degree
due to the combination with the JK(𝛽0) test. In addition to examining the size properties of
the given tests I also investigate the power properties of the tests in this setting. Figures 4.1
and 4.2 plot calibrated local power curves under an intermediate identification strength where
the first stage is in a 𝑛−1/3 neighborhood of zero for 𝑛 ∈ {200, 500}, the number of instrument
is plausible large, 𝑑𝑧 = 150, 𝜚1 ∈ {0.2, 0.5} and 𝜚2 ∈ {0.3, 0.6}. The critical value of each test is
set to simulated 95th quantile of the distribution of the corresponding test-statistic under 𝐻0. I

2Precisely, the penalty parameter is set 𝜆 = max 0, (𝑛/5)−1𝑑2
1(z)(𝑑𝑧 − 𝑛/5), where 𝑑2

1(z) is the square of the
maximum singular value of the design matrix z.
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Figure 4.2: Calibrated Local Power Curves under Intermediate identification Strength and 150
Instruments. Sample size is 500 and rejection power is calculated on a grid of 100 (𝛽0 − 𝛽) points
between -4 and 4. At each point the DGP is simulated 2000 times.

compare the calibrated local power curves of the JK(𝛽0) test, the combination test with cutoff
𝜏0.75, the jackknife AR test, the Jackknife LM test, and the sup-score test.3

In all setups considered, the jackknife K and combination tests have substantially stronger
power than the jackknife AR, jackknife LM, and sup-score tests in local neighborhoods of the
null as well as for negative values of (𝛽0 − 𝛽). For values of (𝛽0 − 𝛽) larger than 1.5, tests based
on the jackknife K-statistic suffer from a loss of power as described in Section 6. This power
decline is largerly ameliorated by combining the jackknife K-statistic with the sup-score statistic
and the thresholding test has good power properties over all alternatives considered. However,
tests based on the jackknife AR or jackknife LM statistic can still provide better power than the

3For both the jackknife AR and jackknife LM tests, I use cross-fit estimates of test statistic variances proposed
and shown to improve power by Mikusheva and Sun (2021).
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threshholding test for very positive values of (𝛽0 − 𝛽) in some setups.

5. Limiting Behavior of the Test Statistic

In this section, I establish the validity of tests based on the JK(𝛽0) statistic. The limiting behavior
of the test statistic is analyzed via a direct Gaussian approximation technique. I describe the
approach and characterize the limiting behavior of the test statistic under the null and in local
neighborhoods of the null. This direct approach has the advantage of not relying on any
particular central limit theorem, which allows a great deal of flexibility in the choice of first
stage estimates. When there is only a single endogenous variable, 𝑑𝑥 = 1, the argument can be
considerably simplified. The extension to 𝑑𝑥 > 1 uses a more involved argument which relies
on stronger moment conditions.

Formally, I show that quantiles of the jackknife K-statistic can be approximated by analogous
quantiles of the Gaussian statistic:

JK𝐺(𝛽0) B �̃�(𝛽0)Π̃(Π̃′𝜖Π̃𝜖)−1Π̃′�̃�(𝛽0); (5.1)

where, for each 𝑖 ∈ [𝑛], (�̃�𝑖(𝛽0), 𝑟′𝑖)′ are generated independently across indices following a
Gaussian distribution with the same mean and covariance matrix as (𝜖𝑖(𝛽0), 𝑟′𝑖)′. Further, for
Π̃ℓ 𝑖 =

∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟ℓ 𝑗 define Π̃𝑖 B (Π̃1𝑖 , . . . , Π̃𝑑𝑥 𝑖)′ ∈ R𝑑𝑥 , Π̃𝜖𝑖 B (E[𝜖2

𝑖
(𝛽0)])1/2Π̃𝑖 ,

�̃�(𝛽0) B (�̃�1(𝛽0), . . . , �̃�𝑛(𝛽0))′ ∈ R𝑛 ,
Π̃ B (Π̃1 , . . . , Π̃𝑛)′ ∈ R𝑛×𝑑𝑥 ,

and Π̃𝜖 B (Π̃𝜖1 , . . . , Π̃𝜖𝑛)′ ∈ R𝑛×𝑑𝑥 .

As uncorrelated jointly Gaussian random variables are independent, under 𝐻0 the vector �̃�(𝛽0)
is mean zero and independent of (Π̃, Π̃𝜖). Conditional on any realization of (Π̃, Π̃𝜖) the JK𝐺(𝛽0)
statistic then follows a 𝜒2

𝑑𝑥
distribution and, thus, its unconditional distribution is also 𝜒2

𝑑𝑥
.

To outline the argument, consider functions 𝜑𝛾(·) ∈ 𝐶3
𝑏
(R) that approximate the indicators

1{· ≤ 𝑎}, where 𝑎 ∈ R is arbitrary and as 𝛾→ 0 the quality of the approximation improves but
the derivatives of 𝜑𝛾 become larger in magnitutde. A primary goal is to show, for a sequence
𝛾𝑛 tending to zero, that

E[𝜑𝛾𝑛 (JK𝐼(𝛽0)) − 𝜑𝛾𝑛 (JK𝐺(𝛽0))] → 0 (5.2)

for a version of the test statistic, JK𝐼(𝛽0), that could be constructed if 𝜌(·) was known to the
researcher. In order to establish (5.2), existing interpolation methods cannot be applied as they
require the derivative of the test statistic with respect to individual obserations are bounded.
In this setting, the derivative of the test statistics with respect to terms in the denominator
matrix, Π̂′𝜖Π̂𝜖, may be as large as the inverse of the minimum eigenvalue of the denominator
matrix. When identification is sufficiently weak, the eigenvalues of the denominator matrix
can be arbitrarily close to zero and thus inverse of its minimum eigenvalue may not even have
finite moments.
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To get around this, I modify the argument by considering a “data-dependent” choice of ap-
proximation parameter 𝛾𝑛 . This choice of approximation parameter inversely scales with the
determinant of the denominator matrix and thus, since the determinant is the product of the
eigenvalues, inversely scales with the minimum eigenvalue.1 Geometrically, this approach
can be thought of as “stretching out” the function 𝜑𝛾𝑛 (·) in directions where the minimum
eigenvalue of the denominator matrix is close to zero. Through the chain rule, this allows for
control of the overall derivative of 𝜑𝛾𝑛 (JK𝐼(𝛽0))with respective to an individual observation.

5.1. High Level Assumptions

I now detail the assumptions needed for the argument, starting with the assumptions that are
commmon to the cases with 𝑑𝑥 = 1 and 𝑑𝑥 > 1. In what comes below 𝑐 > 1 can be considered
an arbitrary constant that may be updated upon each use but that does not depend on sample
size 𝑛.

Assumption 5.1 (Balanced Design). (i) Let 𝑠−2
ℓ ,𝑛

= max1≤𝑖≤𝑛 E[(Π̂𝐼
ℓ 𝑖
)2] for each ℓ ∈ [𝑑𝑥]; then, the

minimum eigenvalue of the following matrix is bounded away from zero:

𝑐−1 ≤ 𝜆minE
(
𝑠ℓ ,𝑛 𝑠𝑘,𝑛
𝑛

∑𝑛
𝑖=1(Π̂𝐼

ℓ 𝑖
)(Π̂𝐼

𝑘𝑖
)
)

1≤ℓ≤𝑑𝑥
1≤𝑘≤𝑑𝑥

(ii) max𝑖 𝑠𝑛
∑
𝑗≠𝑖 ℎ

2
𝑗𝑖
≤ 𝑐; and (iii) the following ratio is bounded away from zero:

∑𝑛
𝑘=2 𝜆

2
𝑘
(𝐻𝐻′)∑𝑛

𝑘=1 𝜆
2
𝑘
(𝐻𝐻′) ≥ 𝑐−1

where 𝜆𝑘(𝐻𝐻′) represents the 𝑘th largest eigenvalue of the matrix 𝐻𝐻′.

Assumption 5.1(i) requires that the average second moment of the infeasible first-stage esti-
mators be on the same order as the maximum first-stage estimator second moment. This is
imposed mainly to rule out hat matrices that are all zeroes or nearly all zeros so that the effec-
tive number of observations used to test the null is growing with the sample size. Remark 5.1
provides further intuition for this assumption and below discusses how this assumption and
Assumption 5.1(ii) may be verified in practice. Remark 5.2 compares this balanced design
assumption to that in the many-instruments literature (Crudu et al., 2021; Mikusheva and Sun,
2021; Matsushita and Otsu, 2022; Lim et al., 2022), noting that their balanced design neither
implies nor is implied by the one in this paper.

Assumption 5.1(ii) requires that the maximum leverage of any observation be bounded. When
𝐻 is symmetric, it is automatically satisfied.2 Assumption 5.1(iii) can be viewed as a mild
technical requirement that there be more than one “effective” instrument in the hat matrix.3

This condition can be easily verified in practice by examining the eigenvalues of 𝐻𝐻′.
1The determinant has the benefit of being a smooth function of elements of the matrix. This makes it nicer to

work with than the minimum eigenvalue itself, which loses differentiability when the dimension of its eigenspace
is larger than one.

2To see this for 𝑑𝑥 = 1 notice that 𝑠−2
𝑛 = max𝑖 E[(Π̂𝐼

𝑖
)2] ≥ max𝑖 Var(Π̂𝐼

𝑖
) = max𝑖

∑
𝑗≠𝑖 ℎ

2
𝑖 𝑗

Var(𝑟𝑗), while Var(𝑟𝑗)will
be assumed bounded from below by 𝑐−1. Inverting this chain of inequalities yields that 𝑠2𝑛

∑
𝑗≠𝑖 ℎ

2
𝑖 𝑗

is bounded from
above uniformly over all 𝑖 ∈ [𝑛].

3In the case of a standard projection matrix (no deleted diagonal), Assumption 5.1(iii) would be satisfied
whenever rank(𝑧(𝑧′𝑧)−1𝑧) > 1, which occurs whenever there are at least two linearly independent instruments.
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Next, I make a high level assumption that the estimation error in �̂�(·) can be treated as negligible
in both the numerator and denominator. Later, I will verify this assumption for the particular
choice of �̂�(·) described in Section 2. For each ℓ ∈ [𝑑𝑥] define Π̂𝐼

ℓ ,𝑖
B

∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟ℓ 𝑗 , the version of

the first stage estimates that could be constructed if 𝜌(·) was known to the researcher. Using
these, define the magnitude of estimation error in the numerator and denominator as

Δ𝑁 B max
ℓ∈[𝑑𝑥]

�� 𝑠ℓ ,𝑛√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
(
Π̂ℓ ,𝑖 − Π̂𝐼

ℓ ,𝑖

) ��
Δ𝐷 B max

ℓ∈[𝑑𝑥]

𝑠2
ℓ ,𝑛

𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)

(
Π̂ℓ ,𝑖 − Π̂ℓ ,𝑖

)2

Assumption 5.2 (Estimation Error). Estimation error in both the numerator and denominator of the
test statistic can be treated as negligible, (Δ𝑁 ,Δ𝐷) →𝑝 0.

Showing that (Δ𝑁 ,Δ𝐷) →𝑝 0 implies that estimation error can be treated as negligible for the test
statistic JK(𝛽0) requires some care. In a standard approach, this would straightforwardly follow
from application of the continous mapping theorem. However, this approach requires that
the scaled numerator and denominator each have well defined distributional limits, something
that is not required by the direct Gaussian approximation. Instead, I establish and make use
of anticoncentration bounds to show that the basic results of the continuous mapping theorem
still apply even when the numerator and denominator do not have weak limits.

Finally, in addition to characterizing the limiting distribution of JK(𝛽0) under𝐻0, I also examine
the behavior of JK(𝛽0) in local neighborhoods of the null. These local neighborhoods are
characterized by the local power index 𝑃, defined below, as well as an additional regularity
condition that restricts the size of E[𝜖𝑖(𝛽0)] relative to E[𝑟ℓ 𝑖].

Assumption 5.3 (Local Identification). (i) The local power index is bounded 𝑃 ≤ 𝑐 for

𝑃 =

𝑑𝑥∑
ℓ=1

E
[(
𝑠ℓ ,𝑛√
𝑛

𝑛∑
𝑖=1

Π̂𝐼
ℓ 𝑖Π
′
𝑖(𝛽 − 𝛽0)

)2]
(ii) E[(𝑠𝑛,ℓ

∑
𝑗≠𝑖 ℎ 𝑗𝑖𝜖 𝑗(𝛽0))2] ≤ 𝑐 for all ℓ = 1, . . . , 𝑑𝑥 .

Under 𝐻0, Assumption 5.3 is trivially satisfied since (𝛽 − 𝛽0) = 0 and
∑
𝑗≠𝑖 𝑠

2
ℓ ,𝑛
ℎ2
𝑗𝑖
≤ 𝑐 for each

ℓ ∈ [𝑑𝑥]. The local power index is the second moment of the scaled numerator of the test statistic
is a measure of the association between the true first stage Π𝑖 and the first-stage estimates Π̂𝑖 .
In Section 6, I discuss how the strength of this association is related to the power of the test
under local alternatives. Assumption 5.3(ii) can be roughly interpreted as requiring the local
neighborhoods of 𝐻0 considered to be those in which the means of (𝜖1(𝛽0), . . . , 𝜖𝑛(𝛽0)) are of
the same or lesser order than the means of (𝑟1 , . . . , 𝑟𝑛).
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5.2. Limiting Behavior of the Test Statistic

Under these assumptions I present results showing that, in local neighborhoods of 𝐻0, the
distribution of the test statistic can be uniformly approximated by the distribution of the
Gaussian statistic described in (5.1). As mentioned, the argument can be simplified to require
lighter moment bounds when 𝑑𝑥 = 1. These moment bounds will be made on the model
primitives, 𝜂𝑖 B (𝛽− 𝛽0)𝑣𝑖 + 𝜖𝑖 = 𝜖𝑖(𝛽0) −E[𝜖𝑖(𝛽0)] and 𝜁ℓ 𝑖 B 𝑣ℓ 𝑖 −𝜌ℓ (𝑧𝑖)𝜂𝑖 = 𝑟ℓ 𝑖 −E[𝑟ℓ 𝑖] for each
ℓ ∈ [𝑑𝑥].

Theorem 5.1 (Single Endogenous Variable). Suppose that Assumptions 5.1–5.3 hold. In addition
suppose that (i) {|Π𝑖| + |𝜌(𝑧𝑖)| + |(𝛽 − 𝛽0)|} ≤ 𝑐 and (ii) for any 𝑟, 𝑠 ∈ Z+ satisfying 𝑟 + 𝑠 ≤ 6
𝑐−1 ≤ E[|𝜂𝑖|𝑟 |𝜁𝑖|𝑠] ≤ 𝑐. Then, for 𝑑𝑥 = 1,

sup
𝑎∈R

��Pr(JK(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
��→ 0.

In particular, under 𝐻0, JK(𝛽0)⇝ 𝜒2
1.

In the case of 𝑑𝑥 = 1, I additionally show that the test based on the JK𝐼(𝛽0) statistic is consistent
whenever the power index diverges, 𝑃 →∞, and Assumption 5.3(ii) holds.

Theorem 5.2 (Consistency). Suppose that Assumptions 5.1, 5.2, and 5.3(ii) hold along with the
moment conditions of Theorem 5.1. Then, if 𝑃 → ∞ the test based on JK(𝛽0) is consistent; i.e for any
fixed 𝑎 ∈ R, Pr(JK(𝛽0) ≤ 𝑎) → 0.

The dependence of the consistency result on Assumption 5.3(ii) is a nontrivial restriction
because of the bias taken on in constructing 𝑟𝑖 . In particular, if errors are homoskedastic,
against certain alternatives it is possible that E[Π̂𝐼

𝑖
] = 0 for all 𝑖 ∈ [𝑛] even under strong

identification (see Section 6.1). This is an extreme case, however. In general, bias in E[𝑟𝑖] does
not imply a violation of Assumption 5.3(ii), which requires only that the size of E[𝑟𝑖] be of a
weakly greater order than that of E[𝜖𝑖(𝛽0)]. Moreover, as discussed in Remark 5.5, Theorem 5.2
does not necessarily rule out consistency when 𝑃 →∞ but Assumption 5.3(ii) fails.

Regardless, bias taken on in constructing 𝑟𝑖 has consequences for the power of the test in finite
samples. The combination with the sup-score test described in Section 2 is an attempt to rectify
this. While this attempt is not perfect, it appears to work well both in the empirical application
to the data of Gilchrist and Sands (2016) and in the simulation study of Section 4.

The argument when 𝑑𝑥 > 1 is considerably more involved than the case where 𝑑𝑥 = 1 and
requires strengthened moment condition on the variables 𝜂𝑖 and 𝜁𝑖 . Given a random variable
𝑋 and 𝜐 > 0 the Orlicz (quasi-)norm is defined

∥𝑋∥𝜓𝜐 B inf{𝑡 > 0 : E exp(|𝑋|𝜐/𝑡𝜐) ≤ 2}

Random variables with a finite Orlicz norm for some 𝜐 ∈ (0, 1] ∪ {2} are termed 𝛼-sub-
exponential random variables (Gotze et al., 2021; Sambale, 2022). This class of encompasses a
wide range of potential distributions including all bounded and sub-Gaussian random random
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variables (with 𝜐 = 2), all sub-exponential random variables such as Poisson or noncentral 𝜒2

random variables (with 𝜐 = 1), as well as random variables with “fatter” tails such as Weibull
distributed random variables with shape parameter 𝜐 ∈ (0, 1]. Thus, while imposing that the
variables 𝜂𝑖 and 𝜁𝑖 are 𝛼-sub-exponential is notably stronger than the finite sixth moments
required by Theorem 5.1, it may still be plausible in a wide range of empirical settings.

Theorem 5.3 (Uniform Approximation). Suppose that Assumptions 5.1–5.3 hold. In addition
suppose that (i) 𝑐−1 ≤ 𝜆min(E[𝜂𝑖𝜂′𝑖]) ≤ 𝜆max(E[𝜂𝑖𝜂′𝑖]) ≤ 𝑐 and (ii) for some 𝜈 ∈ (0, 1] ∪ {2} both
∥𝜂𝑖∥𝜓𝜈 ≤ 𝑐 and ∥𝜁ℓ 𝑖∥𝜓𝜈 ≤ 𝑐. Then,

sup
𝑎∈R
|Pr(JK(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)| → 0

In particular, under 𝐻0, JK(𝛽0)⇝ 𝜒2
𝑑𝑥

.

While JK𝐺(𝛽0) does not have a fixed distribution, examining its behavior is still tractable and
allows for insight into the power properties of the jackknife K-test. In Section 6, I use this result
to analyze the local power of the proposed test. To improve power against certain alternatives,
I suggest a combination with the sup-score statistic of Belloni et al. (2012).

5.3. Controlling Estimation Error

The final step is to show that estimation error in �̂� can be treated as negligible, that is verify
Assumption 5.2. Establishing that this holds even when identification is weak makes use of
the fact that estimation error in �̂�(·) enters the test statistic only through its interaction with
the implied error 𝜖𝑖(𝛽0). When identification is weak, the implied error is nearly conditional
mean independent of the instruments and thus the product, 𝜖𝑖(𝛽0)�̂�(·), is insensitive to small
pertubations in �̂�(·).4

In principle, this orthogonality could be combined with cross-fitting to allow for the use of
other machine learning methods to estimate �̂�(·), as in Chernozhukov et al. (2018). This
possibility is explored briefly in Appendix H. The use of other machine learning methods
may be useful if sparsity of 𝜌(·) is not a plausible assumption in the researcher’s empirical
setting since estimators such as random forests and neural networks can be consistent in high
dimensional settings under alternate assumptions.5 However, I focus on the ℓ1-penalized
procedure proposed in Section 2 both for expositional simplicity and because the sparsity
assumption required for the consistency of this procedure mirrors that needed for the popular
post-Lasso first-stage estimator.

Assumption 5.4 (Estimation Error). For each ℓ ∈ [𝑑𝑥] (i) there is a fixed constant 𝜐 ∈ (0, 1] ∪ {2}
such that ∥𝜂𝑖∥𝜓𝜐 ≤ 𝑐; (ii) the basis terms 𝑏(𝑧𝑖) are bounded, ∥𝑏(𝑧𝑖)∥∞ ≤ 𝑐; (iii) the approximation

4In the langauge of Chernozhukov et al. (2018), this is termed “Neyman Orthogonality.” Under strong identifi-
cation, Neyman orthogonality allows a large range of machine learning techniques to be used in estimating the first
stage. This (approximate) orthogonality also holds under structural parameter sequences that are local to the null.

5Chi et al. (2022) provide results for random forests under a “sufficient impurity decrease” assumption while
Farrell et al. (2021) and Schmidt-Hieber (2020) provide results for neural networks under a generalized heirarchical
model assumption.
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error satisfies (E𝑛[𝜉2
ℓ 𝑖
])1/2 = 𝑜(𝑛−1/2); (iv) the researcher has access to an estimator 𝜙 of 𝜙 satisfying

log(𝑑𝑏𝑛)2/(𝜐∧1)∥𝜙ℓ − 𝜙ℓ∥1 →𝑝 0; (v) the following moment bounds hold

(va) max1≤𝑙≤𝑑𝑏
��E[

𝑠𝑛√
𝑛

∑𝑛
𝑖=1

∑
𝑗≠𝑖 ℎ𝑖 𝑗𝜖𝑖(𝛽0)𝑏𝑙(𝑧 𝑗)𝜖 𝑗(𝛽0)

] �� ≤ 𝑐
(vb) max 1≤𝑖≤𝑛

1≤𝑙≤𝑑𝑏
|E[𝑠𝑛

∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑏𝑙(𝑧 𝑗)𝜖 𝑗(𝛽0)]| ≤ 𝑐.

Assumption 5.2(i) ensures that 𝜂𝑖 has finite exponential moments (i.e has a well defined moment
generating function), which is required to allow the number of basis terms used to approximate
𝜌(·) to grow at a near exponential rate compared to the sample size (𝑑𝑏 ≫ 𝑛). When using
fewer basis terms this assumption may be relaxed. Assumption 5.2(ii) is a standard condition
in ℓ1-penalized estimation. At the cost of extra notation, it can be relaxed and the sup-norm of
the basis terms can be allowed to grow slowly with the sample size to accommodate bases such
as normalized b-splines or wavelets. Assumption 5.2(iii) is a bound on the rate of decay of the
approximation error, similar to the approximate sparsity condition of Belloni et al. (2012).

Assumption 5.2(iv) is a high-level condition on the rate of consistency of the parameter estimate
�̂� in the ℓ1 norm. This can be verified under approximate sparsity for both the LASSO estimator
in (2.2) or post-LASSO procedures based on refitting an unpenalized version of (2.2) only using
the basis terms selected in a LASSO first stage. See Belloni et al. (2012), van der Greer (2016), Tan
(2017), and Chetverikov and Sørensen (2021) for references under various choices of penalty
parameter. This condition allows for the dimensionality of the basis terms, 𝑑𝑏 , to grow near
exponentially as a function of the sample size. Following the analysis of Tan (2017) this may be
satisfied as long as 𝑠2 log2(𝜐+1)/𝜐(𝑑𝑏𝑛)/𝑛 → 0, where the sparsity index 𝑠 denotes the number
of nonzero elements of 𝜙.

Assumption 5.2(v) is a strengthening of the definition of local neighborhoods and can be inter-
preted similarly to Assumption 5.3(ii). Since the moment conditions in Assumption 5.2(va,vb)
hold with 𝑏ℓ (𝑧 𝑗)𝜖 𝑗(𝛽0) replaced with 𝑟 𝑗 , Assumption 5.2(v) can be interpreted as requiring
that |E[∑𝑗≠𝑖 ℎ𝑖 𝑗𝑏ℓ (𝑧 𝑗)𝜖 𝑗(𝛽0)]| is on the same order as |E[∑𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗]| for all 𝑖 = 1, . . . , 𝑛 and
ℓ = 1, . . . , 𝑑𝑏 . As with Assumption 5.3(ii), it is trivially satisfied under 𝐻0 or, using the fact that
max𝑖

∑
𝑗≠𝑖 𝑠

2
𝑛ℎ

2
𝑖 𝑗
≤ 𝑐, whenever E[𝜖𝑖(𝛽0)] = Π𝑖(𝛽 − 𝛽0) is in a

√
𝑛-neighborhood of zero.

Theorem 5.4 (Estimation Error). Suppose that Assumptions 5.1 and 5.4 hold. Then (Δ𝑁 ,Δ𝐷) →𝑝 0.

Theorem 5.4 verifies Assumption 5.2 for the ℓ1-penalized estimator proposed in Section 2. Thus,
under Assumptions 5.1 and 5.4(i)-(iv), the limiting null distribution of JK(𝛽0) is 𝜒2

𝑑𝑥
.

Remark 5.1. When 𝑑𝑥 = 1, a sufficient condition for Assumption 5.1(i) is that there is some

fixed quantile 𝑞 ∈ (0, 100) such that (𝑐𝑞)−1 ≤ 𝑞th-quantile of E[(Π̂𝐼
𝑖
)2]

max𝑖 E[(Π̂𝐼
𝑖
)2]

. In practice this can be verified
by checking that there is some quantile 𝑞 such that both

𝑞th-quantile of
∑
𝑗≠𝑖 ℎ

2
𝑖 𝑗

max𝑖
∑
𝑗≠𝑖 ℎ

2
𝑖 𝑗

and
𝑞th-quantile of (∑𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗)2

max𝑖(
∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗)2

(5.3)

are bounded away from zero. Similarly, Assumption 5.1(ii) can be verified by checking that
max𝑖

∑
𝑗≠𝑖 ℎ

2
𝑗𝑖
/max𝑖

∑
𝑗≠𝑖 ℎ

2
𝑖 𝑗

is bounded from above. The scaling factor 𝑠𝑛 captures both the
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“size” of the elements in the hat matrix 𝐻 and the strength of identification. If elements of the
hat matrix are on the same order as a constant, one would expect 𝑠𝑛 = 𝑂(𝑛−1) under strong
identification (Π𝑖 ∝ 1) while 𝑠𝑛 = 𝑂(𝑛−1/2) under weak identification (Π𝑖 ≲ 𝑛−1/2).

Remark 5.2. The balanced-design condition in Assumption 5.1(i) is neither weaker nor stronger
than that in the many instruments literature (Crudu et al., 2021; Mikusheva and Sun, 2021;
Matsushita and Otsu, 2022; Lim et al., 2022). These papers require that the projection matrix
𝑃 = z(z′z)−1z′ satisfies [𝑃]𝑖𝑖 ≤ 𝛿 ≤ 1 for some value 𝛿 and all 𝑖 ∈ [𝑛]. Since 𝑃 is idempotent,
[𝑃]𝑖𝑖 = 1 for some 𝑖 ∈ [𝑛] implies that [𝑃]𝑖 𝑗 = 0 for 𝑗 ≠ 𝑖.6 This would not violate Assumption 5.1
if one were to take 𝐻 such that ℎ𝑖 𝑗 = [𝑃]𝑖 𝑗1{𝑖 ≠ 𝑗}; E[(Π̂𝐼

𝑖
)2] = 0 is allowed for a constant share

of 𝑖 ∈ [𝑛]. Conversely, if the instruments are fixed or grow slowly, it is possible to construct a
projection matrix 𝑃 of rank 𝑑𝑧 where [𝑃]𝑖𝑖 is bounded away from one for all 𝑖 ∈ [𝑛], but “most”
of the rows are zero.

Remark 5.3. The modified Lindeberg interpolation method allows me to give a nearly uniform
explicit bound on the Gaussian approximation error in the case where 𝑑𝑥 = 1. In particular, I
show that for any fixed value Δ > 0;

sup
𝑎≤Δ

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
�� ≤ 𝐶𝑛−2/13

where 𝐶 is a constant that depends only on (𝑐,Δ) and JK𝐼(𝛽0) is the version of the test statistic
that could be constructed if 𝜌(·) was known to the researcher. While it does not account for
estimation error in �̂�(·), obtaining an explicit bound reflects an improvement over the original
analyses of K-statistics in Kleibergen (2002, 2005). These original studies rely on continuous
mapping theorems to obtain the limiting chi-squared distributions, making the rate of decay
of the approximation error difficult to analyze.

Remark 5.4. The interpolation argument relies on the fact that the first and second moments
of (�̃�𝑖(𝛽0), 𝑟𝑖) are the same as the first and second moments of (𝜖𝑖(𝛽0), 𝑟𝑖) to match the first and
moments of one-step deviations with Gaussian analogs. Without the jackknife form of Π̂𝐼

𝑖
,

these one step deviations would additionally contain cross-terms such as ℎ𝑖𝑖𝑟𝑖𝜖𝑖(𝛽0), for 𝑖 ∈ [𝑛].
While the first moment of this cross-term is matched by the first moment of the Gaussian
analog, ℎ𝑖𝑖 �̃�𝑖(𝛽0)𝑟𝑖 , the second moment is not matched. This is manageable, however, so long as
the terms ℎ𝑖𝑖 are “small.” An example of when the ℎ𝑖𝑖 terms are small is when 𝐻 is taken to be
the OLS projection matrix, 𝐻 = z(z′z)−1z, and the number of instruments satisfies 𝑑3

𝑧/𝑛 → 0.
See Appendices A and G for details.

Remark 5.5. Theorem 5.2 does not necessarily rule out that a test based on JK𝐼(𝛽0) is consistent
when 𝑃 →∞ but Assumption 5.3(ii) fails to hold. There is reason to believe that this issue can
be overcome, Andrews et al. (2004) show that the K-statistic of Kleibergen (2002) is consistent
against fixed alternatives under strong identification. However, a full consistency result is not
pursued here and left to future work.

Remark 5.6. Approximate sparsity of 𝜌(𝑧𝑖)may be a particularly palatable assumption in cases
6Since 𝑃 is idempotent, [𝑃]𝑖𝑖 =

∑𝑛
𝑖=1[𝑃]

2
𝑖 𝑗
= [𝑃]2

𝑖𝑖
+∑

𝑗≠𝑖[𝑃]2𝑖 𝑗 .
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where the instrument set is generated by functions of a smaller initial set of instruments,
as in Angrist and Krueger (1991), Paravisini et al. (2014), Gilchrist and Sands (2016), and
Derenoncourt (2022). In these cases, the dimensionality of the basis, 𝑑𝑏 , may not need to be
much larger than the dimensionality of the instruments, 𝑑𝑧 , to provide a good approximation
of 𝜌(𝑧𝑖). Interestingly, if taking 𝑏(𝑧𝑖) = 𝑧𝑖 provides a good approximation of 𝜌(𝑧𝑖), then the OLS
estimate satisfies ∥�̂� − 𝜙∥1 → 0 under 𝑑2

𝑧/𝑛 → 0 even if 𝜙 is fully dense. This requirement is
substantially weaker than the 𝑑3

𝑧/𝑛 → 0 requirement of the standard K-statistic. For example,
𝑑2
𝑧/𝑛 may be plausibly satisfied in the setting of Paravisini et al. (2014), 𝑑2

𝑧 = 100 and 𝑛 = 5,995,
whereas 𝑑3

𝑧/𝑛 → 0 may be questionable.

6. Power Properties and Improvements

Using the characterization of the limiting behavior of the test statistic derived in Section 5, I
analyze the local power properties of the test. Unfortunately, against certain alternatives the test
statistic may have trivial power, a deficiency shared with the K-statistics of Kleibergen (2002,
2005). I describe how the combination with the sup-score statistic, described in Section 2,
attempts to remedy this and formally establish its validity. Finally, I compare the JK(𝛽0)
statistic to statistics used in the many-instrument literature and provide reasoning for the
power improvements seen in Sections 3 and 4.

6.1. Local Power Properties

For exposition, I focus on the case where 𝑑𝑥 = 1. In local neighborhoods of 𝐻0, as defined
in Assumptions 5.2 and 5.3, Theorem 5.1 implies that the limiting behavior of JK(𝛽0) can be
analyzed by examining the behavior of the Gaussian analog statistic, JK𝐺(𝛽0). Conditional on
the vector 𝑟 = (𝑟1 , . . . , 𝑟𝑛), the distribution of JK𝐺(𝛽0) is nearly non-central 𝜒2

1 with noncentrality
parameter 𝜇(𝑟), JK𝐺(𝛽0)|𝑟 ∼ 𝐴2(𝑟) · 𝜒2

1(𝜇(𝑟)):

𝐴(𝑟) =
∑𝑛
𝑖=1 Var(𝜂𝑖)Π̃2

𝑖∑𝑛
𝑖=1{Π2

𝑖
(𝛽 − 𝛽0)2 + Var(𝜂𝑖)}Π̃2

𝑖

𝜇2(𝑟) = (𝛽 − 𝛽0)2
( ∑𝑛

𝑖=1 Π𝑖Π̃𝑖

)2∑𝑛
𝑖=1{Π2

𝑖
(𝛽 − 𝛽0)2 + Var(𝜂𝑖)}Π̃2

𝑖

.

Under local alternatives, the terms Π2
𝑖
(𝛽 − 𝛽0)2 → 0 so that 𝐴(𝑟) → 1 and |𝜇2(𝑟) − 𝜇2

∞(𝑟)| → 0,
where

𝜇2
∞(𝑟) = (𝛽 − 𝛽0)2

( ∑𝑛
𝑖=1 Π𝑖Π̃𝑖)2∑𝑛

𝑖=1 Var(𝜂𝑖)Π̃2
𝑖

. (6.1)

The numerator of 𝜇2
∞(𝑟) suggests that power is maximized when the first-stage estimate Π̃𝑖 is

close to the true first stage valueΠ𝑖 . Indeed, when errors are homoskedastic𝜇2
∞(𝑟) is maximized

by setting Π̃𝑖 = Π𝑖 reflecting the classical result of Chamberlain (1987). The denominator of
𝜇2
∞(𝑟) suggests that having first-stage estimates Π̃𝑖 with low second moments may increase

power. This guides the recommendation for the use of ℓ2-regularization in constructing the hat
matrix, 𝐻.
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Unfortunately, estimators of Π𝑖 based on 𝑟𝑖 = 𝑥𝑖 − 𝜌(𝑧𝑖)𝜖𝑖(𝛽0)may not be close to Π𝑖 under 𝐻1.
This is because the mean of 𝑟𝑖 will in general differ from Π𝑖

E[𝑟𝑖] = Π𝑖 − 𝜌(𝑧𝑖)Π𝑖(𝛽 − 𝛽0)

This deficiency is inherited from the similarity of the JK(𝛽0) statistic to the K-statistic. As pointed
out by Moreira (2001), this need not be an issue as long as there is a fixed constant 𝐶 ≠ 0 such
that E[𝑟𝑖] = 𝐶Π𝑖 for all 𝑖 ∈ [𝑛]. However, in general, this will introduce bias into the first-stage
estimates Π̂𝑖 under 𝐻1. The power implications of this bias are particularly pronounced when
𝜌(𝑧𝑖) is a constant (𝛽 − 𝛽0) = 1/𝜌(𝑧𝑖). In this case, E[𝑟𝑖], and thus E[Π̃𝑖], will equal zero for
each 𝑖 ∈ [𝑛], and the JK(𝛽0) statistic will select a direction completely at random to direct power
into.1

6.2. A Simple Combination Test

To combat this loss of power for tests based on the K-statistic, a common strategy is to combine
the K-statistic with the Anderson-Rubin statistic based on a conditioning statistic. While the
Anderson-Rubin statistic does not have optimal power on its own, it has the benefit of directing
power equally in all directions avoiding the pitfalls of the K-statistic which lacks power in certain
directions. Prominent examples of such tests are the conditional likelihood ratio test of Moreira
(2003), the GMM-M test of Kleibergen (2005), and the minimax regret tests of Andrews (2016).
These combinations make use of the fact that the Anderson-Rubin statistic is asymptotically
independent of both the K-statistic and the conditioning statistic.

Unfortunately, the asymptotic validity of these tests under heteroskedasticity is based on the
assumption that 𝑑3

𝑧/𝑛 → 0, which may not reasonably describe many settings discussed above.
Instead, to improve the power of tests based on the jackknife K-statistic, I consider a simple
combination with the sup-score statistic of Belloni et al. (2012). The test based on the sup-score
statistic (6.2) is similar in spirit to the Anderson-Rubin test but has correct asymptotic size even
when 𝑑𝑧 grows near exponentially as a function of the sample size.

𝑆(𝛽0) B sup
1≤ℓ≤𝑑𝑧

����∑𝑛
𝑖=1 𝜖𝑖(𝛽0)𝑧ℓ 𝑖
(∑𝑛

𝑖=1 𝑧
2
ℓ 𝑖
)1/2

���� (6.2)

A size 𝜃 ∈ (0, 1) test based on the sup-score statistic rejects whenever 𝑆(𝛽0) > 𝑐𝑆1−𝜃 where, for
𝑒1 , . . . , 𝑒𝑛 iid standard normal and generated independently of the data, 𝑐𝑆1−𝜃 is the simulated
multiplier bootstrap critical value:

𝑐𝑆1−𝜃 B (1 − 𝜃) quantile of sup
1≤ℓ≤𝑑𝑧

����∑𝑛
𝑖=1 𝑒𝑖𝜖𝑖(𝛽0)𝑧ℓ 𝑖
(∑𝑛

𝑖=1 𝑧
2
ℓ 𝑖
)1/2

���� conditional on {(𝑦𝑖 , 𝑥𝑖 , 𝑧𝑖)}𝑛𝑖=1.

As with the Anderson-Rubin test, tests based on the sup-score statistic may have suboptimal
power properties in overidentified models as it does not incorporate first-stage information.

1Andrews et al. (2006) and Andrews (2016) point out this deficiency in the context of the K-statistics of Kleibergen
(2002, 2005).
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However, the sup-score statistic does retain the benefit of directing power evenly in all direc-
tions, avoiding pitfalls of tests based on JK(𝛽0) against certain alternatives.

The combination test will be based on an attempt to detect whether the alternative 𝛽 is such
that E[Π̂𝐼

ℓ ,𝑖
] = 0 for all 𝑖 = 1, . . . , 𝑛 and some ℓ ∈ [𝑑𝑥]. When this is the case, the researcher

would prefer to test the null hypothesis using the sup-score statistic. As mentioned in Section 2,
detection of whether E[Π̂𝐼

ℓ ,𝑖
] = 0 for some 𝑖 ∈ [𝑛] is based on the conditioning statistic:

𝐶 = inf
ℓ∈[𝑑𝑥]

sup
𝑖∈[𝑛]

���� ∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗

(∑𝑗≠𝑖 ℎ
2
𝑖 𝑗
)1/2

����. (6.3)

Under the assumption that E[Π̂𝐼
𝑖
] = 0 for all 𝑖 ∈ [𝑛], quantiles of the conditioning statistic can

be simulated analogously to the sup-score critical value. For a new set of 𝑒1 , . . . , 𝑒𝑛 iid standard
normal and generated independently of the data, and for any 𝜃 ∈ (0, 1), define the conditional
quantile

𝑐𝐶1−𝜃 B (1 − 𝜃) quantile of inf
ℓ∈[𝑑𝑥]

sup
𝑖∈[𝑛]

���� ∑𝑗≠𝑖 𝑒𝑖ℎ𝑖 𝑗𝑟 𝑗

(∑𝑗≠𝑖 ℎ
2
𝑖 𝑗
)1/2

���� conditional on {(𝑦𝑖 , 𝑥𝑖 , 𝑧𝑖)}𝑛𝑖=1 (6.4)

Depending on the value of the conditioning statistic, the thresholding test decides whether the
test based on JK(𝛽0) or one based on 𝑆(𝛽0) should be run.

𝑇(𝛽0; 𝜏) =

1{JK(𝛽0) > 𝜒2

1;1−𝛼} if 𝐶 ≥ 𝜏

1{𝑆(𝛽0) > 𝑐𝑆1−𝛼} if 𝐶 < 𝜏
(6.5)

for some cutoff 𝜏, which I take in the simulation study and empirical exercise to be the 75th

quantile of the distribution of 𝐶 under the assumption that E[Π̂𝐼
𝑖
] = 0, ∀𝑖 ∈ [𝑛].

To show that the thresholding test is correctly sized, I compare the rejection probability to that
of a Gaussian analog. In addition to JK𝐺(𝛽0), defined in Section 5, define the Gaussian analogs
of S(𝛽0) and the conditioning statistic 𝐶:

𝑆𝐺(𝛽0) B sup
ℓ∈[𝑑𝑧]

����∑𝑛
𝑖=1 �̃�𝑖(𝛽0)𝑧ℓ 𝑖
(∑𝑛

𝑖=1 𝑧
2
ℓ 𝑖
)1/2

���� 𝐶𝐺 B inf
ℓ∈[𝑑𝑥]

sup
𝑖∈[𝑛]

���� ∑
𝑗≠𝑖 ℎ𝑖 𝑗𝑟 𝑗

(∑𝑗≠𝑖 ℎ
2
𝑖 𝑗
)1/2

����
where, as in Section 5, (�̃�𝑖(𝛽0), 𝑟𝑖)′ are generated independently of each other and the data
following a Gaussian distribution with the same mean and covariance matrix as (𝜖𝑖(𝛽0), 𝑟𝑖).
Since Cov(�̃�𝑖(𝛽0), 𝑟𝑖) = 0 under 𝐻0, the statistics 𝐶𝐺 and 𝑆𝐺(𝛽0) are independent under the
null. Similarly, the null distribution of JK𝐺(𝛽0) is the same conditional on any realization of
(𝑟1 , . . . , 𝑟𝑛); it is also independent of 𝐶𝐺 under the null. The Gaussian analog thresholding test
decides whether the researcher should run a test based on 𝑆𝐺(𝛽0) or JK𝐺(𝛽0) depending on the
value of 𝐶𝐺 as in (6.5).

The test statistics JK𝐺(𝛽0) and 𝑆𝐺(𝛽0) are only marginally independent of the conditioning
statistic 𝐶𝐺 under the null. This limits the ways in which the test statistics can be combined
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using the conditioning statistic while still controlling size. This marginal independence in the
Gaussian limit is enough, however, for the asymptotic validity of the thresholding test, 𝑇(𝛽0; 𝜏).
To establish that the behavior of the pairs (𝐶, JK(𝛽0)) and (𝐶, 𝑆(𝛽0)) can be approximated by the
behavior of (𝐶𝐺 , JK𝐺(𝛽0)) and (𝐶𝐺 , 𝑆𝐺(𝛽0)), respectively, I rely on the following assumption:

Assumption 6.1 (Combination Conditions). Assume that for each ℓ ∈ [𝑑𝑥] (i) there is a 𝜐 ∈ (0, 1] ∪
{2} such that ∥𝜁ℓ 𝑖∥𝜓𝜐 ≤ 𝑐; (ii) max𝑖 , 𝑗 |

ℎ𝑖 𝑗

(E𝑛[ℎ2
𝑖 𝑗
])1/2 |+max𝑙 ,𝑖 | 𝑧𝑙𝑖

(E𝑛[𝑧2
𝑙𝑖
])1/2 | ≤ 𝑐; and (iii) log7+4/𝜐(𝑑𝑧𝑛)/𝑛 →

0.

Assumption 6.1(i) is a strengthening of the moment bound on 𝑟𝑖 similar to that of Assump-
tion 5.2(i). As discussed, while more restrictive than the condition in Theorem 5.1, this still
allows for a wide range of potential distributions for 𝑟𝑖 . Assumption 6.1(ii) requires that the
number of observations used to test E[Π̂𝑖] = 0 via the conditioning statistic and the number
of observations used to test the null hypothesis via the sup-score test are both growing with
the sample size. It can be verified by looking at the hat matrix 𝐻 and the instruments. Finally,
Assumption 6.1(iii) is a light requirement on the number of instruments 𝑑𝑧 needed for the
validity of the sup-score test. It allows the number of instruments to grow near exponentially
as a function of sample size.

Theorem 6.1. Suppose Assumptions 5.1, 5.3, 5.4, and 6.1 hold along with the additional moment
bounds of Theorem 5.3. Then,

1. the test based on 𝑇(𝛽0; 𝜏) has asymptotic size 𝛼 for any choice of cutoff 𝜏, and

2. if E[Π̂𝐼
𝑖
] = 0 for all 𝑖 ∈ [𝑛], there exist sequences 𝛿𝑛 ↘ 0 and 𝛽𝑛 ↘ 0 such that with probability

at least 1 − 𝛿𝑛 ,
sup
𝜃∈(0,1)

��Pr𝑒(𝐶 ≤ 𝑐𝐶1−𝜃) − (1 − 𝜃)
�� ≤ 𝛽𝑛 ,

where Pr𝑒(·) denotes the probability with respect to only the variables 𝑒1 , . . . , 𝑒𝑛 .

The first part of Theorem 6.1 establishes the asymptotic validity of the thresholding test 𝑇(𝛽0; 𝜏)
for any choice of cutoff 𝜏. While not explicitly stated in the statment of the theorem, this result
is uniform in the choice of 𝜏; for any sequence {𝜏𝑛} ⊂ R+ the sequnce of testing procedures
𝑇(𝛽0; 𝜏𝑛)will also have asymptotic size 𝛼. The proof of this statement follows the logic outlined
above. The second part of Theorem 6.1 establishes the validity of the multiplier bootstrap
procedure to approximate quantiles of the conditioning statistic. It follows directly from
results in Belloni et al. (2018) after verifying that the conditions needed for error taken on from
estimation of 𝜌(𝑧𝑖) can treated as negligible under Assumption 5.4.

In the case of a single endogenous variable, 𝑑𝑥 = 1, Theorem 6.1 could be established under the
lighter conditions of Theorem 5.1 along with Assumption 6.1. However, for brevity, I do not
seperate the two cases here.

Remark 6.1. As mentioned by Andrews (2016) in the context of the standard K-statistic, the
attempt to rectify the power deficiency via this particular conditioning statistic is not perfect.
In particular, under heteroskedasticity, the means of the partialed-out endogenous variables,
E[𝑟𝑖], may not be scaled versions of the true first stages. However, as long as E[𝑟𝑖] ≠ 0, one can
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still expect E[Π̂𝐼
𝑖
] = ∑

𝑗≠𝑖 ℎ𝑖 𝑗Π𝑖 +(𝛽−𝛽0)
∑
𝑗≠𝑖 ℎ𝑖 𝑗𝜌(𝑧𝑖)Π𝑖 to be related to the true fist stage Π𝑖 and

for the test to have nontrivial power. Moreover, in light of the dependence of the consistency
result in Theorem 5.2 on Assumption 5.3(ii), in the case where E[Π̂𝑖] = 0 for all 𝑖 ∈ [𝑛] it may
be particularly important to avoid using the jackknife K-statistic to test 𝐻0.

6.3. Comparasion to Many-Instrument Procedures

It is useful to compare the JK(𝛽0) statistic to the JLM statistic of Matsushita and Otsu (2022),
which also converges to a limiting 𝜒2 distribution when 𝑑𝑧 →∞. In the case where 𝑑𝑥 = 1 the
JLM statistic can be expressed

JLM(𝛽0) B
( ∑𝑛

𝑖=1 𝜖𝑖(𝛽0)
∑
𝑗≠𝑖 𝑃𝑖 𝑗𝑥 𝑗

)2∑𝑛
𝑖=1 𝜖

2
𝑖
(𝛽0)

( ∑
𝑗≠𝑖 𝑃𝑖 𝑗𝑥 𝑗

)2 +∑𝑛
𝑖=1

∑
𝑗≠𝑖 𝑃

2
𝑖 𝑗
𝜖𝑖(𝛽0)𝜖 𝑗(𝛽0)𝑥𝑖𝑥 𝑗

(6.6)

where 𝑃 = z(z′z)−1z′ is the standard OLS projection matrix and 𝑃𝑖 𝑗 = [𝑃]𝑖 𝑗 denotes its 𝑖 𝑗th

element. This expression looks similar to that of the JK(𝛽0) statistic with first stage estimates
Π̂𝑖 =

∑
𝑗≠𝑖 𝑃𝑖 𝑗𝑥 𝑗 . From this, one can posit two main reasons for the increased power of tests

based on the JK(𝛽0) statistic seen in the empirical applications in Section 3 and the simulation
study of Section 4.

The first is that, when the bias of 𝑟𝑖 is not too adverse, first stage estimates based on the “true”
jackknife ridge or jackknife OLS described in (2.3) may be closer to the true first stage, Π𝑖 than
those based on the deleted-diagonal projection matrix. As seen in Section 6.1, higher quality
first stage estimates can improve the power of the test by increasing the correlation between
these estimates and 𝜖𝑖(𝛽0) under 𝐻1. This loss in quality of first-stage estimates based on the
deleted-diagonal projection matrix may be negligible when the diagonal elements, 𝑃𝑖𝑖 , are
small in which case the deleted diagonal estimates, Π̂𝑖 =

∑
𝑗≠𝑖 𝑃𝑖 𝑗𝑥 𝑗 , closely resemble standard

OLS estimates. However, when either the number of instruments is large relative to the sample
size or the instruments are highly correlated the diagonal elements 𝑃𝑖𝑖 will be large in which
case estimates of Π𝑖 based on the deleted-diagonal projection matrix may not be accurate. This
pattern can be seen in both empirical applications in Section 3; in both the data of Gilchrist and
Sands (2016) and Angrist and Krueger (1991) the improvements in power from using the JK(𝛽0)
statistic become more pronounced as the number of instruments increases.

A second potential reason for improved power is that the JK(𝛽0) statistic uses individual scores,
𝜖𝑖(𝛽0)Π̂𝑖 , that are uncorrelated with each other under𝐻0. That is, for 𝑗 ≠ 𝑖,E[𝜖𝑖(𝛽0)Π̂𝑖𝜖 𝑗(𝛽0)Π̂𝑗] =
0. Thus, the second term in the denominator of (6.6), which accounts for the covariance between
individual scores in the numerator of the JLM statistic, does not appear in the expression of
JK(𝛽0). Note that this second term has a positive expectation under both positive selection,
E[𝜖𝑖(𝛽0)𝑥𝑖] > 0 for all 𝑖 ∈ [𝑛], and negative selection, E[𝜖𝑖(𝛽0)𝑥𝑖] < 0 for all 𝑖 ∈ [𝑛]. If this
term is large, it can substantially increase the denominator of the JLM statistic relative to that
of the JK(𝛽0) statistic, reducing power of tests based on the JLM statistic. This again may be
likely when the diagonal elements, 𝑃𝑖𝑖 , are large due to idempotency of the projection matrix:
𝑃𝑖𝑖 =

∑𝑛
𝑗=1 𝑃

2
𝑖 𝑗
. Moreover, by construction Var(𝑟𝑖) ≤ Var(𝑥𝑖), so a large second term in the de-
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nominator of the JLM statistic may not be offset by a smaller first term, at least in local regions
of 𝐻0.

In sum, when bias taken on in constructing 𝑟𝑖 is not too adverse, the JK(𝛽0) statistic may have
a larger numerator than the JLM statistic due to the use of higher quality first-stage estimates
and a smaller denominator due to the use of uncorrelated individual scores. Since both the
JK(𝛽0) and JLM statistics are compared to the same 𝜒2 quantile, both of these properties may
lead to more likely rejection of tests based on the JK(𝛽0) statistic under 𝐻1. Matsushita and
Otsu (2022) note that the power properties of the JLM statistic are similar to those of the JAR
statistic of Mikusheva and Sun (2021), suggesting that the improvements in power compared
to the JAR test seen in Section 3 and Section 4 may be explained similarly.

The tests of Doví et al. (2024) and Lim et al. (2024) are very similar to the many instrument tests
but replace estimators based on the deleted diagonal OLS projection matrix with those based
on the deleted diagonal Ridge projection matrix. That is, they use 𝑃𝑖 𝑗 = [z(z′z + 𝜆𝐼𝑝)−1z′]𝑖 𝑗 in
the expression of (6.6). While this nominally allows for their analyses to incorporate a number
of instruments that is larger than the sample size, the power properties of the tests based on
theses statistics run into the same problems as described above.2 Moreover, in these more
recent papers, the penalty parameter 𝜆 must be chosen to satisfy certain technical properties
that allow them to apply the many-instruments central limit theorem of Chao et al. (2012)
used in Mikusheva and Sun (2021) and Matsushita and Otsu (2022). This contrasts to the
construction of the JK(𝛽0) statistic – in my analysis the researcher is afforded the flexibility to
choose a penalty parameter that maximizes the predictive power of the first-stage estimates.

7. Conclusion

I propose a new test for the structural parameter in a linear instrumental variables model.
This test is based on a jackknife version of the K-statistic and the limiting behavior of the test
is analyzed via a novel direct Gaussian approximation argument. I show that, as long as an
auxiliary parameter can be consistently estimated, the test is robust to both the strength of
identification and the number of instruments; the limiting distribution of the test statistic does
not depend on either of these factors. Consistency of the auxiliary parameter can be achieved
under approximate sparsity using simple-to-implement ℓ1-penalized methods.

I characterize the behavior of the jackknife K-statistic in local neighborhoods of the null. To
address a power deficiency that tests based on jackknife K-statistic inherit from their non-
jackknife namesakes, I propose a testing procedure that decides whether the researcher should
run a test via the jackknife K-statistic or one via the sup-score statistic based on the value of a
conditioning statistic. While this combination may not fully address the power decline, I show
that it works well in a simulation study and leave further refinements to future work.

2Indeed, in both Doví et al. (2024) and Lim et al. (2024) the power properties of the ridge-regularized tests appear
to be similar to those of the many instrument tests.
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A. Proof of Theorem 5.1

Theorem 5.1 follows from the following two main technical lemmas, the proofs of which will
comprise the majority of this appendix section. Let JK𝐼(𝛽0) be the version of the test statistic
that could be constructed if 𝜌(·)was known to the researcher, defined in more detail shortly.

Lemma A.1 (Infeasible Uniform Approximation). Suppose that Assumptions 5.1 and 5.3 hold as
well as the moment bounds of Theorem 5.1. Then,

sup
𝑎∈R

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
��→ 0

Lemma A.2 (Negligible Estimation Error). Suppose that Assumption 5.1 and Assumption 5.3 hold
as well as the moment bounds of Theorem 5.1. Then, if (Δ𝑁 ,Δ𝐷) →𝑝 0,

sup
𝑎∈R

��Pr(JK(𝛽0) ≤ 𝑎) − Pr(JK𝐼(𝛽0) ≤ 𝑎)
��→𝑝 0

A.1. Proof of Lemma A.1

Before proceeding, we will introduce some notation. Let �̃� = 𝑠𝑛𝐻 and ℎ̃𝑖 𝑗 = 𝑠𝑛ℎ𝑖 𝑗 , where 𝑠𝑛 is
as in Assumption 5.1. Recall that ℎ̃𝑖𝑖 = 0 and define

𝑁 := 1√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗 �̃� := 1√
𝑛

𝑛∑
𝑖=1

�̃�𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗

𝐷 := 1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)

( 𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗
)2

�̃� := 1
𝑛

𝑛∑
𝑖=1

𝜅2
𝑖 (𝛽0)

( 𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗
)2

where (�̃�𝑖(𝛽0), 𝑟𝑖) are jointly Gaussian with the same mean and covariance matrix as (𝜖𝑖(𝛽0), 𝑟𝑖)
and 𝜅2

𝑖
(𝛽0) = E[𝜖2

𝑖
(𝛽0)]. Under this notation we can write JK𝐼(𝛽0) = 𝑁2

𝐷 1{𝐷>0} and JK𝐺(𝛽0) = �̃�2

�̃�
.

Dealing with these forms of the statistics is difficult for the interpolation argument, since the
denominator is random. Instead, we will notice that since𝐷 = 0 =⇒ 𝑁 = 0 and Pr(�̃� > 0) = 1,
for any 𝑎 ≥ 0 we can rewrite the events

{JK𝐼(𝛽0) ≤ 𝑎} = {𝑁2 − 𝑎𝐷 ≤ 0} and {JK𝐺(𝛽0) ≤ 𝑎}
a.s
= {�̃�2 − 𝑎�̃� ≤ 0} (A.1)

With this in mind define

JK𝑎 := 𝑁2 − 𝑎𝐷 and ˜JK𝑎 := �̃�2 − 𝑎�̃�

Showing Lemma A.1 is then equivalent to showing that sup𝑎 |Pr(JK𝑎 ≤ 0) − Pr( ˜JK𝑎 ≤ 0)| → 0.
The statement sup𝑎<0

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
�� = 0 is immediate since both JK𝐼(𝛽0)

and JK𝐺(𝛽0) are always weakly positive. It thus suffices to show

sup
𝑎≥0

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
��→ 0
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We do so in a few lemmas, the final result being shown in Lemma A.8 at the bottom of this
subsection.

Lemma A.3 (Lindeberg Interpolation). Suppose that Assumptions 5.1 and 5.3 hold along with the
conditions of Theorem 5.1. Let 𝜑(·) : R → R be such that 𝜑(·) ∈ 𝐶3

𝑏
(R) with 𝐿2(𝜑) = sup𝑥 |𝜑′′(𝑥)|

and 𝐿3(𝜑) = sup𝑥 |𝜑′′′(𝑥)|. Then, there is a constant 𝑀 that depends only on the constant 𝑐 such that:

|E[𝜑(JK𝑎) − 𝜑( ˜JK𝑎)]| ≤ 𝑀(𝑎3 ∨ 1)√
𝑛

(𝐿2(𝜑) + 𝐿3(𝜑))

Proof of Lemma A.3. Begin by defining the leave-one-out numerator, denominator, and decom-
posed statistics

𝑁−𝑖 := 1√
𝑛

∑
𝑗≠𝑖

¤𝜖 𝑗(𝛽0)
∑
ℓ≠𝑖

ℎ̃ 𝑗ℓ ¤𝑟ℓ 𝐷−𝑖 := 1
𝑛

∑
𝑗≠𝑖

¥𝜖2
𝑗 (𝛽0)

(∑
ℓ≠𝑖

ℎ̃ 𝑗ℓ ¤𝑟ℓ
)2

JK−𝑖 := 𝑁2
−𝑖 − 𝑎𝐷−𝑖

where for each ℓ ∈ [𝑛], ¤𝜖ℓ (𝛽0) is equal to 𝜖ℓ (𝛽0) if ℓ > 𝑖 and �̃�ℓ (𝛽0) if ℓ < 𝑖, ¤𝑟ℓ is equal to 𝑟ℓ if ℓ > 𝑖

and 𝑟ℓ if ℓ < 𝑖, and ¥𝜖2
ℓ
(𝛽0) is equal to 𝜅2

ℓ
(𝛽0) if ℓ < 𝑖 and 𝜖2

ℓ
(𝛽0) if ℓ > 𝑖. While the definitions of

¤𝜖ℓ , ¤𝑟ℓ , and ¥𝜖ℓ depend on 𝑖 because we will be considering only one deviation at a time, we will
supress the dependence of these variables on 𝑖 to simplify notation.

Next, define the one-step deviations

Δ1𝑖 := 𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗 ¤𝑟 𝑗 + 𝑟𝑖
𝑛∑
𝑗=1

ℎ̃ 𝑗𝑖 ¤𝜖 𝑗(𝛽0)

Δ̃1𝑖 := �̃�𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗 ¤𝑟 𝑗 + 𝑟𝑖
𝑛∑
𝑗=1

ℎ̃ 𝑗𝑖 ¤𝜖 𝑗(𝛽0)

Δ2𝑖 := 𝑎𝜖2
𝑖 (𝛽0)(

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗 ¤𝑟 𝑗)2 + 𝑎𝑟2
𝑖

𝑛∑
𝑗=1

ℎ̃2
𝑗𝑖 ¥𝜖2

𝑗 (𝛽0)︸                                          ︷︷                                          ︸
Δ𝑎2𝑖

+ 2𝑎𝑟𝑖
𝑛∑
𝑗=1
¥𝜖2
𝑗 (𝛽0)

∑
ℓ≠𝑖

ℎ̃ 𝑗ℓ ℎ̃ 𝑗𝑖 ¤𝑟ℓ︸                           ︷︷                           ︸
Δ𝑏2𝑖

Δ̃2𝑖 := 𝑎𝜅2
𝑖 (𝛽0)(

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗 ¤𝑟 𝑗)2 + 𝑎𝑟2
𝑖

𝑛∑
𝑗=1

ℎ̃2
𝑗𝑖 ¥𝜖2

𝑗 (𝛽0)︸                                           ︷︷                                           ︸
Δ𝑎2𝑖

+ 2𝑎𝑟𝑖
𝑛∑
𝑗=1
¥𝜖2
𝑗 (𝛽0)

∑
ℓ≠𝑖

ℎ̃ 𝑗ℓ ℎ̃ 𝑗𝑖 ¤𝑟ℓ︸                           ︷︷                           ︸
Δ̃𝑏2𝑖

(A.2)

These one-step deviations contain all the terms associated with observation 𝑖 in the expression
of the numerator and denominator of the test statistics. To demonstrate, note that these one-step
deviations satisfy 𝑁−1 + 𝑛−1/2Δ11 = 𝑁 and 𝑎𝐷−1 + 𝑛−1Δ21 = 𝑎𝐷 as

𝑁 =
1√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗
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=
1√
𝑛

∑
𝑗>1

𝜖 𝑗(𝛽0)
𝑛∑
ℓ=1

ℎ̃ 𝑗ℓ 𝑟 𝑗 + 𝜖1(𝛽0)
1√
𝑛

∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗

=
1√
𝑛

∑
𝑗>1

𝜖 𝑗(𝛽0)
{
ℎ̃ 𝑗1𝑟1 +

∑
ℓ>1

ℎ 𝑗ℓ 𝑟ℓ

}
+ 𝜖1(𝛽0)

1√
𝑛

∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗

=
1√
𝑛

∑
𝑗>1

𝜖 𝑗(𝛽0)
∑
ℓ>1

ℎ 𝑗ℓ 𝑟ℓ︸                       ︷︷                       ︸
𝑁−1

+ 𝜖1(𝛽0)
1√
𝑛

∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗 + 𝑟1
1√
𝑛

∑
𝑗>1

ℎ̃ 𝑗1𝜖 𝑗(𝛽0)︸                                               ︷︷                                               ︸
𝑛−1/2Δ11

and

𝐷 =
1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)

( 𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗)2

=
1
𝑛

∑
𝑗>1

𝜖2
𝑗 (𝛽0)

( 𝑛∑
ℓ=1

ℎ̃ 𝑗ℓ 𝑟ℓ
)2 + 𝜖2

1(𝛽0)
1
𝑛

(∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗
)2

=
1
𝑛

∑
𝑗>1

𝜖2
𝑗 (𝛽0)

(
ℎ̃ 𝑗1𝑟1 +

∑
ℓ≠1

ℎ̃ℓ 𝑗𝑟ℓ
)2 + 𝜖2

1(𝛽0)
1
𝑛

(∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗
)2

=
1
𝑛

∑
𝑗>1

𝜖2
𝑗 (𝛽0)

(∑
ℓ>1

ℎ̃ℓ , 𝑗𝑟ℓ
)2

︸                         ︷︷                         ︸
𝐷−1

+ 𝜖2
1(𝛽0)

1
𝑛

(∑
𝑗>1

ℎ̃1𝑗𝑟 𝑗
)2 + 𝑟2

1
1
𝑛

∑
𝑗>1

ℎ̃2
𝑗1𝜖

2
𝑗 (𝛽0) + 2𝑟1

1
𝑛

∑
𝑗>1

𝜖2
𝑗 (𝛽0)

∑
ℓ>1

ℎ̃ℓ 𝑗𝑟ℓ︸                                                                                   ︷︷                                                                                   ︸
(𝑎𝑛)−1Δ21

Using the one-step deviations, write the difference E[𝜑(𝐾𝑎) − 𝜑(�̃�𝑎)] as a telescoping sum, one
by one replacing (Δ1𝑖 ,Δ2𝑖)with (Δ̃1𝑖 , Δ̃2𝑖) in the expressions of JK𝑎 = 𝑁2 − 𝑎𝐷 until we arrive at
˜JK𝑎

= �̃�2 − 𝑎�̃�.

E[𝜑(JK𝑎) − 𝜑( ˜JK𝑎)] =
𝑛∑
𝑖=1

E[𝜑(JK−𝑖 + 𝑛−1/2𝑁−𝑖Δ1𝑖 + 𝑛−1Δ2
1𝑖 − 𝑛−1Δ2𝑖)]

− E[𝜑(JK−𝑖 + 𝑛−1/2𝑁−𝑖Δ̃1𝑖 + 𝑛−1Δ̃2
1𝑖 − 𝑛−1Δ̃2𝑖)]

(A.3)

Via a second-order Taylor expansion, we can write each term inside the summand

E[Term𝑖] = E[𝜑′(JK−𝑖){2𝑛−1/2𝑁−𝑖(Δ1𝑖 − Δ̃1𝑖) + 𝑛−1(Δ2
1𝑖 − Δ2

1𝑖) − 𝑛−1(Δ2𝑖 − Δ̃2𝑖)}]
+ E[𝜑′′(JK−𝑖){4𝑛−1𝑁2

−𝑖(Δ2
1𝑖 − Δ̃2

1𝑖) + 𝑛−2(Δ4
1𝑖 − Δ̃4

1𝑖) − 𝑛−2(Δ2
2𝑖 − Δ2

2𝑖)}]
+ E[𝜑′′(JK−𝑖){4𝑛−3/2𝑁−𝑖(Δ3

1𝑖 − Δ̃
3
1𝑖) + 4𝑛−3/2𝑁−𝑖(Δ1𝑖Δ2𝑖 − Δ̃1𝑖Δ̃2𝑖)}]

+ E[𝜑′′(JK−𝑖){2𝑛−2(Δ2
1𝑖Δ2𝑖 − Δ̃2

1𝑖Δ̃2𝑖)}] + 𝑅𝑖 + �̃�𝑖

where 𝑅𝑖 and �̃�𝑖 are remainder terms to be examined later. Let ℱ−𝑖 denote the sigma algebra
generated by all random variables whose index is not equal to 𝑖. Since (a) for each 𝑖 ∈ [𝑛] the
mean and covariance matrix of (𝜖𝑖(𝛽0), 𝑟𝑖) is the same as the mean and covariance matrix of
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(�̃�𝑖(𝛽0), 𝑟𝑖), (b) E[𝜖2
𝑖
(𝛽0)] = 𝜅2

𝑖
(𝛽0), and (c) random variables are independent across indices, we

have that

E[Δ1𝑖 − Δ̃1𝑖|ℱ−𝑖] = E[Δ2
1𝑖 − Δ̃2

1𝑖|ℱ−𝑖] = E[Δ2𝑖 − Δ̃2𝑖|ℱ−𝑖]
= E[Δ𝑏2𝑖 − Δ̃𝑏2𝑖|ℱ−𝑖] = E[Δ1𝑖Δ

𝑏
2𝑖 − Δ̃1𝑖Δ̃

𝑏
2𝑖|ℱ−𝑖] = 0

(A.4)

Using this we can simplify the prior display

E[Term𝑖] = 𝑛−2E[𝜑′′(JK−𝑖)(Δ4
1𝑖 − Δ4

1𝑖)]︸                            ︷︷                            ︸
A𝑖

− 𝑛−2E[𝜑′′(JK−𝑖)((Δ𝑎2𝑖)2 − (Δ̃𝑎2𝑖)2)]︸                                   ︷︷                                   ︸
B𝑖

− 2𝑛−2E[𝜑′′(JK−𝑖)(Δ𝑎2𝑖Δ𝑏2𝑖 − Δ̃𝑎2𝑖Δ̃𝑏2𝑖)]︸                                      ︷︷                                      ︸
C𝑖

+ 4𝑛−3/2E[𝜑′′(JK−𝑖)𝑁−𝑖(Δ3
1𝑖 − Δ̃

3
1𝑖)]︸                                     ︷︷                                     ︸

D𝑖

+ 4𝑛−3/2E[𝜑′′(JK−𝑖)𝑁−𝑖(Δ1𝑖Δ
𝑎
2𝑖 − Δ̃1𝑖Δ̃

𝑎
2𝑖)]︸                                             ︷︷                                             ︸

E𝑖

+ 2𝑛−2E[𝜑′′(JK−𝑖)(Δ2
1𝑖Δ2𝑖 − Δ̃2

1𝑖Δ̃2𝑖)︸                                     ︷︷                                     ︸
F𝑖

+ 𝑅𝑖 + �̃�𝑖

where for some ¯JK1𝑖 and ¯JK2𝑖 we can write

𝑅𝑖 = E[𝜑′′′( ¯JK1𝑖){𝑛−1/2𝑁−𝑖Δ1𝑖 + 𝑛−1Δ2
1𝑖 + 𝑛−1Δ2𝑖}3]

�̃�𝑖 = E[𝜑′′′( ¯JK2𝑖){𝑛−1/2𝑁−𝑖Δ̃1𝑖 + 𝑛−1Δ̃2
1𝑖 + 𝑛−1Δ̃2𝑖}3]

Applications of Lemmas I.1 and I.2, Cauchy-Schwarz, and the generalized Hölder inequality,1

will allow us to bound for a fixed constant 𝑀 that depends only on 𝑐,

|A𝑖| ≤
𝑀

𝑛2 𝐿2(𝜑) |B𝑖| ≤
𝑀𝑎2

𝑛2 𝐿2(𝜑) |C𝑖| ≤
𝑀𝑎2

𝑛3/2 𝐿2(𝜑)

|D𝑖| ≤
𝑀

𝑛3/2 𝐿2(𝜑) |E𝑖| ≤
𝑀(𝑎 ∨ 1)
𝑛3/2 𝐿2(𝜑) |F𝑖| ≤

𝑀𝑎3

𝑛3/2 𝐿2(𝜑)

and

|𝑅𝑖| + |�̃�𝑖| ≤
𝑀

𝑛3/2 𝐿3(𝜑) +
𝑀𝑎3

𝑛3 𝐿3(𝜑)

Combining these bounds and summing over 𝑛 gives the result. □

Lemma A.4 (Gaussian Denominator Anti-Concentration). Suppose that the conditions of Theo-
rem 5.1 and Assumption 5.1 hold. Then, for any sequence 𝛿𝑛 ↘ 0,

Pr(�̃� ≤ 𝛿𝑛) → 0

Proof of Lemma A.4. Since𝜅2
𝑖
(𝛽0) ∈ [𝑐−1 , 𝑐] for all 𝑖 = 1, . . . , 𝑛we have that �̃� ≥ 𝑐−1

𝑛

∑𝑛
𝑖=1(

∑𝑛
𝑗=1 ℎ̃𝑖 𝑗𝑟 𝑗)2.

1E[| 𝑓 𝑔𝑘|]3 ≤ E[| 𝑓 |3]E[|𝑔|3]E[|𝑘|3]
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Then

Pr(�̃� ≤ 𝛿𝑛) ≤ Pr
( 1
𝑐𝑛

𝑛∑
𝑖=1

( 𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗
)2 ≤ �̃�𝑛

)
= Pr

(
∥𝑟′�̄�1/2∥2 ≤ 𝛿𝑛

)
(A.5)

where 𝑟 := (𝑟1 , . . . , 𝑟𝑛)′ ∈ R𝑛 and �̄� := 1
𝑐𝑛 �̃��̃�

′ ∈ R𝑛×𝑛 . �̄� is symmetric and positive semidefinite
so we can take �̄�1/2 to be its symmetric square root, which will also be symmetric and positive
semidefinite (and thus not necessarily equal to

√
𝑐
𝑛 �̃�). I provide two bounds on (A.5), the first

of which corresponds to the strong identification setting while the second corresponds to weak
identification.

First Bound. Since 𝛿𝑛 ↘ 0 we will eventually have that 𝛿𝑛 < 𝑐−1/2. When this happens we can
bound using Chebyshev’s inequality and 𝑐−1 < E[𝑟′�̄�𝑟] < 𝑐:

Pr(𝑟′�̄�𝑟 ≤ 𝛿𝑛) = Pr(𝑟′�̄�𝑟 − E[𝑟′�̄�𝑟] ≤ 𝛿𝑛 − E[𝑟′�̄�𝑟])
≤ Pr(𝑟′�̄�𝑟 − E[𝑟′�̄�𝑟] ≥ E[𝑟′�̄�𝑟] − 𝛿𝑛)

≤ Pr(|𝑟′�̄�𝑟 − E[𝑟′�̄�𝑟]| ≥ 1
2𝑐 )

≤ 2𝑐 Var(𝑟′�̄�𝑟) (A.6)

Under strong identification we will expect Var(𝑟′�̄�𝑟) → 0.

Second Bound. For the second bound, we will directly use bounds on the density of Gaus-
sian quadratic forms from Götze et al. (2019). The vector 𝑟′�̄�1/2 is Gaussian with covariance
matrix Σ𝑟 = �̄�1/2R�̄�1/2 where R = diag(Var(𝑟1), . . . ,Var(𝑟𝑛)). Let Λ1 =

∑𝑛
𝑘=1 𝜆

2
𝑘
(Σ𝑟) and

Λ2 =
∑𝑛
𝑘=2 𝜆

2
𝑘
(Σ𝑟). By Assumption 5.1 and Lemma J.5, Λ2/Λ1 is bounded away from zero.

Using Theorem K.4 we can then bound for some constant 𝐶 > 0

Pr(∥𝑟′𝐻∥1/2 ≤ 𝛿𝑛) ≤ 𝐶𝛿𝑛Λ−1
1 (A.7)

Combining Bounds. To combine the bounds in (A.6) and (A.7), first write

Var(𝑟′�̄�𝑟) = 2trace(R�̄�R�̄�) + 4𝜇𝑟�̄�R�̄�𝜇𝑟

for 𝜇𝑟 = E[𝑟]. Using the fact that �̄�1/2R�̄�1/2 is symmetric positive definite we can bound:

𝜇′𝑟�̄�R�̄�𝜇𝑟 = (𝜇′𝑟�̄�1/2)′(�̄�1/2R�̄�1/2)(�̄�1/2𝜇𝑟)
≤ 𝜆1(�̄�1/2R�̄�1/2)∥𝜇′𝑟�̄�1/2∥2

=

√
𝜆2

1(�̄�1/2R�̄�1/2)∥𝜇′𝑟�̄�1/2∥2

=

√
𝜆1(�̄�1/2R�̄�R�̄�1/2)∥𝜇′𝑟�̄�1/2∥2

≤
√

trace(�̄�1/2R�̄�R�̄�1/2)∥𝜇′𝑟�̄�1/2∥2
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=

√
trace(R�̄�R�̄�)∥𝜇′𝑟�̄�∥2 ≤ 𝑐2Λ

1/2
1 (A.8)

where the first equality uses the symmetric square root of �̄�, the first inequality comes from
Courant-Fischer minmax principle and the third equality uses the fact that the eigenvalues of
𝐴2 are the squares of the eigenvalues of 𝐴, for any generic symmetric matrix 𝐴. The second
inequality comes from the fact that a matrix times its transpose is always positive semidefinite
and that for 𝑀 psd, 𝜆1(𝑀) ≤

√
trace(𝑀2) since the trace is the sum of the (weakly positive)

eigenvalues. The final inequality uses 𝜇′𝑟�̄�𝜇𝑟 = 𝑐
𝑛

∑𝑛
𝑖=1(E[Π̃𝑖])2 ≤ 𝑐

𝑛

∑𝑛
𝑖=1 E[(Π̃𝑖)2] ≤ 𝑐2.

Combining (A.6), (A.7), and (A.8) gives us

Pr(�̃� ≤ 𝛿𝑛) ≤ 𝐶min
{
Λ1 +Λ1/2

1 , 𝛿𝑛Λ
−1
1

}
(A.9)

Regardless of the behavior of Λ1, this tends to zero as 𝛿𝑛 → 0. □

Remark A.1 (Final Anticoncentration Bound). To give an explicit bound on (A.9) in terms of
𝛿𝑛 we note that, if 𝑥★ solves

𝑥★ +
√
𝑥★ =

𝑐

𝑥★

then for any 𝑥 ≥ 0, min{𝑥 +
√
𝑥, 𝑐/𝑥} ≤ 𝑥★ +

√
𝑥★. Using this, notice that (𝑥★)2 + (𝑥★)3/2 = 𝑐 so

that 𝑥★ ≤
√
𝑐. This allows us to bound (A.9)

Pr(�̃� ≤ 𝛿𝑛) ≤ 𝐶min{Λ1 +Λ1/2
1 , 𝛿𝑛Λ

−1
1 } ≤ 𝐶(𝛿

1/2
𝑛 + 𝛿1/4

𝑛 )

Lemma A.5. Let 𝑋𝑛 and 𝑌𝑛 be two sequences of random variables and let 𝑊𝑛 = 𝑋𝑛/𝑌𝑛 . Then for any
𝑐 ∈ R and any 𝛿 > 0:

Pr(0 ≤ 𝑋𝑛 − 𝑐𝑌𝑛 ≤ 𝛿) ≤ Pr(𝑐 ≤ 𝑊𝑛 ≤ 𝛿1/2 + 𝑐) + Pr(𝑌𝑛 ≤ 𝛿1/2)

and

Pr(−𝛿 ≤ 𝑋𝑛 − 𝑐𝑌𝑛 ≤ 0) ≤ Pr(𝑐 − 𝛿1/2 ≤ 𝑊𝑛 ≤ 𝑐) + Pr(𝑌𝑛 ≤ 𝛿1/2)

Proof. Define the event Ω = {𝑌𝑛 ≥ 𝛿1/2}. We can bound

Pr(0 ≤ 𝑋𝑛 − 𝑐𝑌𝑛 ≤ 𝛿) = Pr(𝑐𝑌𝑛 ≤ 𝑋𝑛 ≤ 𝛿 + 𝑐𝑌𝑛)
≤ Pr({𝑐𝑌𝑛 ≤ 𝑋𝑛 ≤ 𝛿 + 𝑐𝑌𝑛} ∩Ω) + Pr(Ω𝑐)
= Pr({𝑐 ≤ 𝑊𝑛 ≤ 𝛿/𝑌𝑛 + 𝑐} ∩Ω) + Pr(Ω𝑐)
≤ Pr(𝑐 ≤ 𝑊𝑛 ≤ 𝛿1/2 + 𝑐) + Pr(Ω𝑐)

The second statement of the lemma follows symmetrically. □

Lemma A.6. Suppose that 𝑋𝑛 and 𝑌𝑛 are sequences of (real-valued) random variables such that 𝑌𝑛 =

𝑂𝑝(1) and for any 𝑥 ∈ R
|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| → 0
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Then 𝑋𝑛 = 𝑂𝑝(1).

Proof. Pick any 𝜖 > 0, and let 𝑀𝜖/2 be such that Pr(𝑌𝑛 > 𝑀𝜖/2) ≤ 𝜖/2 for all 𝑛 ≥ 𝑁𝜖. In
addition, let �̃�𝜖 be such that |Pr(𝑋𝑛 ≤ 𝑀𝜖/2) − Pr(𝑌𝑛 ≤ 𝑀𝜖/2)| ≤ 𝜖/2 for all 𝑛 ≥ �̃�𝜖. Then for all
𝑛 ≥ 𝑁𝜖 ∨ �̃�𝜖/2,

Pr(𝑋𝑛 > 𝑀𝜖/2) ≤ Pr(𝑌𝑛 > 𝑀𝜖/2) + |Pr(𝑋𝑛 > 𝑀𝜖/2) − Pr(𝑌𝑛 > 𝑀𝜖/2)|
≤ 𝜖/2 + |Pr(𝑌𝑛 ≤ 𝑀𝜖/2) − Pr(𝑋𝑛 ≤ 𝑀𝜖/2)|
≤ 𝜖/2 + 𝜖/2 = 𝜖

□

Lemma A.7. Suppose that 𝑋𝑛 and 𝑌𝑛 are sequences of (real-valued) random variables such that 𝑌𝑛 =

𝑂𝑝(1) and for any Δ ∈ R
sup
𝑥≤Δ
|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| → 0

Then sup𝑥∈R |Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| → 0.

Proof. Pick an 𝜖 > 0. By Lemma A.6, 𝑋𝑛 = 𝑂𝑝(1). Pick a constant 𝑀𝜖/3 such that Pr(𝑋𝑛 >

𝑀𝜖/3) ≤ 𝜖/3 and Pr(𝑌𝑛 > 𝑀𝜖/3) ≤ 𝜖/3. Then for any 𝑥 ∈ R we can bound |Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤
𝑥)| by considering two cases:

Case 1. If 𝑥 ≤ 𝑀𝜖/3, then,

|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| ≤ sup
𝑥≤𝑀𝜖/3

|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| (A.10)

by hypothesis, there is an 𝑁𝜖 such that for 𝑛 ≥ 𝑁𝜖 the RHS of (A.10) is less than 𝜖.

Case 2. If 𝑥 > 𝑀𝜖/3 we can bound

|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| ≤ |Pr(𝑋𝑛 ≤ 𝑀𝜖/3) − Pr(𝑌𝑛 ≤ 𝑀𝜖/3)|
+ |Pr(𝑀𝜖/3 < 𝑋𝑛 ≤ 𝑥) − Pr(𝑀𝜖/3 < 𝑌𝑛 ≤ 𝑥)|
≤ |Pr(𝑋𝑛 ≤ 𝑀𝜖/3) − Pr(𝑌𝑛 ≤ 𝑀𝜖/3)| + 𝜖/3 + 𝜖/3 (A.11)

By hypothesis, there is an 𝑁𝜖/3 such that |Pr(𝑋𝑛 ≤ 𝑀𝜖/3) − Pr(𝑌𝑛 ≤ 𝑁𝜖/3)| ≤ 𝜖/3.

WLOG𝑁𝜖/3 ≥ 𝑁𝜖. Combining the bounds in (A.10) and (A.11), for any 𝑛 ≥ 𝑁𝜖/3 and any 𝑥 ∈ R,

|Pr(𝑋𝑛 ≤ 𝑥) − Pr(𝑌𝑛 ≤ 𝑥)| ≤ 𝜖

Since this holds for all 𝑥, this gives the result. □

Lemma A.8 (Approximate Distribution). Under Assumptions 5.1 and 5.3 and the conditions of
Theorem 5.1

sup
𝑎∈R
|Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)| → 0
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Proof of Lemma A.8. First, fix aΔ ≥ 0 and consider any 𝑎 ≤ Δ. As in Lemma A.4, let �̃�(·) : R→ R

be three times continuously differentiable with bounded derivatives up to the third order such
that �̃�(𝑥) is 1 if 𝑥 ≤ 0, �̃�(𝑥) is decreasing if 𝑥 ∈ (0, 1), and �̃�(𝑥) is zero if 𝑥 ≥ 1. Consider a
sequence 𝛾𝑛 ↘ 0 slowly enough such that (𝛾−2

𝑛 + 𝛾−3
𝑛 )/
√
𝑛 → 0 and define 𝜑𝑛(𝑥) = �̃�( 𝑥𝛾𝑛 ).

By Lemma A.3 we can write for some constant 𝑀 that depends only on Δ:

Pr(JK𝐼(𝛽0) ≤ 𝑎) = Pr(JK𝑎 ≤ 0) ≤ E[𝜑𝑛(JK𝑎)]

≤ E[𝜑𝑛( ˜JK
𝑎)] + 𝑀√

𝑛
(𝛾2
𝑛 + 𝛾−3

𝑛 )

≤ Pr( ˜JK𝑎 ≤ 0) + Pr(0 ≤ �̃�2 − 𝑎�̃� ≤ 𝛾𝑛) +
𝑀√
𝑛
(𝛾2
𝑛 + 𝛾−3

𝑛 )

Applying Lemma A.5 and { ˜JK𝑎 ≤ 0} = {JK𝐺(𝛽0) ≤ 𝑎} gives:

≤ Pr(JK𝐺(𝛽0) ≤ 𝑎) + Pr(𝑎 ≤ �̃�2/�̃� ≤ 𝑎 + 𝛾1/2
𝑛 )︸                           ︷︷                           ︸

A

+ Pr(�̃� ≤ 𝛾1/2
𝑛 )︸          ︷︷          ︸

B

+ 𝑀√
𝑛
(𝛾−2
𝑛 + 𝛾−3

𝑛 )

By Lemma I.3, we can bound A ≤ 𝑀𝛾1/2
𝑛 while by Lemma A.4 and Remark A.1, B ≤ 𝑀𝛾1/4

𝑛 .
Since 𝛾𝑛 is chosen such that 𝑀√

𝑛
(𝛾−2
𝑛 + 𝛾−3

𝑛 ) → 0 we can conclude that Pr(JK𝐼(𝛽0) ≤ 𝑎) ≤
Pr(JK𝐺(𝛽0) ≤ 𝑎) + 𝑜(1). A symmetric argument with 𝜑𝑛(𝑥) = �̃�(1 − 𝑥

𝛾𝑛
) gives a lower bound so

that, in total
Pr(JK𝐺(𝛽0) ≤ 𝑎) − e ≤ Pr(JK𝐼(𝛽0) ≤ 𝑎) ≤ Pr(JK𝐺(𝛽0) ≤ 𝑎) + e

where

e = 𝑀
(𝛾−2

𝑛 + 𝛾−3
𝑛√

𝑛
+ 𝛾1/2

𝑛 + 𝛾1/4
𝑛

)
= 𝑜(1)

Since the constant M depends only on Δ, this gives us that for any fixed Δ > 0

sup
𝑎≤Δ

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
�� ≤ 𝐶 (𝛾−2

𝑛 + 𝛾−3
𝑛√

𝑛
+ 𝛾1/2

𝑛 + 𝛾1/4
𝑛

)
= 𝑜(1) (A.12)

where 𝐶 is a constant that depends only onΔ. Noting that the numerator JK𝐺(𝛽0) is𝑂𝑝(1) under
Assumption 5.3 while the inverse of the denominator of JK𝐺(𝛽0) is 𝑂𝑝(1) by Lemma A.4, we
can apply Lemma A.7. This step shows that the result in (A.12) implies that the approximation
error tends to zero uniformly over the real line, which is the desired result. Optimizing over
𝛾𝑛 in the expression of (A.12) yields the rate of decay in Remark 5.3. □



Proof of Theorem 5.1 Page 44

A.2. Proof of Lemma A.2

Proof of Lemma A.2. For 𝑁 and 𝐷 defined at the top of Appendix A.1 define 𝑁 = 𝑁 + Δ𝑁 and
𝐷 = 𝐷 + Δ𝐷 . We can then write JK(𝛽0) = 𝑁2/𝐷 and rewrite

JK(𝛽0) − JK𝐼(𝛽0) =
2𝑁𝐷Δ𝑁 + 𝐷Δ𝑁 − 𝑁2Δ𝐷

𝐷2 + 𝐷Δ𝐷

Apply Lemma I.2 to see that 𝑁2 = 𝑂𝑝(1) while under Assumption 5.1, 𝐷 = 𝑂𝑝(1). Thus,
2𝑁𝐷Δ𝑛 + 𝐷Δ𝑛 − 𝑁2Δ𝐷 = 𝑜𝑝(1). Meanwhile, by Lemma A.11, Pr(𝐷2 ≤ 𝛿𝑛) → 0 for any
sequence 𝛿𝑛 → 0. Apply Lemma A.9 to obtain that |JK(𝛽0) − JK𝐼(𝛽0)| →𝑝 0.

Finally, apply Lemma A.12 with 𝑋𝑛 = JK(𝛽0), 𝑌𝑛 = JK𝐼(𝛽0) and 𝑍𝑛 = JK𝐺(𝛽0) to show that
the distribution of JK(𝛽0) may be uniformly approximated by the distribution of JK𝐺(𝛽0). The
density of 𝑍𝑛 is uniformly bounded by Lemma I.3. □

Lemma A.9. Let𝐴𝑛 , 𝐵𝑛 and𝑌𝑛 be sequences of random variables such that𝐴𝑛 = 𝑜𝑝(1) and 𝐵𝑛 = 𝑜𝑝(1).
If 𝑌𝑛 is such that for any sequence 𝛿𝑛 → 0, Pr(|𝑌𝑛| ≤ 𝛿𝑛) → 0, then,���� 𝐴𝑛

𝑌𝑛 + 𝐵𝑛

���� = 𝑜𝑝(1)

Proof. Fix any 𝜖 > 0. We show that ���� 𝐴𝑛

𝑌𝑛 + 𝐵𝑛

���� ≤ 𝜖

on an intersection of events whose probability tends to one. By Lemma J.1 there is a sequence
𝜖𝑛 ↘ 0 such that

Pr(|𝐴𝑛| ≤ 𝜖𝑛) → 1 and Pr(𝜖|𝐵𝑛| ≤ 𝜖𝑛) → 1

Consider the intersection of events Ω1 ∩Ω2 ∩Ω3 where

Ω1 := {𝜖|𝑌𝑛| ≥ 2𝜖𝑛}, Ω2 := {𝜖|𝐵𝑛| ≤ 𝜖𝑛}, Ω3 := {|𝐴𝑛| ≤ 𝜖𝑛}

By assumption, Pr(Ω1 ∩ Ω2 ∩ Ω3) → 1. On this event |𝑌𝑛 + 𝐵𝑛| ≥ 𝜖𝑛/𝜖 > 0 and |𝐴𝑛| ≤ 𝜖𝑛 so
that |𝐴𝑛/(𝑌𝑛 + 𝐵𝑛)| ≤ |𝜖𝑛/(𝜖𝑛/𝜖)| ≤ 𝜖. □

Lemma A.10 (Denominator Interpolation). Suppose that the moment bounds of Theorem 5.1 and
Assumption 5.1 hold. Let 𝜑(·) : R → R be such that 𝜑(·) ∈ 𝐶3

𝑏
(R) with 𝐿2(𝜑) = sup𝑥 |𝜑′′(𝑥)| and

𝐿3(𝜑) = sup𝑥 |𝜑′′′(𝑥)|. Then there is a constant 𝑀 that depends only on the constant 𝑐 such that:

|E[𝜑(𝐷) − 𝜑(�̃�)]| ≤ 𝑀√
𝑛
(𝐿2(𝜑) + 𝐿3(𝜑))

Proof of Lemma A.10. We inherit the definitions of 𝐷−𝑖 , Δ𝑎2𝑖 , Δ
𝑏
2𝑖 , Δ̃

𝑎
2𝑖 , and Δ̃𝑏2𝑖 from the proof of

Lemma A.3 with 𝑎 = 1. Then, as before we can write

E[𝜑(𝐷) − 𝜑(�̃�)] =
𝑛∑
𝑖=1

E[𝜑(𝐷−𝑖 + 𝑛−1Δ𝑎2𝑖 + 𝑛−1Δ𝑏2𝑖)]
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− E[𝜑(𝐷−𝑖 + 𝑛−1Δ̃𝑎2𝑖 + 𝑛−1Δ̃𝑏2𝑖)]

We examine each term via a second-order Taylor expansion around 𝐷−𝑖

E[Term𝑖] =
1
𝑛
E[𝜑′(𝐷−𝑖){(Δ𝑎2𝑖 − Δ̃𝑎2𝑖) + (Δ𝑏2𝑖 − Δ̃𝑏2𝑖)}]

+ 1
2𝑛2E[𝜑

′′(𝐷−𝑖){((Δ𝑎2𝑖)2 − (Δ̃𝑎2𝑖)2) + 2(Δ𝑎2𝑖Δ𝑏2𝑖 − Δ̃𝑎2𝑖Δ̃𝑏2𝑖) + ((Δ𝑏2𝑖)2 − (Δ𝑏2𝑖)2)}]

+ 𝑅𝑖 + �̃�𝑖

where 𝑅𝑖 and �̃�𝑖 are remainder terms to be analyzed later. Using the restrictions in (A.4) we
can simplify the above display:

E[Term𝑖] = 0.5𝑛−2E[𝜑′′(𝐷−𝑖)((Δ𝑎2𝑖)2 − (Δ̃𝑎2𝑖)2)]︸                                      ︷︷                                      ︸
¤A𝑖

+ 𝑛−2E[𝜑′′(𝐾−𝑖)(Δ𝑎2𝑖Δ𝑏2𝑖 − Δ̃𝑎2𝑖Δ̃𝑏2𝑖)︸                                  ︷︷                                  ︸
¤B𝑖

+ 𝑅𝑖 + �̃�𝑖

Using Lemma I.1 we can bound

|A𝑖| ≤
𝑀

𝑛2 𝐿2(𝜑) |B𝑖| ≤
𝑀

𝑛3/2 𝐿2(𝜑)

For some �̄�1𝑖 and �̄�2𝑖 we can express

𝑅𝑖 = E[𝜑′′′(�̄�1𝑖){𝑛−1Δ𝑎2𝑖 + Δ𝑏2𝑖}3] ≤
𝑀

𝑛3/2 𝐿3(𝜑) +
𝑀

𝑛3 𝐿3(𝜑)

𝑅𝑖 = E[𝜑′′′(�̄�2𝑖){𝑛−1Δ̃𝑎2𝑖 + Δ̃𝑏2𝑖}3] ≤
𝑀

𝑛3/2 𝐿3(𝜑) +
𝑀

𝑛3 𝐿3(𝜑)

where the inequalities again come from applications of Lemma I.1. Combining these bounds
and summing over the 𝑛 terms gives the result. □

Lemma A.11 (Denominator anti-concentration). Suppose that the moment bounds of Theorem 5.1
and Assumption 5.1 hold. Then, for any sequence 𝛿𝑛 ↘ 0,

Pr(𝐷 ≤ 𝛿𝑛) → 0

Proof of Lemma A.11. Let �̃�(·) : R→ R be three times continuously differentiable with bounded
derivatives up to the third order such that �̃�(𝑥) is 1 if 𝑥 ≤ 0, �̃�(𝑥) is decreasing if 𝑥 ∈ (0, 1),
and �̃�(𝑥) is zero if 𝑥 ≥ 1. Consider a second sequence 𝛾𝑛 ↘ 0 slowly enough such that
(𝛾−2
𝑛 + 𝛾−3

𝑛 )/
√
𝑛 → 0. Take 𝜑𝑛(𝑥) = �̃�( 𝑥−𝛿𝑛𝛾𝑛

). By Lemma A.10 and since �̃�(·) has bounded
derivatives up to the third order, there is a fixed constant 𝑀1 > 0 that depends only on 𝑐 such
that

Pr(𝐷 ≤ 𝛿𝑛) ≤ Pr(�̃� ≤ 𝛿𝑛 + 𝛾𝑛) +
𝑀1√
𝑛
(𝛾−2
𝑛 + 𝛾−3

𝑛 )

Let 𝛾𝑛 be a sequence tending to zero such that (𝛾−2
𝑛 + 𝛾−3

𝑛 )/
√
𝑛 → 0 and conclude by applying
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Lemma A.4. □

Lemma A.12. Let 𝑋𝑛 , 𝑌𝑛 , and 𝑍𝑛 be sequences of random variables such that |𝑋𝑛 − 𝑌𝑛| →𝑝 0, the
distribution of 𝑍𝑛 is absolutely continuous with respect to Lebesgue measure and the density functions
of 𝑍𝑛 are uniformly bounded and sup𝑎∈R |Pr(𝑌𝑛 ≤ 𝑎) − Pr(𝑍𝑛 ≤ 𝑎)| → 0. Then sup𝑎∈R |Pr(𝑋𝑛 ≤
𝑎) − Pr(𝑍𝑛 ≤ 𝑎)| → 0.

Proof. For any 𝑎 ∈ R and 𝜖 > 0 we have that {𝑋𝑛 ≤ 𝑎} ⊆ {𝑌𝑛 ≤ 𝑎 + 𝜖} ∪ {|𝑋𝑛 − 𝑌𝑛| > 𝜖}; thus,
by applying union bound and rearranging we obtain:

Pr(𝑋𝑛 ≤ 𝑎) ≤ Pr(𝑌𝑛 ≤ 𝑎 + 𝜖) + Pr(|𝑌𝑛 − 𝑋𝑛| > 𝜖)
≤ Pr(𝑍𝑛 ≤ 𝑎 + 𝜖) + |Pr(𝑌𝑛 ≤ 𝑎 + 𝜖) − Pr(𝑍𝑛 ≤ 𝑎 + 𝜖)|

+ Pr(|𝑌𝑛 − 𝑋𝑛| > 𝜖)

so that

Pr(𝑋𝑛 ≤ 𝑎) − Pr(𝑍𝑛 ≤ 𝑎) ≤ Pr(𝑎 < 𝑍𝑛 ≤ 𝑎 + 𝜖) + |Pr(𝑌𝑛 ≤ 𝑎 + 𝜖) − Pr(𝑍𝑛 ≤ 𝑎 + 𝜖)|
+ Pr(|𝑌𝑛 − 𝑋𝑛| > 𝜖)

Let 𝜖𝑛 → 0 be a sequence tending to zero such that Pr(|𝑋𝑛 − 𝑌𝑛| > 𝜖𝑛) → 0 (Lemma J.1).
Applying a supremum to the above display yields

sup
𝑎∈R

Pr(𝑋𝑛 ≤ 𝑎) − Pr(𝑍𝑛 ≤ 𝑎) ≤ sup
𝑎∈R

Pr(𝑎 < 𝑍𝑛 ≤ 𝑎 + 𝜖𝑛)

+ sup
𝑎∈R
|Pr(𝑌𝑛 ≤ 𝑎 + 𝜖𝑛) − Pr(𝑍𝑛 ≤ 𝑎 + 𝜖𝑛)|

+ Pr(|𝑌𝑛 − 𝑋𝑛| > 𝜖𝑛)

The first term goes to zero as 𝜖𝑛 → 0 since 𝑍𝑛 has a uniformly bounded density; the second
term goes to zero by sup𝑎∈R |Pr(𝑌𝑛 ≤ 𝑎) − Pr(𝑍𝑛 ≤ 𝑎)| → 0 and the third term goes to zero by
definition of 𝜖𝑛 and |𝑌𝑛 − 𝑋𝑛| →𝑝 0.

We can apply a symmetric argument to show that sup𝑎∈R Pr(𝑍𝑛 ≤ 𝑎)−Pr(𝑋𝑛 ≤ 𝑎) ≤ 𝑜(1)which
completes the claim of the lemma. □

B. Proof of Theorem 5.2

Proof of Theorem 5.2. As at the top of Appendix A.1, recall that ℎ̃𝑖𝑖 = 0, and define

𝑁 =
1√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗 𝐷 =
1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)(

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗)2

where ℎ̃𝑖 𝑗 = 𝑠𝑛ℎ𝑖 𝑗 . A primary goal is to show that tests based on the infeasible statistic, JK𝐼(𝛽0),
are consistent. That is, Pr(JK𝐼(𝛽0) ≤ 𝑎) → 0 for any fixed 𝑎 ∈ R+. The event {JK𝐼(𝛽0) ≤ 𝑎} is
equivalently expressed {𝑁2 − 𝑎𝐷 ≤ 0} so that Pr(JK(𝛽0) ≤ 𝑎) = Pr(𝑁2 − 𝑎𝐷 ≤ 0). Under the



Proof of Theorem 5.2 Page 47

moment bounds of Theorem 5.1 and Assumption 5.1, 𝑎𝐷 = 𝑂𝑝(1) so by Lemma B.2 it suffices
to show that Pr(|𝑁| ≤ 𝑀) → 0 for any fixed 𝑀 ≥ 0. By assumption, 𝑃 = E[𝑁2] → ∞ so we
move to show that Var(𝑁) = 𝑂(1) and then apply Lemma B.1 to conclude. To this end, recall
the definition of 𝜂𝑖 = 𝜖𝑖(𝛽0) − E[𝜖𝑖(𝛽0)], define 𝜇𝑖 = E[𝜖𝑖(𝛽0)] = Π𝑖(𝛽 − 𝛽0), and let

𝑁1 B
1√
𝑛

𝑛∑
𝑖=1

𝜂𝑖

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗 𝑁2 B
1√
𝑛

𝑛∑
𝑖=1

𝜇𝑖

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗

Notice that 𝑁 = 𝑁1 + 𝑁2. To show that Var(𝑁1) = 𝑂(1), define a𝑖 = 𝜂𝑖
∑𝑛
𝑗=1 ℎ̃𝑖 𝑗𝑟 𝑗 . Since

E[𝜂𝑖𝑟𝑖] = 0, we have that Cov(a𝑖 ,a𝑗) = 0 for 𝑖 ≠ 𝑗. Thus,

Var(𝑁1) = Var(
𝑛∑
𝑖=1

a𝑖/
√
𝑛) = 𝑛−1

𝑛∑
𝑖=1

Var(a𝑖) = 𝑛−1
𝑛∑
𝑖=1

Var(𝜂𝑖)E[(
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗)2] ≤ 𝑐2

where the final inequality follows from the upper bound on Var(𝜂𝑖) and by definition of
ℎ̃𝑖 𝑗 = 𝑠𝑛ℎ𝑖 𝑗 from Assumption 5.1.

To show that Var(𝑁2) = 𝑂(1) let b𝑖 =
∑𝑛
𝑗=1 ℎ̃ 𝑗𝑖Π̃𝑗(𝛽 − 𝛽0) and rewrite 𝑁2 = 1√

𝑛

∑𝑛
𝑖=1 𝑟𝑖b𝑖 . Under

Assumption 5.3(ii), |b𝑖| = |E[
∑𝑛
𝑗=1 ℎ̃ 𝑗𝑖𝜖 𝑗(𝛽0)]| ≤ 𝑐1/2, so we can bound

Var(𝑁2) = Var(
𝑛∑
𝑖=1

𝑟𝑖b𝑖/
√
𝑛) = 𝑛−1

𝑛∑
𝑖=1

b2
𝑖 Var(𝑟𝑖) ≤ 𝑐2

Since Var(𝑁) ≤ 2 Var(𝑁1)+2 Var(𝑁2), we can conclude that tests based on JK𝐼(𝛽0) are consistent.

Finally, we want to show that this fact, along with (Δ𝑁 ,Δ𝐷) →𝑝 0 implies that tests based on
JK(𝛽0) are consistent. To do this, notice that we can write

JK(𝛽0) =
(𝑁 + Δ𝑁 )2
𝐷 + Δ𝐷

and thus that JK(𝛽0) ≤ 𝑎 if and only if

ĴK𝑎 B (𝑁 + Δ𝑁 )2 − 𝑎(𝐷 + Δ𝐷) = 𝑁2 − 𝑎𝐷 + 2𝑁Δ𝑁 + Δ2
𝑁 − 𝑎Δ𝐷 ≤ 0.

Define JK𝑎 = 𝑁2 − 𝑎𝐷. Using that {ĴK𝑎 ≤ 0} ⊆
{

ĴK𝑎
JK𝑎

JK𝑎 ≤ 0
}
∪

{
JK𝑎 ≤ 0}we can write

Pr(ĴK𝑎 ≤ 0) ≤ Pr
( ĴK𝑎

JK𝑎

JK𝑎 ≤ 0

)
+ Pr(JK𝑎 ≤ 0)

≤ 2Pr(JK𝑎 ≤ 0) + Pr
( ĴK𝑎

𝐽𝐾𝑎
≤ 1

2

)
By consistency of the test based on the infeasible JK𝐼(𝛽0) statistic, we have that Pr(JK𝑎 ≤ 0) → 0.
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Thus, it only remains to show that Pr(ĴK𝑎/JK𝑎 ≤ 1/2) → 0. This, in turn, follows if

ĴK𝑎 − JK𝑎

JK𝑎

=
2𝑁Δ𝑁 + Δ2

𝑁
− 𝑎Δ𝐷

𝑁2 − 𝑎𝐷 →𝑝 0.

The above results can be used to show that Pr(|𝑁2 − 𝑎𝐷| ≤ 𝛿𝑛) → 0 for any sequence 𝛿𝑛 ↘ 0
so that 1

JK𝑎
= 𝑂𝑝(1). Combined with (Δ𝑁 ,Δ𝐷) →𝑝 0 this implies that {Δ2

𝑁
− 𝑎Δ𝐷}/JK𝑎 →𝑝 0.

What remains is to show that 2𝑁Δ𝑁/(𝑁2 − 𝑎𝐷) →𝑝 0. Write

2𝑁Δ𝑁

𝑁2 − 𝑎𝐷 =

2𝑁Δ𝑁
𝑁2

1 − 𝑎 𝐷
𝑁2

.

Since 𝐷 = 𝑂𝑝(1) while Pr(𝑁2 ≤ 𝑀) → 0 for any 𝑀 we have that 𝐷/𝑁2 →𝑝 0. Moreover,
Pr(|𝑁| ≤ 𝑀) → 0 for any fixed M implies 𝑁/𝑁2 = 𝑂𝑝(1) so that 2𝑁Δ𝑁/𝑁2 →𝑝 0. We can
apply continuous mapping theorem to conclude. □

Lemma B.1. Suppose that𝑋𝑛 is a sequence of random variables such thatE[𝑋2
𝑛] → ∞while Var(𝑋𝑛) =

𝑂(1). Then, for any 𝑀 ≥ 0, Pr(|𝑋𝑛| ≤ 𝑀) → 0.

Proof. First, note that Var(|𝑋𝑛|) ≤ Var(𝑋𝑛) so Var(|𝑋𝑛|) = 𝑂(1). Moreover Var(|𝑋𝑛|) = E[𝑋2
𝑛] −

(E[|𝑋𝑛|])2, so E[𝑋2
𝑛] → ∞ and Var(|𝑋𝑛|) = 𝑂(1) implies that E[|𝑋𝑛|] → ∞. Then,

Pr(|𝑋𝑛| ≤ 𝑀) = Pr(|𝑋𝑛| − E[|𝑋𝑛|] ≤ 𝑀 − E[|𝑋𝑛|])
= Pr(E[|𝑋𝑛|] − |𝑋𝑛| ≥ E[|𝑋𝑛| −𝑀)
≤ Pr(|E[|𝑋𝑛|] − |𝑋𝑛|| ≥ E[|𝑋𝑛|] −𝑀)

≤ Var(|𝑋𝑛|)
E[|𝑋𝑛|] −𝑀

Since Var(|𝑋𝑛|) = 𝑂(1) but E[|𝑋𝑛|] → ∞, this tends to zero. □

Lemma B.2. Suppose that 𝑋𝑛 and 𝑌𝑛 are random variables such that 𝑌𝑛 = 𝑂𝑝(1) and, for any 𝑀 ≥ 0,
Pr(|𝑋𝑛| ≤ 𝑀) → 0. Then, for any 𝑀1 ≥ 0, Pr(𝑋2

𝑛 − 𝑌𝑛 ≤ 𝑀1) → 0.

Proof. Pick any 𝜖 > 0. We want to show that, eventually, Pr(𝑋2
𝑛 − 𝑌𝑛 > 𝑀1) ≥ 1 − 𝜖. Since 𝑌𝑛 =

𝑂𝑝(1), there is a fixed constant 𝑀𝑌 such that Pr(|𝑌𝑛| ≤ 𝑀𝑌) ≥ 1 − 𝜖/2. Since Pr(|𝑋𝑛| ≤ 𝑀) → 0
for any 𝑀 ≥ 0, there exists an 𝑁𝑋 such that, for 𝑛 ≥ 𝑁𝑋 , Pr(𝑋2

𝑛 ≤ 𝑀1 + 𝑀𝑌) ≤ 𝜖/2. A union
bound completes the argument (on the eventuality 𝑛 ≥ 𝑁𝑋):

Pr(𝑋2
𝑛 − 𝑌𝑛 > 𝑀) ≥ Pr(𝑋2

𝑛 > 𝑀1 +𝑀𝑌 , |𝑌𝑛| ≤ 𝑀𝑌)
= 1 − Pr({𝑋2

𝑛 < 𝑀1 +𝑀𝑌} ∪ {|𝑌𝑛| > 𝑀𝑌})
≥ 1 − 𝜖/2 − 𝜖/2 = 1 − 𝜖

□
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C. Proof of Theorem 5.4

I provide the proof for the case where 𝑑𝑥 = 1 with the general case following symmetrically.
For any 𝑗 = 1, . . . , 𝑑𝑏 define the matrix 𝐵 𝑗 = diag(𝑏 𝑗(𝑧1), . . . , 𝑏 𝑗(𝑧𝑛)) and collect observations
𝜖(𝛽0) = (𝜖1(𝛽0), . . . , 𝜖𝑛(𝛽0))′ ∈ R𝑛 , 𝑟 = (𝑟1 , . . . , 𝑟𝑛)′ ∈ R𝑛 , 𝑟 = (𝑟1 , . . . , 𝑟𝑛)′ ∈ R𝑛 , and 𝜉 =

(𝜉1 , . . . , 𝜉𝑛)′ ∈ R𝑛 . In addition, collect 𝑏𝜖 = (𝑏𝜖1 , . . . , 𝑏𝜖𝑛) ∈ R𝑑𝑏×𝑛 where 𝑏𝜖𝑖 = 𝜖𝑖(𝛽0)𝑏(𝑧𝑖) ∈ R𝑑𝑏 .
Finally, let H =

𝑠𝑛√
𝑛
𝐻, �̃� = 𝑠𝑛𝐻 and ℎ̃𝑖 𝑗 = 𝑠𝑛ℎ𝑖 𝑗 .

Step 1: Δ𝑁 →𝑝 0. To show that Δ𝑁 →𝑝 0 write

Δ𝑁 = |𝜖(𝛽0)′H(𝑟 − 𝑟)|
= |𝜖(𝛽0)′H(𝑏′𝜖 �̂� − 𝑏′𝜖𝛾) − 𝜖(𝛽0)′H𝜉|
≤ max

1≤ 𝑗≤𝑑𝑏
|𝜖(𝛽0)′H𝐵 𝑗𝜖(𝛽0)|∥�̂� − 𝛾∥1︸                                    ︷︷                                    ︸

A

+∥𝜖(𝛽0)′H∥2∥𝜉2∥2︸                ︷︷                ︸
B

To bound A we move to apply Theorem K.1 to the quadratic form 𝜖(𝛽0)′(H𝐵 𝑗)𝜖(𝛽0). First notice
that, under Assumption 5.2(v), we have

∥E[H𝑏 𝑗𝜖(𝛽0)]∥2 =
1
𝑛

𝑛∑
𝑖=1
(E[𝑠𝑛

∑
𝑗≠𝑖

ℎ𝑖 𝑗𝑏(𝑧 𝑗)𝜖 𝑗(𝛽0)])2 ≤ 𝑐2

In the notation of Theorem K.1 this give us an upper bound on ∥E 𝑓 (1)(𝑋)∥HS. Next, Assump-
tion 5.1 gives us that the Frobenius norm of H =

𝑠𝑛√
𝑛
H is bounded, since the rows of 𝑠𝑛𝐻 are

square summable,
∑
𝑗≠𝑖(𝑠𝑛ℎ𝑖 𝑗)2 ≤ 𝑐 for all 𝑖 = 1, . . . , 𝑛. In the notation of Theorem K.1 this gives

us an upper bound on ∥E 𝑓 (2)(𝑋)∥HS. Applying Theorem K.1 and a union bound then gives us
that

max
1≤ 𝑗≤𝑑𝑏

|𝜖(𝛽0)′H𝐵 𝑗𝜖(𝛽0) − E[𝜖(𝛽0)′H𝐵 𝑗𝜖(𝛽0)]| = 𝑂𝑝(log2/𝑎(𝑑𝑏)) (C.1)

Since max1≤ 𝑗≤𝑑𝑏 |E[𝜖(𝛽0)′H𝐵 𝑗𝜖(𝛽0)]| ≤ 𝑐 under Assumption 5.2(v), (C.1) gives that

max
1≤ 𝑗≤𝑑𝑏

|𝜖(𝛽0)′H𝐵 𝑗𝜖(𝛽0)| = 𝑂𝑝(log2/𝑎(𝑑𝑏))

Since log2/𝑎(𝑑𝑏)∥�̂� − 𝛾∥1 →𝑝 0 by assumption, this yields that A→𝑝 0.

To bound B see that ∥𝜖(𝛽0)′H∥2 =
𝑠2
𝑛

𝑛

∑𝑛
𝑖=1(

∑
𝑗≠𝑖 ℎ𝑖 𝑗𝜖𝑖(𝛽0))2 = 𝑂𝑝(1) under Assumption 5.3(ii)

while under Assumption 5.2 ∥𝜉∥2 = 𝑜(1).

Step 2: Δ𝐷 →𝑝 0. Notice that 𝑎2 − 𝑏2 = 2𝑏(𝑎 − 𝑏) + (𝑎 − 𝑏)2 and bound:

|Δ𝐷| ≤
1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)

��∑
𝑗≠𝑖

ℎ̃𝑖 𝑗𝑟 𝑗
��

︸                      ︷︷                      ︸
E

×max
𝑖
|
∑
𝑗≠𝑖

ℎ̃𝑖 𝑗(𝑟 𝑗 − 𝑟 𝑗)|



Proof of Theorem 5.3 Page 50

+ 1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)︸        ︷︷        ︸

F

×max
𝑖
|
∑
𝑗≠𝑖

ℎ̃𝑖 𝑗(𝑟 𝑗 − 𝑟 𝑗)|2

Since both E = 𝑂𝑝(1) and F = 𝑂𝑝(1) under the moment bounds of Theorem 5.1 and Assump-
tion 5.1, it suffices to show that

max
𝑖
|
∑
𝑗≠𝑖

ℎ̃𝑖 𝑗 (̂𝑟 𝑗 − 𝑟 𝑗)| →𝑝 0

To do so write

max
𝑖

��∑
𝑗≠𝑖

ℎ̃𝑖 𝑗{𝑟 𝑗 − 𝑟 𝑗}
�� ≤ max

1≤𝑖≤𝑛
1≤ 𝑗≤𝑑𝑏

��∑
𝑗≠𝑖

ℎ̃𝑖 𝑗𝑏(𝑧 𝑗)𝜖 𝑗(𝛽0)
��∥�̂� − 𝛾∥1︸                                      ︷︷                                      ︸

A

+ max
1≤𝑖≤𝑛
1≤ 𝑗≤𝑑𝑏

��∑
𝑗≠𝑖

ℎ̃𝑖 𝑗𝑏(𝑧 𝑗)𝜉𝑗
��

︸                     ︷︷                     ︸
B

To bound A, note that by Assumption 5.2(v) max𝑖 , 𝑗 |E[
∑
𝑗≠𝑖 ℎ̃𝑖 𝑗𝑏(𝑧 𝑗)𝜖 𝑗(𝛽0)| ≤ 𝑐. Under Assump-

tions 5.1 and 5.2(ii), max𝑖 , 𝑗
∑
𝑗≠𝑖 ℎ̃

2
𝑖 𝑗
𝑏2(𝑧 𝑗) ≤ 𝑐2 so we can apply Theorem K.1 and a union bound

to obtain that
max
1≤𝑖≤𝑛
1≤ 𝑗≤𝑑𝑏

��∑
𝑗≠𝑖

ℎ̃𝑖 𝑗𝑏(𝑧 𝑗)𝜖 𝑗(𝛽0)
�� = 𝑂𝑝(log1/𝑎(𝑑𝑏𝑛))

Along with the implied rate on ∥�̂� − 𝛾∥1 from Assumption 5.2(iv) this shows that A→𝑝 0.

To show that B → 0, use Cauchy-Schwarz,
∑
𝑗≠𝑖 ℎ̃

2
𝑖 𝑗
𝑏2(𝑧 𝑗) ≤ 𝑐 for any 𝑖 , 𝑗 by Assumptions 5.1

and 5.2(ii), and
∑𝑛
𝑖=1 𝜉

2
𝑖
= 𝑜(1) by Assumption 5.2(iii).

D. Proof of Theorem 5.3

Throughout this section, define the scaled elements of the infeasible and gaussian numerators
and denominators

𝑁ℓ =
𝑠𝑛,ℓ√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟 𝑗 �̃�ℓ =
𝑠𝑛,ℓ√
𝑛

𝑛∑
𝑖=1

�̃�𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟 𝑗

𝐷ℓ 𝑘 =
𝑠ℓ ,𝑛𝑠𝑚,𝑘

𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)(

𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟ℓ 𝑗)(
𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟𝑘 𝑗) �̃�ℓ 𝑘 =
𝑠ℓ ,𝑛𝑠𝑚,𝑘

𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)(

𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟ℓ 𝑗)(
𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟𝑘 𝑗)

Collect these in 𝑁 = (𝑁1 , . . . 𝑁𝑑𝑥 )′ ∈ R𝑑𝑥 , �̃� = (�̃�1 , . . . , �̃�𝑑𝑥 )′ ∈ R𝑑𝑥 , 𝐷 = [𝐷ℓ 𝑘]ℓ ,𝑘∈[𝑑𝑥] ∈ R𝑑𝑥×𝑑𝑥 ,
and �̃� = [�̃�ℓ 𝑘]ℓ ,𝑘∈[𝑑𝑥] ∈ R𝑑𝑥×𝑑𝑥 . After multiplying by scaling matrix diag(𝑠1,𝑛 , . . . , 𝑠𝑑𝑥 ,𝑛) and the
inverse of the scaling matrix we rewrite the infeasible and gaussian test statistics

JK𝐼(𝛽0) = 𝑁 ′𝐷−1𝑁1{𝜆min(𝐷)>0} JK𝐺(𝛽0) = �̃� ′�̃�−1�̃�

As with Theorem 5.1, the result Theorem 5.3 follows directly from combining the following
lemmas. The first is the main technical lemmma, and shows that the distribution of the
infeasible statistic JK𝐼(𝛽0) can be uniformly approximated by that of JK𝐺(𝛽0). The proof of this
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technical lemma is involved and deferred to Appendix F. The second lemma establishes that
estimation error can be treated as negligible. As with Lemma A.2, the main difficulty hear is
in dealing with the fact that neither the numerator vector nor denominator matrix of the JK(𝛽0)
statistic may have stable limiting distributions.

Lemma D.1. Suppose that Assumptions 5.1 and 5.3 hold as well as the moment conditions of Theo-
rem 5.3. Then,

sup
𝑎∈R

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
��→ 0.

Proof of Lemma D.1. Lemma D.1 follows as a consequence of the joint gaussian approximation
with the combination statistic established in Appendix F. □

Lemma D.2. Suppose that Assumptions 5.1 and 5.3 hold along with the moment conditions of Theo-
rem 5.3. Then, if (Δ𝑁 ,Δ𝐷) →𝑝 0,

��JK(𝛽0) − JK𝐼(𝛽0)
��→𝑝 0.

Proof of Lemma D.2. Define the matrix Δ𝐷 = [(Δ𝐷)ℓ 𝑘]ℓ ,𝑘∈[𝑑𝑥] and the vector Δ𝑁 = [(Δ𝑁 )ℓ ]ℓ∈[𝑑𝑥]
where

(Δ𝐷)ℓ 𝑘 B
𝑠ℓ ,𝑛𝑠𝑘,𝑛

𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0)

(
Π̂ℓ ,𝑖Π̂𝑘,𝑖 − Π̂𝐼

ℓ ,𝑖Π̂
𝐼
𝑘,𝑖

)
(Δ𝑁 )ℓ B

𝑠ℓ ,𝑛√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)(Π̂ℓ ,𝑖 − Π̂𝐼
ℓ ,𝑖)

By assumption we have that ∥Δ𝐷∥ →𝑝 0 and ∥Δ𝑁∥ →𝑝 0. Using this notation, we can write the
infeasible version of the test statistic as JK𝐼(𝛽0) = 𝑁 ′𝐷−1𝑁 while the feasible version is written
JK(𝛽0) = (𝑁 + Δ𝑁 )′(𝐷 + Δ𝐷)−1(𝑁 + Δ𝑁 ). Add and subtract 𝐷−1 to get

JK(𝛽0) =
(
𝑁 + Δ𝑁

) ′ ((𝐷 + Δ𝐷)−1 ± 𝐷−1) (𝑁 + Δ𝑁 )
= JK𝐼(𝛽0) + 𝑁 ′

(
(𝐷 + Δ𝐷)−1 − 𝐷−1)𝑁 + Δ𝑁 (

(𝐷 + Δ𝐷)−1 − 𝐷−1)𝑁
+ Δ′𝑁

(
(𝐷 + Δ𝐷)−1 − 𝐷−1)Δ𝑁 + 𝑁 ′𝐷−1Δ𝑁 + Δ𝑁𝐷−1𝑁 + Δ𝑁𝐷−1Δ𝑁

Via Lemma F.2 we have that ∥𝐷−1∥ = (𝜆min(𝐷))−1 = 𝑂𝑝(1) and by assumption we have that
Δ𝑁 →𝑝 0. It therefore suffices to show that

∥(𝐷 + Δ𝐷)−1 − 𝐷−1∥ →𝑝 0 (D.1)

To do so, we can use the following equality from Horn and Johnson (2012), p. 381.

∥(𝐷 + Δ𝐷)−1 − 𝐷−1∥ ≤ ∥𝐷
−1∥2∥Δ𝐷∥

1 − ∥𝐷−1Δ𝐷∥

Since ∥𝐷−1∥ = 𝑂𝑝(1) and Δ𝐷 →𝑝 0, this gives (D.1). □
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E. Proofs of Results in Section 6

The statement of Theorem 6.1 relies on showing

sup
(𝑎1 ,𝑎2)∈R2

��Pr(JK(𝛽0) ≤ 𝑎1 , 𝐶 ≤ 𝑎2) − Pr(JK𝐺(𝛽0) ≤ 𝑎1 , 𝐶𝐺 ≤ 𝑎2)
��→ 0

and sup
(𝑎1 ,𝑎2)∈R2

��Pr(S(𝛽0) ≤ 𝑎1 , 𝐶 ≤ 𝑎2) − Pr(S𝐺(𝛽0) ≤ 𝑎1 , 𝐶𝐺 ≤ 𝑎2)
��→ 0

In particular, since (JK𝐺(𝛽0) ⊥ 𝐶𝐺) and (S𝐺(𝛽0) ⊥ 𝐶𝐺) under 𝐻0, showing the above will imply
the test based on 𝑇(𝛽0; 𝜏) has asymptotic size 𝛼 for any choice of cutoff 𝜏. The second line in the
above display follows imediately from Theorem K.5 after verifying Assumption K.2, below.

The first line in the top display relies on a joint interpolation of the infeasible JK𝐼(𝛽0) test statistic
and the infeasible conditioning statistic 𝐶𝐼 , which could be constructed if 𝜌(𝑧𝑖) was known to
the researcher.

𝐶𝐼 B max
1≤𝑖≤𝑛

�� 1√
𝑛

𝑛∑
𝑖=1

ℎ𝑖 𝑗𝑟 𝑗
/
(𝑛−1

𝑛∑
𝑖=1

ℎ2
𝑖 𝑗)1/2

�� (E.1)

This joint interpolation argument is rather involved however, and deferred to Appendix F.
The interpolation argument for the conditioning statistic very closely follows the results in
Chernozhukov et al. (2013). The results of Section 6 rely on showing that the difference between
𝐶 and 𝐶𝐼 can be treated as negligible. This in turn reduces to verifying Assumption K.2, which
is done in Lemma E.1, below.

Lemma E.1. Suppose that Assumption 5.2 holds. Then there are sequences 𝛿𝑛 ↘ 0, 𝛽𝑛 ↘ 0 such that

Pr
(
max
𝑖∈[𝑛]

𝑛−1
𝑛∑
𝑗=1

¤ℎ2
𝑖 𝑗 (̂𝑟 𝑗 − 𝑟 𝑗)2 > 𝛿2

𝑛/log2(𝑛)
)
≤ 𝛽𝑛

where ¤ℎ𝑖 𝑗 = ℎ𝑖 𝑗/(𝑛−1 ∑𝑛
𝑗=1 ℎ

2
𝑖 𝑗
)1/2.

Proof. In view of Lemma J.1 it suffices to show

max
1≤𝑖≤𝑛

1
𝑛

𝑛∑
𝑗=1

¤ℎ2
𝑖 𝑗(𝑟𝑖 − 𝑟𝑖)2 = 𝑜𝑝(1/log2(𝑛)) (E.2)

Notice that we can bound

max
1≤𝑖≤𝑛

1
𝑛

𝑛∑
𝑗=1
(𝑟𝑖 − 𝑟𝑖)2 = max

1≤𝑖≤𝑛

��(�̂� − 𝛾)′𝑛−1
𝑛∑
𝑗=1

𝜖2
𝑗 (𝛽0)𝑏(𝑧𝑖)𝑏(𝑧 𝑗)′(�̂� − 𝛾)

��
+ max

1≤𝑖≤𝑛
|𝑛−1

𝑛∑
𝑗=1

¤ℎ2
𝑖 𝑗𝜉

2
𝑗 |

≤ max
1≤𝑖≤𝑛

1≤ 𝑗 ,𝑘≤𝑑𝑏

��𝑛−1
𝑛∑
𝑗=1

𝜖2
𝑗 (𝛽0)𝑏 𝑗(𝑧 𝑗)𝑏𝑘(𝑧 𝑗)

��
︸                            ︷︷                            ︸

A𝑖 𝑗𝑘

∥�̂� − 𝛾∥21
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+ 𝑛−1/2 max
1≤𝑖≤𝑛
(𝑛−1

𝑛∑
𝑗=1

¤ℎ4
𝑖 𝑗)1/2(

𝑛∑
𝑗=1

𝜉4
𝑗 )1/2

Under Assumption 5.2(i,ii) each A𝑖 𝑗𝑘 is 𝜐-sub-exponential by Theorem K.1 (that is ∥A𝑖 𝑗𝑘∥𝜓𝜐

is bounded). An application of Lemma J.2 then yields that max𝑖 , 𝑗 ,𝑘 |A𝑖 𝑗𝑘| = 𝑂𝑝(log1/𝜈(𝑑𝑏𝑛)).
Along with Assumption 5.2(iv) this gives that max𝑖 , 𝑗 ,𝑘 |A𝑖 𝑗𝑘|∥�̂� − 𝛾∥1 = 𝑂𝑝(log−3/(𝑣∧1)(𝑑𝑏𝑛)) =
𝑜𝑝(log−2(𝑛)). Meanwhile by definition of ¤ℎ𝑖 𝑗 , max𝑖(𝑛−1 ∑𝑛

𝑗=1
¤ℎ4
𝑖 𝑗
)1/2 = 𝑂(1) while by Assump-

tion 5.2(iii) (∑𝑛
𝑗=1 𝜉

4
𝑗
)1/2 = 𝑜(1). Since log2(𝑛)/

√
𝑛 → 0 this shows (E.2). □

E.1. Proof of Theorem 6.1

The first result in Theorem 6.1 with JK(𝛽0) and 𝐶 replaced with their infeasible analogs JK𝐼(𝛽0)
and 𝐶𝐼 follows from the argument in Appendix F. After verifying that |JK(𝛽0) − JK(𝛽0)| →𝑝 0
via Theorem 5.4 and that Assumption K.2 is satisfied via Lemma E.1 follow the same steps as
in the proof of Belloni et al. (2018), Theorem 2.1 to see that approximation result holds for the
feasible JK(𝛽0) and 𝐶.

For the second statement, I show that the conditions of Theorem K.6 are satisfied. To see that
Assumption K.1(i,ii) is satisfied under the moment assumptions of Theorem 5.1 use (i) the
definition of ¤ℎ𝑖 𝑗 = ℎ𝑖 𝑗

/
(𝑛−1 ∑𝑛

𝑗=1 ℎ
2
𝑖 𝑗
)1/2; (ii) that the variance of each 𝑟 𝑗 is bounded away from

zero and (iii) that the fourth moments of 𝑟 𝑗 are bounded from above. Assumption K.1(iii) is
satisfied with 𝐵𝑛 = log1/𝜐(𝑛) by Assumption 6.1(i,iii) and Lemma J.2. Finally Assumption K.2
is satisfied by applying Lemma E.1. Apply Theorem K.6 to conclude.

F. Joint Gaussian Approximation of JK(𝛽0) and 𝐶

Theorems 5.3 and 6.1 rely on a joint interpolation of the conditioning and testing statistics as
well as a joint interpolation of the conditioning and testing statistics. The joint interpolation of
JK(𝛽0) and the conditioning statistic 𝐶 is given in Appendix F.2 after introducing some notation
in Appendix F.1. The joint gaussian approximation of 𝑆(𝛽0) and 𝐶 follows immediately from
results in Belloni et al. (2018), Chernozhukov et al. (2017). The result is presented below for the
general form of the JK(𝛽0) statistic under 𝐻0 however the proof strategy is very similar when
using the decomposed form of JK(𝛽0)when 𝑑𝑥 = 1. This proof is available on request.

F.1. Notation

Jackknife Statistic Definitions. Define ℎ̃ℓ ,𝑖 𝑗 = 𝑠𝑛,ℓ ℎ𝑖 𝑗 for each ℓ = 1, . . . , 𝑑𝑥 and the scaled
leave-one-out quasi-numerator and denominators

𝑈−𝑖 =

[
1√
𝑛

𝑛∑
𝑗=1
¤𝜖 𝑗(𝛽0)

∑
𝑘≠𝑖

ℎ̃ℓ , 𝑗𝑘 ¤𝑟ℓ 𝑘
]

1≤ℓ≤𝑑𝑥
∈ R𝑑𝑥

𝐷−𝑖 =

[
1
𝑛

𝑛∑
𝑗=1
¥𝜖2
𝑖 (𝛽0)

(∑
𝑘≠𝑖

ℎ̃ℓ ,𝑖 𝑗 ¤𝑟ℓ 𝑗
) (∑

𝑘≠𝑖

ℎ̃ℓ ,𝑖 𝑗 ¤𝑟𝑚𝑗
) ]

1≤ℓ≤𝑑
1≤𝑚≤𝑑𝑥

∈ R𝑑𝑥×𝑑𝑥
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where ¤𝜖 𝑗(𝛽0) is equal to �̃� 𝑗(𝛽0) if 𝑗 < 𝑖 and equal to 𝜖 𝑗(𝛽0) if 𝑗 > 𝑖, ¤𝑟ℓ 𝑗 is equal to 𝑟ℓ 𝑗 if 𝑗 < 𝑖 and
equal to 𝑟 𝑗 if 𝑗 > 𝑖, and ¥𝜖 𝑗(𝛽0) is equal to E[𝜖2

𝑗
(𝛽0)] if 𝑗 < 𝑖 and equal to 𝜖 𝑗(𝛽0) if 𝑗 > 𝑖. As in the

proof of Lemma A.1 while the definitions of ¤𝜖 𝑗(𝛽0), ¤𝑟ℓ 𝑗 , and ¥𝜖 𝑗(𝛽0) depend on 𝑖 this dependence
is suppressed to conslidate notation and since we only consider one step deviations at a time.

Also define the one step deviations

Δ𝑈𝑖 =
[
𝜖𝑖(𝛽0)

𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗 ¤𝑟ℓ 𝑗 + 𝑟ℓ 𝑖
𝑛∑
𝑗=1

ℎ̃ℓ , 𝑗𝑖 ¤𝜖 𝑗(𝛽0)
]

1≤ℓ≤𝑑 ∈ R
𝑑

Δ̃𝑈𝑖 =
[
�̃�𝑖(𝛽0)

𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗 ¤𝑟ℓ 𝑗 + 𝑟ℓ 𝑖
𝑛∑
𝑗=1

ℎ̃ℓ , 𝑗𝑖 ¤𝜖 𝑗(𝛽0)
]

1≤ℓ≤𝑑 ∈ R
𝑑

Δ𝐷𝑖 =
[
(Δ𝑎𝐷𝑖)ℓ𝑚

]
1≤ℓ≤𝑑
1≤𝑚≤𝑑︸             ︷︷             ︸

Δ𝑎
𝐷𝑖

+
[
(Δ𝑏𝐷𝑖)ℓ𝑚

]
1≤ℓ≤𝑑
1≤𝑚≤𝑑︸             ︷︷             ︸

Δ𝑏
𝐷𝑖

Δ̃𝐷𝑖 =
[
(Δ̃𝑎𝐷𝑖)ℓ𝑚

]
1≤ℓ≤𝑑
1≤𝑚≤𝑑︸             ︷︷             ︸

Δ̃𝑎
𝐷𝑖

+
[
(Δ̃𝑏𝐷𝑖)ℓ𝑚

]
1≤ℓ≤𝑑
1≤𝑚≤𝑑︸             ︷︷             ︸

Δ̃𝑏
𝐷𝑖

where

(Δ𝑎𝐷𝑖)ℓ𝑚 = 𝜖2
𝑖 (𝛽0)

( 𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗𝑟ℓ 𝑗
) ( 𝑛∑

𝑗=1
ℎ̃ℓ ,𝑖 𝑗 ¤𝑟ℓ 𝑗

) ( 𝑛∑
𝑗=1

ℎ𝑚,𝑖𝑗𝑟𝑚,𝑖𝑗
)2 + 𝑟ℓ 𝑖𝑟𝑘𝑖

𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗 ℎ̃𝑚,𝑖𝑗 ¥𝜖2
𝑗 (𝛽0)

(Δ̃𝑎𝐷𝑖)ℓ𝑚 = �̃�2
𝑖 (𝛽0)

( 𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗𝑟ℓ 𝑗
) ( 𝑛∑

𝑗=1
ℎ̃ℓ ,𝑖 𝑗 ¤𝑟ℓ 𝑗

) ( 𝑛∑
𝑗=1

ℎ𝑚,𝑖𝑗𝑟𝑚,𝑖𝑗
)2 + 𝑟ℓ 𝑖𝑟𝑘𝑖

𝑛∑
𝑗=1

ℎ̃ℓ ,𝑖 𝑗 ℎ̃𝑚,𝑖𝑗 ¥𝜖2
𝑗 (𝛽0)

(Δ𝑏𝐷𝑖)ℓ𝑚 = 𝑟ℓ 𝑖

𝑛∑
𝑗=1
¥𝜖2
𝑗 (𝛽0)

∑
𝑘≠𝑖

ℎ̃ℓ , 𝑗𝑖 ℎ̃𝑚,𝑗𝑘 ¤𝑟𝑚𝑘 + 𝑟𝑘𝑖
𝑛∑
𝑗=1
¥𝜖2
𝑗 (𝛽0)

∑
𝑘≠𝑖

ℎ̃ℓ , 𝑗𝑖 ℎ̃𝑚,𝑗𝑘 ¤𝑟ℓ 𝑘

(Δ̃𝑏𝐷𝑖)ℓ𝑚 = 𝑟ℓ 𝑖

𝑛∑
𝑗=1
¥𝜖2
𝑗 (𝛽0)

∑
𝑘≠𝑖

ℎ̃ℓ , 𝑗𝑖 ℎ̃𝑚,𝑗𝑘 ¤𝑟𝑚𝑘 + 𝑟𝑘𝑖
𝑛∑
𝑗=1
¥𝜖2
𝑗 (𝛽0)

∑
𝑘≠𝑖

ℎ̃ℓ , 𝑗𝑖 ℎ̃𝑚,𝑗𝑘 ¤𝑟ℓ 𝑘

Notice that in this notation we can write the test statistic and gaussian test statistics, after scaling
by diag(𝑠𝑛,1 , . . . , 𝑠𝑛,𝑑𝑥 ), as

𝐶(𝛽0) = (𝑈−1 + Δ𝑈1/
√
𝑛)′(𝐷−1 + Δ𝐷1/𝑛)−1(𝑈−1 + Δ𝑈1/

√
𝑛)1{𝜆min(𝐷−1 + Δ𝐷1)−1) > 0}

�̃�(𝛽0) = (𝑈−𝑛 + Δ̃𝑈𝑛/
√
𝑛)′(�̃�−1 + Δ̃𝐷1/𝑛)−1(𝑈−𝑛 + Δ̃𝑈1/

√
𝑛)

In this proof we will use these representations for the test statistics. Finally define

𝑈 = 𝑈−1 + Δ𝑈1/
√
𝑛 �̃� = 𝑈−𝑛 + Δ̃𝑈𝑛/

√
𝑛

𝐷 = 𝐷−1 + Δ𝐷1/𝑛 �̃� = 𝐷−𝑛 + Δ𝐷𝑛/𝑛
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Conditioning Statistic Definitions. Let ℎℓ ,𝑖𝑖 = 0 for any ℓ = 1, . . . , 𝑑𝑥 and 𝑖 = 1, . . . , 𝑛. Define
ℎ̃ℓ ,𝑖 𝑗 = ℎℓ ,𝑖 𝑗/𝜔ℓ 𝑖 for 𝜔ℓ 𝑖 = 𝑛−1 ∑𝑛

𝑗=1 |ℎℓ ,𝑖 𝑗|. Also define the one-step deviations:

Δ𝐶𝑖 B (ℎ̃1, 𝑗𝑖𝑟1𝑖 ,−ℎ̃1, 𝑗𝑖𝑟1𝑖 , . . . , ℎ̃𝑑𝑥 , 𝑗𝑖𝑟𝑑𝑥 𝑖 ,−ℎ̃𝑑𝑥 , 𝑗𝑖𝑟𝑑𝑥 𝑖)′1≤ 𝑗≤𝑛 ∈ R2𝑛𝑑𝑥

Δ𝐶𝑖 B (ℎ̃1, 𝑗𝑖𝑟1𝑖 ,−ℎ̃1, 𝑗𝑖𝑟1𝑖 , . . . , ℎ̃𝑑𝑥 , 𝑗𝑖𝑟𝑑𝑥 𝑖 ,−ℎ̃𝑑𝑥 , 𝑗𝑖𝑟𝑑𝑥 𝑖)′1≤ 𝑗≤𝑛 ∈ R2𝑛𝑑𝑥

And the leave-one-out vector

𝐶−𝑖 B
1√
𝑛

∑
𝑗<𝑖

Δ̃𝐶𝑗 +
1√
𝑛

∑
𝑗>𝑖

Δ𝐶𝑗 ∈ R2𝑛𝑑𝑥

Notice that 𝐶 = max1≤𝜄≤2𝑛𝑑𝑥 (𝐶−1 + 1√
𝑛
Δ𝐶1)𝜄 while �̃� = max1≤𝜄≤2𝑛𝑑𝑥 (𝐶−𝑛 + Δ𝐶𝑛)𝜄.

Function Definitions. As in Chernozhukov et al. (2013) consider the “smooth max” function,
𝐹𝛽 : R𝑝 → R defined

𝐹𝛽(𝑧) = 𝛽−1 log
( 𝑛∑
𝑖=1

exp(𝛽𝑧𝑖)
)

which satisfies
0 ≤ 𝐹𝛽(𝑧) − max

1≤𝑖≤𝑛
𝑧𝑖 ≤ 𝛽−1 log 𝑝.

Appendix I.2 notes some useful properties of the smooth max function which we will use in
the joint interpolation argument. In addition let 𝜑(·) ∈ 𝐶3

𝑏
(R) be such that 𝜑(𝑥) = 1 if 𝑥 ≤ 0,

𝜑′(𝑥) < 0 for 𝑥 ∈ (0, 1), and 𝜑(𝑥) = 0 for 𝑥 ≥ 1. For any 𝛾 > 0 and 𝑎 = (𝑎1 , 𝑎2)′ ∈ R2 define the
function �̃�(·, ·, ·) : R𝑑𝑥 × vec(R𝑑𝑥×𝑑𝑥 ) × R2𝑛𝑑𝑥 → R via

�̃�𝛾,𝑎(𝑢, vec(𝑑), 𝑐) B 𝜙𝛾,𝑎1(𝑢, vec(𝑑))𝜏𝛾,𝑎2(𝑐) (F.1)

where

𝜙𝛾,𝑎1(𝑢, vec(𝑑)) B 𝜑

(
𝑢′𝑑−1𝑢 − 𝑎1

𝛾det5(𝑑)

)
𝜏𝛾,𝑎(𝑐) B 𝜑

(
𝐹1/𝛾(𝑐) − 𝑎2

𝛾

)
The function �̃�𝛾,𝑎(·, ·, ·) is meant to approximate the indicator function 1{𝐾(𝛽0) ≤ 𝑎1}1{𝐶 ≤ 𝑎2}
with 𝛾 governing the quality of approximation. Where it is obvious, we will supress the
subscripts 𝛾, 𝑎 from our notation.

F.2. Main Argument

Lemma F.1 (Joint Lindeberg Interpolation). Suppose that Assumptions 5.1 and 5.3 hold as well as
the moment conditions of Theorem 5.3. Then there are fixed constants 𝑀1 , 𝑀2 such that���E[�̃�𝛾,𝑎(𝑈, vec(𝐷), 𝐶) − �̃�𝛾,𝑎(�̃� , vec(�̃�), �̃�)]

��� ≤ 𝑀1 log𝑀2(𝑛)
√
𝑛

(𝛾−1 + 𝛾−2 + 𝛾−3) (F.2)



Joint Gaussian Approximation of JK(𝛽0) and 𝐶 Page 56

Proof of Lemma F.1. We can bound the difference on the left hand side of (F.2) using the tele-
scoping sum

𝑛∑
𝑖=1

��E[�̃�𝛾,𝑎(𝑈−𝑖 + Δ𝑈𝑖/
√
𝑛, vec(𝐷−𝑖 + Δ𝐷𝑖/𝑛), 𝐶−𝑖 + Δ𝐶𝑖/

√
𝑛)]

− E[�̃�𝛾,𝑎(𝑈−𝑖 + Δ𝑈𝑖/
√
𝑛, vec(𝐷−𝑖 + Δ𝐷𝑖/𝑛), 𝐶−𝑖 + Δ𝐶𝑖/

√
𝑛)]

�� (F.3)

By second degree Taylor expansion, we break each of the summands in (F.3) into first order,
second order, and remainder terms; each of which are bounded below. We make use of the
following moment conditions implied by (i) indpendence of observations across 𝑖 = 1, . . . , 𝑛
and (ii) the mean and covariance matrix of (𝜖𝑖(𝛽0), 𝑟𝑖) being equal to the mean and covariance
matrix of (�̃�𝑖(𝛽0), 𝑟𝑖)

0 = E[Δ𝑈𝑖 − Δ̃𝑈𝑖|ℱ−𝑖] = E[Δ𝑈𝑖Δ′𝑈𝑖 − Δ̃𝑈𝑖Δ̃′𝑈𝑖|ℱ−𝑖] = E[vec(Δ𝐷𝑖) − vec(Δ̃𝐷𝑖)|ℱ−𝑖]
= E[Δ𝐶𝑖 − Δ̃𝐶𝑖|ℱ−𝑖] = E[Δ𝑈𝑖 ⊗ vec(Δ𝑏𝐷𝑖)′ − Δ̃𝑈𝑖 ⊗ vec(Δ̃𝑏𝐷𝑖)′|ℱ−𝑖]
= E[Δ𝐶𝑖 ⊗ Δ𝑈𝑖 − Δ̃𝐶𝑖 ⊗ Δ̃𝑈𝑖|ℱ−𝑖] = E[Δ𝐶𝑖 ⊗ vec(Δ̃𝑏𝐷𝑖) − Δ̃𝐶𝑖 ⊗ vec(Δ̃𝑏𝐷𝑖)|ℱ−𝑖]
= E[vec(Δ𝑏𝐷𝑖)vec(Δ𝑏𝐷𝑖)′ − vec(Δ̃𝑏𝐷𝑖)vec(Δ̃𝑏𝐷𝑖)′|ℱ−𝑖]

(F.4)

whereℱ−𝑖 denotes the sub-sigma algebra generated by all observations not equal to 𝑖,⊗ denotes
the Kronecker product, and I apologize for the abuse of the equal sign in the above display.

First Order Terms. First order terms can be expressed

First Order𝑖 =
𝑑𝑥∑
ℓ=1

E
[
𝜕

𝜕𝑈ℓ
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝑈𝑖)ℓ − (Δ̃𝑈𝑖)ℓ )

]
/
√
𝑛

+
𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

E
[

𝜕

𝜕𝐷ℓ𝑚
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝐷𝑖)ℓ𝑚 − (Δ̃𝐷𝑖)ℓ𝑚)

]
/𝑛

+
2𝑛𝑑𝑥∑
ℓ=1

E
[
𝜕

𝜕𝐶ℓ
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝐶𝑖)ℓ − (Δ̃𝐶𝑖)ℓ )

]
/
√
𝑛

These terms are all equal to zero after applying the matched moments in (F.4).

Second Order Terms. After canceling out terms using the matched moments in (F.4) the second
order terms that remain can be expressed

2nd Order𝑖 =
1
𝑛3/2

𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1

E
[

𝜕2

𝜕𝑈ℓ𝜕𝐷𝑚𝑛
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝑈𝑖)ℓ (Δ𝑎𝐷𝑖)𝑚𝑛 − (Δ̃𝑈𝑖)ℓ (Δ̃𝑎𝐷𝑖)𝑚𝑛)

]
︸                                                                                      ︷︷                                                                                      ︸

Aℓ𝑚𝑛

=
1
𝑛2

𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1

𝑑𝑥∑
𝑜=1

E
[

𝜕2

𝜕𝑈ℓ𝜕𝐷𝑚𝑛
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝑎𝐷𝑖)ℓ𝑚(Δ𝑎𝐷𝑖)𝑛𝑜 − (Δ̃𝑎𝐷𝑖)ℓ𝑚(Δ̃𝑎𝐷𝑖)𝑛𝑜)

]
︸                                                                                        ︷︷                                                                                        ︸

Bℓ𝑚𝑛𝑜

=
2
𝑛2

𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1

𝑑𝑥∑
𝑜=1

E
[

𝜕2

𝜕𝑈ℓ𝜕𝐷𝑚𝑛
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝑏𝐷𝑖)ℓ𝑚(Δ𝑎𝐷𝑖)𝑛𝑜 − (Δ̃𝑎𝐷𝑖)ℓ𝑚(Δ̃𝑏𝐷𝑖)𝑛𝑜)

]
︸                                                                                        ︷︷                                                                                        ︸

Cℓ𝑚𝑛𝑜
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=
1
𝑛3/2

2𝑛𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1

E
[

𝜕2

𝜕𝐶ℓ𝜕𝐷𝑚𝑛
�̃�(𝑈−𝑖 , vec(𝐷−𝑖), 𝐶−𝑖)((Δ𝐶𝑖)ℓ (Δ𝑎𝐷𝑖)𝑚𝑛 − (Δ̃𝐶𝑖)ℓ (Δ̃𝑎𝐷𝑖)𝑚𝑛)

]
︸                                                                                     ︷︷                                                                                     ︸

Dℓ𝑚𝑛

To bound each Aℓ𝑚𝑛 , Bℓ𝑚𝑛𝑜 , and Cℓ𝑚𝑛𝑜 we use the fact that the second order derivatives of
�̃� are bounded up to a log power of 𝑛 via repeated application of Lemmas I.12 and I.15.
Under the moment conditions of Theorem 5.3 the absolute value of terms (Δ𝑈𝑖)ℓ ,|Δ𝑎𝐷𝑖|𝑚𝑛 ,
and (Δ𝑏

𝐷𝑖
/
√
𝑛)𝑛𝑜 can also be shown to have bounded third moments via the exact same steps

as in the proof of Lemma I.1. Putting these together with generalized Holder’s inequality
will yield a finite constants 𝑀1 and 𝑀2 such that |A𝑙𝑚𝑛| ≤ 𝑀1 log𝑀2(𝑛)(𝛾−1 + 𝛾−2), Bℓ𝑚𝑛𝑜 ≤
𝑀1 log𝑀2(𝑛)(𝛾−1+𝛾−2), and |Cℓ𝑚𝑛𝑜| ≤ 𝑀1 log𝑀2(𝑛)𝑛1/2(𝛾−1+𝛾−2). To bound Dℓ𝑚𝑛 terms notice
that

2𝑛𝑑𝑥∑
ℓ=1

Dℓ𝑚𝑛 =

2𝑛𝑑𝑥∑
ℓ=1

E
[

𝜕

𝜕𝐷𝑚𝑛
𝜙(𝑈−𝑖 , vec(𝐷−𝑖))

𝜕

𝜕𝐶ℓ
𝜏(𝐶−𝑖)((Δ𝐶−𝑖)ℓ (Δ𝑎𝐷𝑖)𝑚𝑛 − (Δ̃𝐶𝑖)ℓ (Δ̃𝑎𝐷𝑖)𝑚𝑛))

]
Apply Lemma I.1 to bound Δ𝑎

𝐷𝑖
, and Lemmas I.12 and I.15 to bound the derivative of 𝜙(·) and Cauchy-

Schwarz to split up the Δ𝐶𝑖 and Δ𝐷𝑖 terms

≤
√
𝑀1 log𝑀2(𝑛)𝛾−2E

[ 2𝑛𝑑𝑥∑
ℓ=1
(𝜕ℓ𝜏(𝐶−𝑖))2((Δ𝐶𝑖)ℓ + (Δ̃𝐶𝑖)ℓ )2

]1/2

≤
√
𝑀1 log𝑀2(𝑛)𝛾−2E

[
max
1≤ℓ≤𝑛

((Δ𝐶𝑖)2ℓ + (Δ̃𝐶𝑖)2ℓ )2
2𝑛𝑑𝑥∑
ℓ=1
(𝜕ℓ𝜏(𝐶−𝑖))2

]1/2

By Lemma I.8 and chain rule we have that
∑2𝑛𝑑𝑥
ℓ=1 (𝜕ℓ𝜏(𝐶−𝑖))2 ≤ 𝛾−2. Moreover (Δ𝐶𝑖)𝑎/2ℓ

is sub-exponential
so via Lemma J.2 the second moment of the maximum is bounded by a power of log(𝑛). After updating
the constant 𝑀1 and 𝑀2 this yields

≤ 𝑀1 log𝑀2(𝑛)𝛾−2

Putting these all together and summing over the remaining indices gives

|Second Order𝑖| ≤
𝑀1 log𝑀2(𝑛)

𝑛3/2 (𝛾−1 + 𝛾−2) (F.5)

Remainder Terms. The first remainder term can be expressed

Remainder𝑖 =
1
𝑛3/2

𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1

E
[

𝜕3

𝜕𝑈ℓ𝜕𝑈𝑚𝜕𝑈𝑛
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝑈𝑖)ℓ (Δ𝑈𝑖)𝑚(Δ𝑈𝑖)𝑛

]
+ 1
𝑛3

∑
(ℓ ,𝑚)

∑
(𝑛,𝑜)

∑
(𝑞,𝑝)

E
[

𝜕3

𝜕𝐷ℓ𝑚𝜕𝐷𝑛𝑜𝜕𝐷𝑝𝑞
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐷𝑖)ℓ𝑚(Δ𝐷𝑖)𝑛𝑜(Δ𝐷𝑖)𝑞𝑝

]
+ 1
𝑛3/2

2𝑛𝑑𝑥∑
ℓ=1

2𝑛𝑑𝑥∑
𝑚=1

2𝑛𝑑𝑥∑
𝑛=1

E
[

𝜕3

𝜕𝐶ℓ𝜕𝐶𝑚𝜕𝐶𝑛
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐶𝑖)ℓ (Δ𝐶𝑖)𝑚(Δ𝐶𝑖)𝑛

]
+ 1
𝑛2

𝑑𝑥∑
ℓ=1

𝑑𝑥∑
𝑚=1

∑
(𝑛,𝑜)

E
[

𝜕3

𝜕𝑈ℓ𝜕𝑈𝑚𝜕𝐷𝑛𝑜
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝑈𝑖)ℓ (Δ𝑈𝑖)𝑚(Δ𝐷𝑖)𝑛𝑜

]
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+ 1
𝑛5/2

𝑑𝑥∑
ℓ=1

∑
(𝑚,𝑛)

∑
(𝑜,𝑝)

E
[

𝜕3

𝜕𝑈ℓ𝜕𝐷𝑚𝑛𝜕𝐷𝑜𝑝
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝑈𝑖)ℓ (Δ𝐷𝑖)𝑚𝑛(Δ𝐷𝑖)𝑜𝑝

]
+ 1
𝑛5/2

2𝑛𝑑𝑥∑
ℓ=1

∑
(𝑚,𝑛)

∑
(𝑜,𝑝)

E
[

𝜕3

𝜕𝐶ℓ𝜕𝐷𝑚𝑛𝜕𝐷𝑜𝑝
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐶𝑖)ℓ (Δ𝐷𝑖)𝑚𝑛(Δ𝐷𝑖)𝑜𝑝

]
+ 1
𝑛2

2𝑛𝑑𝑥∑
ℓ=1

2𝑛𝑑𝑥∑
𝑚=1

∑
(𝑛,𝑜)

E
[

𝜕3

𝜕𝐶ℓ𝜕𝐶𝑚𝜕𝐷𝑛𝑜
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐶𝑖)ℓ (Δ𝐶𝑖)𝑚(Δ𝐷𝑖)𝑛𝑜

]
+ 1
𝑛3/2

2𝑛𝑑𝑥∑
ℓ=1

2𝑛𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1

E
[

𝜕3

𝜕𝐶ℓ𝜕𝐶𝑚𝜕𝑈𝑛
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐶𝑖)ℓ (Δ𝐶𝑖)𝑚(Δ𝑈𝑖)𝑛

]
+ 1
𝑛2

2𝑛𝑑𝑥∑
ℓ=1

2𝑛𝑑𝑥∑
𝑚=1

𝑑𝑥∑
𝑛=1

E
[

𝜕3

𝜕𝐶ℓ𝜕𝐶𝑚𝜕𝑈𝑛
�̃�(�̄� , vec(�̄�), �̄�)(Δ𝐶𝑖)ℓ (Δ𝐶𝑖)𝑚(Δ𝑈𝑖)𝑛

]

where �̄� , vec(�̄�), and �̄� vary term by term but are always in the hyper-rectangles [𝑈−𝑖 , 𝑈 +
Δ𝑈𝑖], [vec(𝐷−𝑖), vec(𝐷−𝑖 + Δ𝐷𝑖)], and [𝐶−𝑖 , 𝐶−𝑖 + Δ𝐶𝑖], respectively. As such, any moment
conditions that apply to 𝑈, 𝐷, 𝐶 also apply to (�̄� , �̄�, �̄�). Repeated application of generalized
Hölder inequality, Lemma I.1 to bound moments of Δ𝑈𝑖 and (Δ𝐷𝑖/

√
𝑛), Lemma I.15 to bound

moments of the second and third derivatives of 𝜙(�̃� , vec(�̃�)), Lemma I.11 to bound the sums
of derivatives of 𝜏(�̃�), and Lemma J.2 to bound moments of max1≤ℓ≤𝑛(Δ𝐶𝑖)ℓ will yield that

|Remainder𝑖| ≤
𝑀1 log𝑀2(𝑛)

𝑛3/2 (𝛾−1 + 𝛾−2 + 𝛾−3) (F.6)

Symmetric logic will bound the other remainder term. Summing (F.5) and (F.6) over indices
gives the result. □

Lemma F.2 (Denominator Anticoncentration). Suppose that Assumptions 5.1 and 5.3 hold as well
as the moment conditions of Theorem 5.3. Then for any sequence 𝛿𝑛 → 0 we have that Pr(𝜆min(�̃�) ≤
�̃�𝑛) → 0.

Proof. By Lemma F.4 it suffices to show that for any fixed 𝑎 ∈ 𝒮𝑑𝑥−1 and any 𝛿𝑛 → 0, Pr(𝑎′𝐷𝑎 ≤
𝛿𝑛) → 0. For any such 𝑎 write:

𝑎′�̃�𝑎 =
1
𝑛

𝑛∑
𝑖=1

E[𝜖2
𝑖 (𝛽0)]

( 𝑑𝑥∑
ℓ=1

𝑛∑
𝑗=1

𝑎ℓ ℎ̃ℓ ,𝑖 𝑗𝑟ℓ , 𝑗
)2

≥ 1
𝑐𝑛

𝑛∑
𝑖=1

( 𝑑𝑥∑
ℓ=1

𝑛∑
𝑗=1

𝑎ℓ ℎ̃ℓ ,𝑖 𝑗𝑟ℓ , 𝑗
)2

Define ¤𝑠𝑛,𝑗 = max{ℓ :𝑎ℓ≠0} 𝑠𝑛,ℓ and ¤ℎ𝑖 𝑗 = 𝑠𝑛ℎ𝑖 𝑗

=
1
𝑐𝑛

𝑛∑
𝑖=1

( 𝑛∑
𝑗=1

¤ℎ𝑖 𝑗
𝑑𝑥∑
ℓ=1

𝑎ℓ 𝑠𝑛,ℓ

𝑠𝑛
𝑟ℓ , 𝑗

)2
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By the moment conditions required by Theorem 5.3 we have that 𝜆min(E[𝐷]) ≥ 𝑐 so that
E[ 1𝑛

∑𝑛
𝑖=1

( ∑𝑑𝑥
ℓ=1

∑𝑛
𝑗=1 𝑎ℓ ℎ̃ℓ ,𝑖 𝑗𝑟ℓ , 𝑗

)2] ≥ 𝑐−1. Moreover, by assumption, Var(∑𝑑𝑥
ℓ=1

𝑎ℓ 𝑠𝑛,ℓ
𝑠𝑛
) is bounded

from above and below. Define the matrix �̃� = [ ¤ℎ𝑖 𝑗]𝑖 𝑗 and follow the same steps as Lemma F.2
to conclude. □

Lemma F.3 (Gaussian Approximation). Suppose that Assumptions 5.1 and 5.3 hold as well as the
moment conditions of Theorem 5.3. Then,

sup
𝑎∈R

��Pr(JK𝐼(𝛽0) ≤ 𝑎) − Pr(JK𝐺(𝛽0) ≤ 𝑎)
��→ 0

Proof. Let 𝑎 = (𝑎1 , 𝑎2) and �̃�𝛾,𝑎 be as in (F.1):

Pr(𝑁 ′𝐷−1𝑁 ≤ 𝑎1 , 𝐶 ≤ 𝑎2) ≤ E[�̃�𝛾,𝑎(𝑈, vec(𝐷), 𝐶)]

≤ E[�̃�𝛾,𝑎(�̃� , vec(�̃�), �̃�)] +
𝑀1 log𝑀2 (𝑛)√

𝑛
(𝛾−1 + 𝛾−2)

≤ Pr(�̃� ′�̃�−1�̃� ≤ 𝑎1 , �̃� ≤ 𝑎2) + Pr(𝑎1 ≤ �̃� ′�̃�−1𝑁 ≤ 𝑎1 + 𝛾𝜆5
min(𝐷))

+ Pr(𝑎2 ≤ 𝐶 ≤ 𝑎2 + 𝛾) +
𝑀1 log𝑀2

2 (𝑛)√
𝑛

(𝛾−1 + 𝛾−2 + 𝛾−3)

≤ Pr(�̃� ′�̃�−1�̃� ≤ 𝑎1 , �̃� ≤ 𝑎2) + Pr(𝑎1 ≤ �̃� ′�̃�−1𝑁 ≤ 𝑎1 + 𝛾𝜆5
min(𝐷))

+ Pr(𝑎2 ≤ 𝐶 ≤ 𝑎2 + 𝛾) +
𝑀1 log𝑀2

2 (𝑛)√
𝑛

(𝛾−1 + 𝛾−2 + 𝛾−3)

Let 𝛾 → 0 at a rate such that log𝑀2 (𝑛)√
𝑛

𝛾−3 → 0 and apply Lemmas F.1 and F.2 to conclude as in
the proof of Lemma A.8. A symmetric argument shows that the lower bound tends to zero.

□

Lemma F.4. Let Σ𝑛 ∈ R𝑑×𝑑 be a sequence of random positive-semidefinite matrices. Suppose that for
any fixed 𝑎 ∈ 𝒮𝑑−1 and any 𝛿𝑛 → 0 we have that Pr(𝑎′Σ𝑛𝑎 ≤ 𝛿𝑛) → 0 and Pr(𝜆2

max(Σ𝑛) ≥ 𝛿−1
𝑛 ) → 0.

Then for any 𝛿𝑛 → 0, Pr(𝜆2
min(Σ𝑛) ≤ 𝛿𝑛) → 0.

Proof. Take any preliminary sequence 𝛿𝑛 → 0. It suffices to show that there is another sequence
�̃�𝑛 weakly larger than 𝛿𝑛/2 such that Pr(𝜆2

min(Σ𝑛) ≤ �̃�𝑛) → 0. For any 𝑚 ∈ N let𝒜𝑚 be a set of
points in 𝒮𝑑−1 such that

max
𝑎∈𝒮𝑑−1

min
�̃�∈𝒜𝑚

∥𝑎 − �̃�∥ ≤ 𝛿2
𝑚

From here let �̃� 𝑗 be defined

�̃� 𝑗 = inf{𝑛 ≥ 𝑗 : min
�̃�∈𝒜𝑛,𝑗

Pr(�̃�′Σ𝑛𝑎 ≤ 2𝛿𝑛 𝑗 ) < 𝛿𝑛 𝑗}
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Define a new sequence �̃�𝑛 → 0, weakly larger than 𝛿𝑛 , via

�̃�𝑛 =


1 if 0 ≤ 0 ≤ 𝑛 < �̃�1

𝛿𝑖 if �̃�𝑖 ≤ 𝑛 < �̃�𝑖+1

and notice that, by definition Pr(min𝑎∈𝒜�̃� 𝑗
𝑎′Σ𝑛𝑎 ≤ 2�̃�𝑛) < 𝛿�̃� 𝑗 . We wish to show that𝜆2

min(Σ𝑛) >
�̃�𝑛 on an intersection of events whose probability tends to one. SinceΣ𝑛 is positive semi-definite,
∥𝑥∥2

Σ𝑛
= 𝑥′Σ𝑛𝑥 defines a seminorm. By triangle inequality

𝜆2
min(Σ𝑛 𝑗 ) ≥ min

𝒜𝑛𝑗

𝑎′Σ𝑛 𝑗 𝑎 − 𝜆2
max(Σ𝑛)�̃�2

𝑛 𝑗

Define the events

Ω1 = {min
𝒜�̃� 𝑗

𝑎′Σ𝑛𝑎 ≥ 2�̃�𝑛} and Ω2 = {𝜆max(Σ𝑛) ≤ �̃�−1/2
𝑛 }

On the intersection of these events, whose probabilities tend to one, we have 𝜆2
min(Σ𝑛) ≥ �̃�𝑛 . □



G. Incorporating Exogenous Controls

In this section, I analyze the model with exogeneous controls. To this end, define the vector
𝑧2 = (𝑧′21 , . . . , 𝑧

′
2𝑛)′ ∈ R𝑛×𝑑𝑐 . Let 𝑃2 = 𝑧2(𝑧′2𝑧2)−1𝑧′2 ∈ R𝑛×𝑛 denote the projection onto the column

space of 𝑧2 and 𝑀2 = 𝐼𝑛 − 𝑃2 denote the projection onto to orthocomplement of the column
space. Focus will be on the case where 𝑑𝑥 = 1 to simplify notation, but the basic concepts apply
generally to 𝑑𝑥 > 1.

For 𝑦 B (𝑦1 , . . . , 𝑦𝑛)′ ∈ R𝑛 and 𝑥 B (𝑥′1 , . . . , 𝑥′𝑛)′ ∈ R𝑛× define 𝑦⊥ B 𝑀2𝑦 and 𝑥⊥ B 𝑀2𝑥 as the
“partialled out” versions of 𝑦 and 𝑥, respectively. Let 𝑦⊥

𝑖
be the 𝑖th element of 𝑦⊥ and 𝑥⊥

𝑖
be the

𝑖th element of 𝑥⊥. From here we can define 𝜖(𝛽0) B 𝑦 − 𝑥𝛽0, 𝜖⊥(𝛽0) = 𝑀2𝜖(𝛽0) and 𝑟⊥ B 𝑀2𝑟

where as in the main text 𝑟 = (𝑟1 , . . . , 𝑟𝑛)′ is constructed 𝑟𝑖 = 𝑥𝑖 − 𝜌(𝑧𝑖)𝜖𝑖(𝛽0). The definition
of 𝜌(𝑧𝑖) does not change after partialling out 𝑧2 since all expectations are understood to be
conditional on the instruments 𝑧. Notice that 𝜖⊥(𝛽0) is mean zero. Finally I assume that the
controls have been partialled out of hat matrix so that the effective hat matrix is 𝑀2𝐻 and the
vector Π̂ ∈ R𝑛 is defined Π̂ = (𝑀2𝐻)(𝑀2𝑟). This does not make a difference for the numerator
of the JK(𝛽0) statistic but does affect the denominator slightly. When this is not done, inference
may be conservative.

Using matrix notation in the numerator to make things clear, we can write the version of the
JK(𝛽0) statistic with the partialled out vectors, 𝜖⊥(𝛽0) and 𝑟⊥, in terms of the original vectors,
𝜖(𝛽0) and 𝑟,

JK𝐼(𝛽0) =

( 1√
𝑛
𝜖(𝛽0)′𝑀2�̃�𝑀2𝑟

)2

1
𝑛

∑𝑛
𝑖=1(𝜖⊥𝑖 (𝛽0))2

( ∑𝑛
𝑗=1 h𝑖 𝑗𝑟 𝑗

)2

=

( 1√
𝑛

∑𝑛
𝑖=1 𝜖𝑖(𝛽0)

∑𝑛
𝑗=1 h𝑖 𝑗𝑟 𝑗

)2

1
𝑛

∑𝑛
𝑖=1(𝜖⊥𝑖 (𝛽0))2

( ∑𝑛
𝑗=1 h𝑖 𝑗𝑟 𝑗

)2

where h𝑖 𝑗 = [𝑀2�̃�𝑀2]𝑖 𝑗 , �̃� = 𝑠𝑛𝐻, and 𝑚𝑖 𝑗 = [𝑀2]𝑖 𝑗 . I seek to characterize the limiting
distribution of JK(𝛽0) under 𝐻0. To do so, we show that quantiles JK(𝛽0) can be approximated
by quantiles of the gaussian analog statistic

JK𝐺(𝛽0) =

( 1√
𝑛
�̃�(𝛽0)′𝑀2�̃�𝑀2𝑟

)2

1
𝑛

∑𝑛
𝑖=1 Var(𝜖𝑖)

( ∑𝑛
𝑗=1 h𝑖 𝑗𝑟 𝑗

)2

where (�̃�𝑖 , �̃�𝑖(𝛽0), 𝑟𝑖) are generated gaussian independent of the data and with the same mean
and covariance as (𝜖𝑖 , 𝜖𝑖(𝛽0), 𝑟𝑖). Since Var(�̃�(𝛽0)) = Var(𝜖𝑖) under 𝐻0, E[�̃�(𝛽0)′𝑀2] = 0, and
𝑟 ⊥ �̃�(𝛽0), this gaussian analog statistic has a 𝜒2

1 distribution conditional on any realization of
𝑟 and thus its unconditional distribution is also 𝜒2

1.

Showing that quantiles of JK(𝛽0) can be approximated by quantiles of ˜JK(𝛽0) proceeds in two
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steps. In the first step, we show that JK(𝛽0) converges in probability to an intermediate statistic.

JKint(𝛽0) =

( 1√
𝑛

∑𝑛
𝑖=1 𝜖𝑖(𝛽0)

∑𝑛
𝑗=1 h𝑖 𝑗𝑟 𝑗

)2

1
𝑛

∑𝑛
𝑖=1 𝜖

2
𝑖
(∑𝑗≠𝑖 h𝑖 𝑗𝑟 𝑗)2

We will then show that quantiles of this intermediate statistic can be approximated by quantiles
of ˜JK(𝛽0). In view of Lemma A.2, it suffices to show for the first step that Δ𝐷 →𝑝 0, where

Δ𝐷 =
1
𝑛

𝑛∑
𝑖=1
((𝜖⊥𝑖 (𝛽0))2 − 𝜖2

𝑖 )Π̂2
𝑖

To do this, notice that under 𝐻0 we can write 𝜖⊥
𝑖
(𝛽0) = 𝜖𝑖 + 𝑧′2𝑖(Γ̂− Γ)where Γ̂ = (𝑧′2𝑧2)−1𝑧2𝜖(𝛽0)

is a
√
𝑛-consistent estimate of Γ. Exploiting this fact we get

Δ𝐷 = (Γ̂ − Γ)′ 1
𝑛

𝑛∑
𝑖=1
(Π̂𝑖)2𝑧2𝑖𝑧

′
2𝑖(Γ̂ − Γ) + 2(Γ̂ − Γ)′ 1

𝑛

𝑛∑
𝑖=1

𝜖𝑖𝑧2𝑖Π̂𝑖

Both of these terms will tend to zero by the consistency Γ̂ to Γ, giving that Δ𝐷 →𝑝 0.

In our second step, we argue that quantiles of JKint(𝛽0) can be approximated by quantiles
of JK𝐺(𝛽0). To make this comparasion, we can follow almost exactly the same steps as in
Appendix A. The only difference between analysis in this case and analysis in the original case
is that the partialling out of controls leads the test statistic to not strictly have a jackknife form;
the effective hat matrix 𝑀2𝐻𝑀2 no longer has a deleted diagonal. However, as I will argue
below, this will not make a difference in the interpolation argument since the diagonal terms
of [𝑃2]𝑖𝑖 are small in the sense that they sum to 𝑑𝑐 .

The (A.2) analog one step deviations for the numerator are given

Δ1𝑖 = 𝜖𝑖(𝛽0)
∑
𝑗≠𝑖

h𝑖 𝑗 ¤𝑟 𝑗 + 𝑟𝑖
∑
𝑗≠𝑖

h𝑗𝑖 ¤𝜖 𝑗(𝛽0) + h𝑖𝑖𝜖𝑖(𝛽0)𝑟𝑖

Δ̃1𝑖 = �̃�𝑖(𝛽0)
∑
𝑗≠𝑖

h𝑖 𝑗 ¤𝑟 𝑗 + 𝑟 𝑗
∑
𝑗≠𝑖

h𝑗𝑖 ¤𝜖 𝑗(𝛽0) + h𝑖𝑖 �̃�𝑖(𝛽0)𝑟𝑖

where as Appendix A, a dotted variable is equal to the gaussian analog if 𝑗 > 𝑖 but equal to
the standard version otherwise. The first and second moments of the first two terms in Δ1𝑖 can
be matched with their gaussian analog terms as in the proof of Lemma A.3. While we cannot
match seconds moments of the third term in the one step deviation, this sum of all these third
terms can be treated as negligible after scaling by 1/

√
𝑛 as

∑𝑛
𝑖=1 |h𝑖𝑖| ≲ 𝑑𝑐 . This is because

𝑀2�̃�𝑀2 = �̃� − 𝑃2�̃� − �̃�𝑃2 − 𝑃2�̃�𝑃2. The matrix �̃� has zeros on it’s diagonal. Meanwhile

|[𝑃2�̃�]𝑖𝑖|2 =

��� 𝑛∑
𝑗=1
[𝑃2]𝑖 𝑗�̃�𝑗𝑖

���2 ≤ ( 𝑛∑
𝑗=1
[𝑃2]2𝑖 𝑗

) (∑
𝑗≠𝑖

𝐻2
𝑗𝑖

)
≲ [𝑃2]𝑖𝑖

where the final inequality comes because the matrix 𝑃2 is symmetric and idempotent and
since

( ∑
𝑗≠𝑖 𝐻

2
𝑗𝑖

)
≲ 1 by Assumption 5.1(ii). A similar argument can be used to show that
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[𝑃2�̃�𝑃2]2𝑖𝑖 ≲ [𝑃2]𝑖𝑖 . Since 𝑃2 is a projection matrix we must have that ∥𝑃2𝐻𝑒 𝑗∥ ≤ ∥𝐻𝑒 𝑗∥ for any
basis vector 𝑒 𝑗 ∈ R𝑛 . Thus

∑𝑛
𝑗=1[𝑃2𝐻]2𝑗𝑖 ≤

∑𝑛
𝑗=1[𝐻]2𝑗𝑖 . Finally, we can use the fact that the trace

of 𝑃2 is equal to its rank to show that
∑𝑛
𝑖=1 |h𝑖𝑖| ≲ 𝑑𝑐

The one step deviations in the denominator can be bounded using the same logic. These one
step deviations are given

Δ2𝑖 = 𝜖2
𝑖 (
∑
𝑗≠𝑖

h𝑖 𝑗 ¤𝑟 𝑗)2 + 𝑟2
𝑖

∑
𝑗≠𝑖

h2
𝑗𝑖 ¥𝜖2

𝑗 + 𝑟𝑖
∑
𝑗≠𝑖

¥𝜖 𝑗
( ∑
𝑘≠𝑗 ,𝑖

h𝑗𝑖h𝑗𝑘𝑟𝑘
)

+ 𝜖2
𝑖

(
h2
𝑖𝑖𝑟

2
𝑖 + 2h𝑖𝑖𝑟 𝑗

∑
𝑗≠𝑖

h𝑖 𝑗𝑟 𝑗)2

Δ̃2𝑖 = �̃�2
𝑖 (
∑
𝑗≠𝑖

h𝑖 𝑗 ¤𝑟 𝑗)2 + 𝑟2
𝑖

∑
𝑗≠𝑖

h2
𝑗𝑖 ¥𝜖2

𝑗 + 𝑟𝑖
∑
𝑗≠𝑖

¥𝜖 𝑗
( ∑
𝑘≠𝑗 ,𝑖

h𝑗𝑖h𝑗𝑘𝑟𝑘
)

+ 𝜖2
𝑖

(
h2
𝑖𝑖𝑟

2
𝑖 + 2h𝑖𝑖𝑟 𝑗

∑
𝑗≠𝑖

h𝑖 𝑗𝑟 𝑗)2

where ¥𝜖 𝑗 is equal to Var(𝜖 𝑗) if 𝑗 < 𝑖 and equal to 𝜖 𝑗 if 𝑗 > 𝑖. The first three terms in this expansion
are can be dealt with exactly as in the proof of Lemma A.3. The fourth term is new, however
summing over the fourth terms and scaling by 1/𝑛 will be negligible as

∑𝑛
𝑖=1 |h𝑖𝑖| ≲ 𝑑𝑐 . After

showing the lindeberg interpolation step, the rest of the proof follows exactly as in Appendix A.

H. Alternative Construction of Test Statistic via Cross Fitting

To accomodate a general class of estimators for �̂�(𝑧𝑖) I propose a cross-fit form of the jackknife
K-statistic. In this section I detail the cross-fitting procedure and present high level conditions
needed for estimation error to be treated as negligible. These conditions can be satisfied by a
large class of machine learning estimators under alternate conditions.

H.1. Cross Fit Test Statistic

To construct the cross fit test statistic, evenly (and randomly) split the sample into two subsets,
ℐ1 and ℐ2 such that ℐ1 ∩ ℐ2 = ∅ and ℐ1 ∪ ℐ2 = [𝑛]. For each 𝑘 = 1, 2 construct an estimator �̂�(𝑘)(·)
using only the observations in ℐ𝑘 . For observations in 𝑖 ∈ ℐ1 form the first-stage estimates

Π̂𝑖 =

∑
𝑗∈ℐ1\{𝑖}

ℎ
(1)
𝑖 𝑗
(𝑥 𝑗 − 𝜖 𝑗(𝛽0)�̂�(2)(𝑧 𝑗))

where the weights ℎ(1)
𝑖 𝑗

come from a hat matrix 𝐻(1) that only depends on the observations in
ℐ1, for example the ridge regression hat matrix of Section 2 using only the instruments (𝑧𝑖)𝑖∈ℐ1 .
First stage estimates for observations in ℐ2 symmetrically, using the estimator �̂�(1)(·). The test
statistic is then constructed as before

JK(𝛽0) =
( ∑𝑛

𝑖=1 𝜖𝑖(𝛽0)Π̂𝑖

)2∑𝑛
𝑖=1 𝜖

2
𝑖
(𝛽0)(Π̂𝑖)2
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Notice that while only half the sample is being used to construct each first stage estimate, the
full sample is still being used to test the null hypothesis.

H.2. Controlling Estimation Error

After writing the overall hat matrix as

𝐻 =

(
𝐻(1) 0

0 𝐻(2)

)
,

analysis of the infeasible statistic proceeds as before. Thus, to show that the crossfit test statistic
has a limiting 𝜒2

1 distribution by Lemma A.2 it suffices to state high-level conditions under
which (Δ𝑁 ,Δ𝐷)′→𝑝 0.

Assumption H.1 (Cross-fit Conditions). Suppose (i) that there is a constant 𝜈 ∈ (0, 1] ∪ {2} such
that for all 𝑖 ∈ [𝑛], ∥𝜖𝑖∥Ψ𝜈 ≤ 𝑐 and that (ii) for 𝑘 = 1, 2

max
𝑖∈𝐼𝑘
(�̂�(−𝑘))(𝑧 𝑗) − 𝜌(𝑧 𝑗))2 = 𝑜𝑝(log1/𝜈(𝑛)).

where �̂�(−𝑘)(·) indicates the estimator of 𝜌(·) computed using observations in [𝑛] \ ℐ𝑘 .

Lemma H.1 (Negligible Cross-fit error). Suppose that Assumptions 5.1, and H.1 hold as well as the
moment conditions of Theorem 5.1. Then, under 𝐻0, (Δ𝑁 ,Δ𝐷)′→𝑝 0.

Proof. We consider the statements Δ𝑁 →𝑝 0 and Δ𝐷 →𝑝 0 seperately.

Δ𝑁 →𝑝 0: It suffices to show that Δ𝑁,1 →𝑝 0 for

Δ𝑁,1 =
1√
𝑛

∑
𝑖∈ℐ1

𝜖𝑖(𝛽0)
∑

𝑗∈ℐ1\{𝑖}
𝜖 𝑗(𝛽0)ℎ̃𝑖 𝑗(�̂�(2)(𝑧 𝑗) − 𝜌(𝑧 𝑗)).

The corresponding statement forΔ𝑁,2 follows from the same logic andΔ𝑁 = Δ𝑁,1+Δ𝑁,2. Define
the event

Ω(𝜖) B {max
𝑖∈ℐ𝑘
(�̂�(2)(𝑧 𝑗) − 𝜌(𝑧 𝑗))2 ≤ 𝜖}

and consider a sequence 𝜖𝑛 → 0 such that Pr(Ω(𝜖𝑛)) ≥ 1 − 𝜖𝑛 . Noting that Ω(𝜖𝑛) ⊥ (𝜖𝑖(𝛽0))𝑖∈ℐ𝑘
we write

Δ𝑁,1 = 𝜖(𝛽0)H𝜖(𝛽0)

where H ∈ R|ℐ1|×|ℐ1| = 1√
𝑛

(
ℎ̃𝑖 𝑗(�̂�(1)(𝑧 𝑗) − 𝜌(𝑧 𝑗))

)
𝑖 , 𝑗∈ℐ1 . Since E[Δ𝑁,1|Ω(𝜖𝑛)] = 0, an application

of the generalized Hanson-Wright inequality, Theorem K.1, gives us that there is a sequence
𝛿𝑛 → 0 such that

Pr(Δ𝑁,1 ≥ 𝜖𝑛|Ω(𝜖𝑛)) ≤ 𝛿𝑛

which allows us to conclude.
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Δ𝐷 →𝑝 0: As before, it suffices to show that Δ𝐷,1 →𝑝 0 where

Δ𝑁,1 =
1
𝑛

∑
𝑖∈ℐ1

𝜖2
𝑖 (𝛽0)

{( ∑
𝑗∈ℐ1\{𝑖}

ℎ̃𝑖 𝑗𝑟 𝑗
)2 −

( ∑
𝑗∈ℐ1\{𝑖}

ℎ̃𝑖 𝑗𝑟 𝑗
)2}

From the proof of Theorem 5.4, it suffices to show that

max
𝑖∈ℐ1

�� ∑
𝑗∈ℐ1\{𝑖}

ℎ̃𝑖 𝑗𝜖 𝑗(𝛽0)(�̂�(2)(𝑧 𝑗) − 𝜌(𝑧 𝑗)
��→𝑝 0

Consider a sequence 𝜖𝑛 → 0 such that log1/𝜈(𝑛)𝜖𝑛 → 0 and Pr(Ω(𝜖𝑛)) ≥ 1 − 𝜖𝑛 and apply
Theorem K.1 to conclude that there is a sequence 𝛿𝑛 → 0 such that

Pr
(
max
𝑖∈ℐ1

�� ∑
𝑗∈ℐ1\{𝑖}

ℎ̃𝑖 𝑗𝜖 𝑗(𝛽0)(�̂�(2)(𝑧 𝑗) − 𝜌(𝑧 𝑗)
�� ≥ 𝜖𝑛 | Ω(𝜖𝑛)

)
≤ 𝛿𝑛

Since Pr(Ω(𝜖𝑛)) → 1 this gives the result. □

I. Relevant Moment Bounds

I.1. Moment Bounds for Section 5

Here I provide some lemmas that are useful in the proof of Lemmas A.3–A.8

Lemma I.1. Let Δ1𝑖 , Δ̃1𝑖 ,Δ
𝑎
2𝑖 , Δ̃

𝑎
2𝑖 ,Δ

𝑏
2𝑖 ,Δ̃

𝑏
2𝑖 be as in (A.2). Then under Assumption 5.1 and the moment

conditions of Theorem 5.1 there is a constant 𝑀 > 0 such that for any 𝑘 = 1, . . . , 6:

E[|Δ1𝑖|𝑘] ≤ 𝑀 E[|Δ̃1𝑖|𝑘] ≤ 𝑀

and for any 𝑘 = 1, . . . , 3:

E[|Δ𝑎2𝑖|𝑘] ≤ 𝑀𝛼𝑘 E[|Δ̃𝑘2𝑖|] ≤ 𝑀𝛼𝑘

E[|Δ𝑏2𝑖/
√
𝑛|𝑘] ≤ 𝑀𝛼𝑘 E[|Δ̃𝑏2𝑖/

√
𝑛|𝑘] ≤ 𝑀𝛼𝑘

Proof. First, since
𝑛∑
𝑗=1

ℎ2
𝑖 𝑗E[(𝑟 𝑗 − E[𝑟 𝑗])2 ≤ E[(

𝑛∑
𝑖=1

ℎ̃𝑖 𝑗𝑟 𝑗)2] ≤ 1

the constants are bounded,
∑𝑛
𝑖=1 ℎ̃

2
𝑖 𝑗
≤ 𝑐. Applying Lemma I.4 with𝑋𝑖 = ℎ𝑖 𝑗𝑟 𝑗 and𝑋𝑖 = ℎ𝑖 𝑗𝜖 𝑗(𝛽0)

we see that there is a constant 𝐴 such that for any 𝑘 = 1, . . . , 6

E
[�� 𝑛∑
𝑖=1

ℎ̃𝑖 𝑗𝑟 𝑗
��𝑘 ] ≤ 𝐴 and E

[�� 𝑛∑
𝑖=1

ℎ̃𝑖 𝑗𝜖 𝑗(𝛽0)
��𝑘 ] ≤ 𝐴 (I.1)

The bounds on E[|Δ𝑘1𝑖|] and E[|Δ̃𝑘1𝑖|] immediately follow from this result and the bounds on
moments of 𝑟𝑖 and 𝜖𝑖(𝛽0). The bounds on E[|Δ𝑎2𝑖|𝑘] and E[|Δ̃𝑎2𝑖|𝑘] also follow from (I.1) after
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noting that there is a finite constant 𝐵 such that:

E[(
𝑛∑
𝑖=1

ℎ̃2
𝑖 𝑗𝜖

2
𝑖 (𝛽0))𝑘] ≤ 𝐵

Finally to bound E[|Δ𝑏2𝑖/
√
𝑛|𝑘] and E[|Δ̃𝑏2𝑖/

√
𝑛|𝑘] apply Lemma I.6 with 𝑣 𝑗 = 𝜖2

𝑗
(𝛽0)

∑
𝑘≠𝑖 , 𝑗 ℎ̃ 𝑗𝑘𝑟𝑘 ,

noting that E[|𝑣 𝑗|3] is bounded by (I.1). □

Lemma I.2. Let 𝑁 and 𝑁−𝑖 be defined as in Appendix A.1. Under Assumptions 5.1 and 5.3 and the
moment conditions in Theorem 5.1, there is a fixed constant 𝑀 such that for all 𝑖 = 1, . . . , 𝑛 and any
𝑘 = 1, . . . , 6,

E[|𝑁|𝑘] + E[|𝑁−𝑖|𝑘] ≤ 𝑀

Proof. We show the bound for E[|𝑁|𝑘] and note that the bound for 𝑁−𝑖 follows from symmetric
logic. Write 𝜖𝑖(𝛽0) = 𝜂𝑖 + 𝛾𝑖 where 𝛾𝑖 = Π𝑖(𝛽 − 𝛽0) and 𝜂𝑖 is mean zero. Decompose 𝑁 =

𝑁1 + 𝑁2 + 𝑁3:

𝑁1 =
1√
𝑛

𝑛∑
𝑖=1

𝜂𝑖

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗 ¤𝑟 𝑗 , 𝑁2 =
1√
𝑛

𝑛∑
𝑖=1

𝑟𝑖

𝑛∑
𝑗=1

ℎ̃ 𝑗𝑖𝛾𝑗 , and 𝑁3 =
1√
𝑛

𝑛∑
𝑖=1

𝜂𝑖

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗E[𝑟 𝑗]

where ¤𝑟 𝑗 = 𝑟 𝑗 − E[𝑟 𝑗].

Since via Assumption 5.1,
∑𝑛
𝑖=1 ℎ

2
𝑗𝑖
≤ 𝑐, and |𝛾𝑗| ≤ 𝑐, we can bound,

(
𝑛∑
𝑗=1

ℎ 𝑗𝑖𝛾𝑗/
√
𝑛)4 ≤ ( 𝑐√

𝑛

𝑛∑
𝑖=1
|ℎ 𝑗𝑖|)4 ≤ 𝑐8 =⇒ (

𝑛∑
𝑗=1

ℎ 𝑗𝑖𝛾𝑗/
√
𝑛)6 ≤ 𝑐8(

𝑛∑
𝑗=1

ℎ 𝑗𝑖𝛾𝑗/
√
𝑛)2

Under Assumption 5.3, E[𝑁2
2 ] ≤ 𝑐 while Assumption 5.1 implies that (∑𝑛

𝑖=1 ℎ𝑖 𝑗E[𝑟 𝑗])2 ≤ 𝑐 so
that E[𝑁2

3 ] ≤ 𝑐2.

An absolute bound on the higher moments of𝑁2 then follows from an application of Lemma I.4
with 𝑋𝑖 = 𝑟𝑖

∑𝑛
𝑗=1 ℎ 𝑗𝑖𝛾𝑗/

√
𝑛. An absolute bound on the higher moments of 𝑁3 follows from

symmetric logic.

To bound higher moments of 𝑁1 define 𝑣𝑖 =
∑
𝑗<𝑖{𝜂𝑖ℎ𝑖 𝑗𝑟 𝑗 + ¤𝑟𝑖ℎ 𝑗𝑖𝜂 𝑗} and write 𝑁1 = 1√

𝑛

∑𝑛
𝑖=2 𝑣𝑖 .

The sequence 𝑣2 , . . . , 𝑣𝑛 is a martingale difference array. Via the same procedure as the bounds
onE[|Δ1𝑖|𝑘] as in Lemma I.1 one can verify that there is a fixed constant𝑀 such thatE[|𝑣𝑖|𝑘] ≤ 𝑀
for all 𝑘 = 1, . . . , 6. The bound on the higher moments of 𝑁 then follows from Lemma I.7.

The bounds for moments of 𝑁−𝑖 follow symmetric logic. □

Lemma I.3. Let �̃� and �̃� be defined as in Appendix A.1. Let 𝑓 (·, 𝑟) be the density function of �̃�
�̃�1/2 |𝑟.

Under Assumption 5.3 and the moment bounds of Theorem 5.1, there is a constant 𝑀 > 0 such that
sup𝑥 | 𝑓 (𝑥, 𝑟)| ≤ 𝑀 for almost all 𝑟.



Relevant Moment Bounds Page 67

Proof. Recall that

�̃� =
1√
𝑛

𝑛∑
𝑖=1

�̃�𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗 and �̃�1/2 =

√√√
1
𝑛

𝑛∑
𝑖=1

𝜅2
𝑖
(𝛽0)(

𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝑟 𝑗)2

The distribution of �̃�𝑖(𝛽0)|𝑟𝑖 is

�̃�𝑖(𝛽0)|𝑟 ∼ 𝑁
(
𝜇𝑖(𝑟𝑖), (1 − 𝜌2

𝑖 )Var(𝜖𝑖(𝛽0))
)

where𝜇𝑖(𝑟𝑖) = Π𝑖(𝛽−𝛽0)+ Cov(𝜖𝑖(𝛽0),𝑟𝑖)
Var(𝑟𝑖) (𝑟𝑖−E[𝑟𝑖]) and 𝜌𝑖 = corr(𝜖𝑖(𝛽0), 𝑟𝑖). Define Π̄𝑖 :=

∑𝑛
𝑗=1 ℎ̃𝑖 𝑗𝑟 𝑗 .

Then, conditional on 𝑟,

�̃�

�̃�1/2 ∼ 𝑁
( 1√

𝑛

∑𝑛
𝑖=1 𝜇𝑖(𝑟𝑖)Π̄𝑖√

1
𝑛

∑𝑛
𝑖=1 𝜅

2
𝑖
(𝛽0)Π̄2

𝑖

,

1
𝑛

∑𝑛
𝑖=1(1 − 𝜌2

𝑖
)Var(𝜖𝑖(𝛽0))Π̄2

𝑖

1
𝑛

∑𝑛
𝑖=1 𝜅

2
𝑖
(𝛽0)Π̄2

𝑖

)
(I.2)

The maximum of the normal density is proportional to the inverse of the standard deviation
so it suffices to show that the variance in (I.2) is bounded away from zero. To this end, notice
that under the moment bounds of Theorem 5.1 and Assumption 5.3

(1 − 𝛿2)𝑐−2 ≤ (1 − 𝜌2
𝑖 )

Var(𝜖𝑖(𝛽0))
𝜅2
𝑖
(𝛽0)

≤ 𝑐2

By Lemma J.8 to this gives that the conditional variance is also larger than (1 − 𝛿2)𝑐−2 > 0.

□

Lemma I.4. Let𝑋1 , . . . , 𝑋𝑛 be random variables such thatE[𝑋𝑖] = 𝜇𝑖 andE[(∑𝑛
𝑖=1 𝑋𝑖)2] ≤ 𝐶. Suppose

that for any 𝑖 = 1, . . . , 𝑛 there is a constant𝑈 such that

E[(𝑋𝑖 − 𝜇𝑖)3] ≤ 𝑈E[(𝑋𝑖 − 𝜇𝑖)2] and E[(𝑋𝑖 − 𝜇𝑖)6]1/3 ≤ 𝑈E[(𝑋𝑖 − 𝜇𝑖)2]

Then E[(∑𝑛
𝑖=1 𝑋𝑖)6] ≤ 64𝑈3𝐶3 + 32𝐶3.

Proof. First write

E[(
𝑛∑
𝑖=1

𝑋𝑖)2] =
𝑛∑
𝑖=1

E(𝑋𝑖 − 𝜇𝑖)2 + (
𝑛∑
𝑖=1

𝜇𝑖)2 ≤ 𝐶

To bound E[(∑𝑛
𝑖=1 𝑋𝑖)6] expand out

E[(
𝑛∑
𝑖=1

𝑋𝑖)6] = E[(
𝑛∑
𝑖=1
(𝑋𝑖 − 𝜇𝑖) +

𝑛∑
𝑖=1

𝜇𝑖)6]

≲ E[(
𝑛∑
𝑖=1
(𝑋𝑖 − 𝜇𝑖))6] + (

𝑛∑
𝑖=1

𝜇𝑖)6
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=

𝑛∑
𝑖=1

E[(𝑋𝑖 − 𝜇𝑖)6] +
𝑛∑
𝑖=1

𝑛∑
𝑗=1

E[(𝑋𝑖 − 𝜇𝑖)3(𝑋𝑗 − 𝜇𝑗)3]

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1

E[(𝑋𝑖 − 𝜇𝑖)4(𝑋𝑗 − 𝜇𝑗)2]

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1

∑
𝑘≠𝑖 , 𝑗

E[(𝑋𝑖 − 𝜇𝑖)2(𝑋𝑗 − 𝜇𝑖)2(𝑋𝑘 − 𝜇𝑘)2] + (
𝑛∑
𝑖=1

𝜇𝑖)6

≤
𝑛∑
𝑖=1

E[(𝑋𝑖 − 𝜇𝑖)6] +
𝑛∑
𝑖=1

𝑛∑
𝑗=1

E[(𝑋𝑖 − 𝜇𝑖)3]E[(𝑋𝑗 − 𝜇𝑗)3]

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1

E[(𝑋𝑖 − 𝜇𝑖)6]4/6E[(𝑋𝑗 − 𝜇𝑗)6]2/6

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1

∑
𝑘≠𝑖 , 𝑗

E[(𝑋𝑖 − 𝜇𝑖)6]1/3E[(𝑋𝑗 − 𝜇𝑖)6]1/3E[(𝑋𝑘 − 𝜇𝑘)6]1/3

+ 𝐶3

=

( 𝑛∑
𝑖=1
(E[(𝑋𝑖 − 𝜇𝑖)6])1/3

)3

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1

E[(𝑋𝑖 − 𝜇𝑖)3]E[(𝑋𝑗 − 𝜇𝑗)3] + 𝐶3

≤
( 𝑛∑
𝑖=1
(E[(𝑋𝑖 − 𝜇𝑖)6])1/3

)3

+
( 𝑛∑
𝑖=1

E[(𝑋𝑖 − 𝜇𝑖)3]
)2

+ 𝐶3

≤ 2𝑈3
( 𝑛∑
𝑖=1

E[(𝑋𝑖 − 𝜇𝑖)2]
)3

+ 𝐶3

≤ 2𝑈3𝐶3 + 𝐶3

where the implied constant in the second line is 32 by an application of Lemma J.8, the third line
comes from expanding out the power, the first inequality by application of Hölder’s inequality,
and the penultimate inequality comes from applying bounds on the third and sixth central
moments in terms of the second moments. □

Lemma I.5. Let ℎ = (ℎ1 , . . . , ℎ𝑛) ∈ R𝑛 be such that
∑𝑛
𝑖=1 ℎ

2
𝑖
≤ 𝑏. Suppose that 𝑋1 , . . . , 𝑋𝑛 are such

that E[|𝑋𝑖|𝑘] ≤ 𝑀 for all 𝑘 = 1, 2, 3. Then

E
[�� 𝑛∑
𝑖=1

ℎ2
𝑖 𝑋𝑖

��3] ≤ 𝑏3𝑀3

Proof. We can expand out

E
[�� 𝑛∑
𝑖=1

ℎ2
𝑖 𝑋𝑖

��3] ≤ 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑛∑
𝑘=1

ℎ2
𝑖 ℎ

2
𝑗 ℎ

2
𝑘
E[|𝑋𝑖||𝑋𝑗||𝑋𝑘|]

≤ 𝑀3
𝑛∑
𝑖=1

ℎ2
𝑖

𝑛∑
𝑗=1

ℎ2
𝑗

𝑛∑
𝑘=1

ℎ2
𝑘
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≤ 𝑀3 ( 𝑛∑
𝑖=1

ℎ2
𝑖 )3 ≤ 𝑐3𝑀3

□

Lemma I.6. Let 𝑣1 , . . . , 𝑣𝑛 be random variables such that E[|𝑣𝑖|3] ≤ 𝑀 for all 𝑖 = 1, . . . , 𝑛. Let
ℎ = (ℎ1 , . . . , ℎ𝑛) ∈ R𝑛 be a vector of weights such that ∥ℎ∥2 ≤ 𝑐. Then

E
[�� 1√

𝑛

𝑛∑
𝑖=1

ℎ𝑖𝑣𝑖
��3] ≤ 𝑐3𝑀

Proof. We can expand out

E
[�� 1√

𝑛

𝑛∑
𝑖=1

ℎ𝑖𝑣𝑖
��3] ≤ 1

𝑛3/2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑛∑
𝑘=1
|ℎ𝑖||ℎ 𝑗||ℎ𝑘|E[|𝑣𝑖||𝑣 𝑗||𝑣𝑘|]

≤ 𝑀

𝑛3/2

𝑛∑
𝑖=1
|ℎ𝑖|

𝑛∑
𝑗=1
|ℎ 𝑗|

𝑛∑
𝑘=1
|ℎ𝑘| ≤

𝑀

𝑛3/2∥ℎ∥
3
1 ≤ 𝑀𝑐3

where the second inequality follows from generalized Hölder’s inequality,

|E[ 𝑓 𝑔ℎ]| ≤ (E[| 𝑓 |3]E[|𝑔|3]E[|ℎ|3])1/3

and the fourth inequality from ∥ℎ∥1 ≤
√
𝑛∥ℎ∥2. □

Lemma I.7. Let 𝑣1 , . . . , 𝑣𝑛 be a martingale difference array such that E[|𝑣𝑖|𝑙] ≤ 𝑀 for all 𝑙 = 1, . . . , 𝑘.
Then there is a fixed constant 𝐶𝑘 that only depends on 𝑘 such that

E[( 1√
𝑛

𝑛∑
𝑖=1

𝑣𝑖)𝑘] ≤ 𝐶𝑘𝑀

Proof. We move to apply Theorem K.3 with 𝑋𝑡 =
∑𝑡
𝑖=1 𝑣𝑖/

√
𝑛.

E[( 1√
𝑛

𝑛∑
𝑖=1

𝑣𝑖)𝑘] ≤ E[(max
𝑠≤𝑛

𝑠∑
𝑡=1

𝑋𝑠)𝑘]

≤ 𝐶𝑘E
[ ( 𝑛∑

𝑖=1
𝑣2
𝑖 /𝑛

) 𝑘/2] ≤ 𝐶𝑘E[ 1
𝑛

𝑛∑
𝑖=1

𝑣𝑘𝑖
]
≤ 𝐶𝑘𝑀

where the second inequality comes from Theorem K.3 and the third comes from an application
of Jensen’s inequality to the sample mean. □

I.2. Useful Properties of Smooth Max

Lemma I.8 (Chernozhukov et al. (2013), Lemma A.2). For every 1 ≤ 𝑗 , 𝑘, 𝑙 ≤ 𝑝,

𝜕𝑗𝐹𝛽(𝑧) = 𝜋 𝑗(𝑧), 𝜕𝑗𝜕𝑘𝐹𝛽(𝑧) = 𝛽𝑤 𝑗𝑘(𝑧), 𝜕𝑗𝜕𝑘𝜕𝑙𝐹𝛽(𝑧) = 𝛽2𝑞 𝑗𝑘𝑙(𝑧)
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where for 𝛿 𝑗𝑘 := 1{ 𝑗 = 𝑘},

𝜋 𝑗(𝑧) := 𝑒𝛽𝑧 𝑗
/ 𝑛∑

𝑖=1
𝑒𝛽𝑧𝑖 , 𝑤 𝑗𝑘 := (𝜋 𝑗𝛿 𝑗𝑘 − 𝜋 𝑗𝜋𝑘)(𝑧)

𝑞 𝑗𝑘𝑙(𝑧) := (𝜋 𝑗𝛿 𝑗𝑙𝛿 𝑗𝑘 − 𝜋 𝑗𝜋𝑙𝛿 𝑗𝑘 − 𝜋 𝑗𝜋𝑘(𝛿 𝑗𝑙 + 𝛿𝑘𝑙) + 2𝜋 𝑗𝜋𝑘𝜋𝑙)(𝑧)

Moreover,

𝜋 𝑗(𝑧) ≥ 0,
𝑝∑
𝑗=1

𝜋𝑖(𝑧) = 1,
𝑝∑

𝑗 ,𝑘=1
|𝑤 𝑗𝑘(𝑧)| ≤ 2,

𝑝∑
𝑗 ,𝑘,𝑙=1

|𝑞 𝑗𝑘𝑙| ≤ 6

Lemma I.9 (Chernozhukov et al. (2013), Lemma A.3). For every 𝑥, 𝑧 ∈ R𝑝 ,

|𝐹𝛽(𝑥) − 𝐹𝛽(𝑧)| ≤ max
1≤ 𝑗≤𝑝

|𝑥 𝑗 − 𝑧 𝑗|.

Lemma I.10 (Chernozhukov et al. (2013), Lemma A.4). Let 𝜑(·) : R→ R be such that 𝜑 ∈ 𝐶3
𝑏
(R)

and define 𝑚 : R𝑝 → R, 𝑧 ↦→ 𝜑(𝐹𝛽(𝑧)). The derivatives (up to the third order) of 𝑚 are given

𝜕𝑗𝑚(𝑧) = (𝜕𝑔(𝐹(𝛽))𝜋 𝑗)(𝑧)
𝜕𝑗𝜕𝑘𝑚(𝑧) = (𝜕2𝑔(𝐹𝛽)𝜋 𝑗𝜋𝑘 + 𝜕𝑔(𝐹𝛽)𝛽𝑤 𝑗𝑘)(𝑧)

𝜕𝑗𝜕𝑘𝜕𝑙𝑚(𝑧) = (𝜕3𝑔(𝐹𝛽)𝜋 𝑗𝜋𝑘𝜋𝑙 + 𝜕2𝑔(𝐹𝛽)𝛽(𝑤 𝑗𝑘𝜋𝑙 + 𝑤 𝑗𝑙𝜋𝑘 + 𝑤𝑘𝑙𝜋 𝑗) + 𝜕𝑔(𝐹𝛽)𝛽2𝑞 𝑗𝑘𝑙)(𝑧)

where 𝜋 𝑗 , 𝑤 𝑗𝑘 , 𝑞 𝑗𝑘𝑙 are as described in Lemma I.8.

Lemma I.11 (Chernozhukov et al. (2013), Lemma A.5). Define 𝐿1(𝜑) = sup𝑥 |𝜑′(𝑥)|, 𝐿2(𝜑) =
sup𝑥 |𝜑′′(𝑥)|, and 𝐿3(𝜑) = sup𝑥 |𝜑′′′(𝑥)|. For every 1 ≤ 𝑗 , 𝑘, 𝑙 ≤ 𝑝,

|𝜕𝑗𝜕𝑘𝑚(𝑧)| ≤ 𝑈 𝑗𝑘(𝑧) and |𝜕𝑗𝜕𝑘𝜕𝑙𝑚(𝑧)| ≤ 𝑈 𝑗𝑘𝑙(𝑧)

where for𝑊𝑗𝑘(𝑧) := (𝜋 𝑗𝛿 𝑗𝑘 + 𝜋 𝑗𝜋𝑘)(𝑧),

𝑈 𝑗𝑘(𝑧) := (𝐿2𝜋 𝑗𝜋𝑘 + 𝐿1𝛽𝑊𝑗𝑘(𝑧)
𝑈 𝑗𝑘𝑙(𝑧) := (𝐿3𝜋 𝑗𝜋𝑘𝜋𝑙 + 𝐿2𝛽(𝑊𝑗𝑘𝜋𝑙 +𝑊𝑗𝑙𝜋𝑘 +𝑊𝑘𝑙𝜋 𝑗) + 𝐿1𝛽

2𝑄 𝑗𝑘𝑙)(𝑧)
𝑄 𝑗𝑘𝑙(𝑧) := (𝜋 𝑗𝛿 𝑗𝑙𝛿 𝑗𝑘 + 𝜋 𝑗𝜋𝑘𝛿 𝑗𝑘 + 𝜋 𝑗𝜋𝑘(𝛿 𝑗𝑙 + 𝛿𝑘𝑙) + 2𝜋 𝑗𝜋𝑘𝜋𝑙)(𝑧).

Moreover,

𝑝∑
𝑗 ,𝑘=1

𝑈 𝑗𝑘(𝑧) ≤ (𝐿2 + 2𝐿1𝛽) and
𝑝∑

𝑗 ,𝑘,𝑙=1
𝑈 𝑗𝑘𝑙(𝑧) ≤ (𝐿3 + 6𝐿2𝛽 + 6𝐿1𝛽

2).
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I.3. Moment Bounds for Theorems 5.3 and 6.1

Lemma I.12. Suppose that the moment conditions of Theorem 5.3 hold and let 𝑁 and 𝐷 be as defined
at the top of Appendix F.2 Then under 𝐻0, for any 𝑘 there is a fixed constant 𝐶𝑘 such that for any
ℓ = 1, . . . , 𝑑𝑥

E[|𝑁ℓ |𝑘] ≤ 𝐶𝑘 and E[|𝐷ℓℓ |𝑘] ≤ 𝐶𝑘 log2𝑘/𝑎(𝑛)

Proof. Let 𝜂ℓ 𝑖 = 𝑟𝑖 − E[𝑟𝑖] and write

𝑁ℓ =
1√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗𝜂ℓ 𝑗︸                        ︷︷                        ︸
𝑁1
ℓ

+ 1√
𝑛

𝑛∑
𝑖=1

𝜖𝑖(𝛽0)
𝑛∑
𝑗=1

ℎ̃𝑖 𝑗E[𝑟ℓ 𝑗]︸                      ︷︷                      ︸
𝑁2
ℓ

To bound moments of𝑁1
ℓ

use the fact that𝑁1
ℓ

is a quadratic form in mean-zero 𝑎-sub-exponential
variables. By Theorem K.1, 𝑁1

ℓ
is therefore also 𝑎-sub-exponential with parameter 𝑎/2; thus

(𝑁1
ℓ
)𝑎/2 is sub-exponential and Lemma J.2 provides the moment bound for arbitrary moments.

To bound moments of 𝑁2
ℓ

we use the fact that max𝑖
�� ∑𝑛

𝑗=1 ℎ̃𝑖 𝑗E[𝑟ℓ 𝑗]
�� is bounded by assumption

and apply Burkholder-Davis-Gundy (Theorem K.3) after adding and subtracting E[𝜖𝑖(𝛽0)].

To bound moments of 𝐷ℓℓ we decompose

|𝐷| ≤ 1
𝑛

𝑛∑
𝑖=1

𝜖2
𝑖 (𝛽0) max

1≤𝑖≤𝑛

�� 𝑛∑
𝑗=1

ℎ𝑖 𝑗𝑟 𝑗
��2

Apply Theorem K.1 to see that
∑𝑛
𝑗=1 ℎ𝑖 𝑗𝑟 𝑗 is 𝛼-sub-exponential and Lemma J.2 to bound the

RHS by a log-power of 𝑛. □

I.4. Matrix Derivative Lemmas

The purpose of this section is largely to establish some matrix derivative expressions that will
be useful for the Lindeberg interpolation in

Lemma I.13. Let 𝐷 ∈ R𝑑×𝑑 be a symmetric, real matrix such that det(𝐷) ≠ 0. Let 𝑁 ∈ R𝑑 be a vector.
The derivatives up to the derivatives of quadratic form 𝑁 ′𝐷−1𝑁 are given.

First Order:

𝜕

𝜕𝑁𝑙
= 2

𝑑∑
𝑗=1
(𝐷−1)𝑗𝑙𝑁𝑗 ,

𝜕

𝜕𝐷𝑙𝑚
= −2

𝑑∑
𝑗=1

𝑑∑
𝑘=1
(𝐷−1)𝑗𝑙(𝐷−1)𝑘𝑚𝑁𝑗𝑁𝑘 ,

Second Order:

𝜕2

𝜕𝑁𝑙𝑁𝑚
= 2(𝐷−1)𝑙𝑚 ,

𝜕2

𝜕𝑁𝑙𝜕𝐷𝑝𝑞
= −2

𝑑∑
𝑗=1
(𝐷−1)𝑗𝑝(𝐷−1)𝑞𝑙𝑁𝑗 ,

𝜕2

𝜕𝐷𝑙𝑚𝜕𝐷𝑞 𝑗
=

𝑑∑
𝑗=1

𝑑∑
𝑘=1

{
(𝐷−1)𝑙𝑝(𝐷−1)𝑞 𝑗)(𝐷−1)𝑘𝑚 + (𝐷−1)𝑘𝑝(𝐷−1)𝑚𝑞(𝐷−1)𝑙 𝑗

}
𝑁𝑗𝑁𝑘
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Third Order:

𝜕3

𝜕𝑁𝑙𝜕𝑁𝑚𝜕𝑁𝑝
= 0, 𝜕3

𝜕𝑁𝑙𝜕𝑁𝑚𝜕𝐷𝑝𝑞
= −2(𝐷−1)𝑙𝑝(𝐷−1)𝑞𝑚

𝜕3

𝜕𝐷𝑙𝑚𝜕𝐷𝑝𝑞𝜕𝑁𝑟
= 2

𝑑∑
𝑗=1

{
(𝐷−1)𝑙𝑝(𝐷−1)𝑞 𝑗(𝐷−1)𝑟𝑚 + (𝐷−1)𝑟𝑝(𝐷−1)𝑚𝑞(𝐷−1)𝑙 𝑗

}
𝑁𝑗

𝜕3

𝜕𝐷𝑙𝑚𝐷𝑝𝑞𝐷𝑟𝑠
= 2

𝑑∑
𝑗=1

𝑑∑
𝑗=1

{
(𝐷−1)𝑙𝑟(𝐷−1)𝑝𝑠(𝐷−1)𝑞 𝑗(𝐷−1)𝑘𝑚 + (𝐷−1)𝑙𝑝(𝐷−1)𝑞𝑟(𝐷−1)𝑗𝑠(𝐷−1)𝑘𝑚

+ (𝐷−1)𝑙𝑝(𝐷−1)𝑞 𝑗(𝐷−1)𝑘𝑟(𝐷−1)𝑚𝑠 + (𝐷−1)𝑘𝑟(𝐷−1)𝑝𝑠(𝐷−1)𝑚𝑞(𝐷−1)𝑙 𝑗

+ (𝐷−1)𝑘𝑝(𝐷−1)𝑚𝑟(𝐷−1)𝑞𝑠(𝐷−1)𝑙 𝑗 + (𝐷−1)𝑟𝑝(𝐷−1)𝑚𝑞(𝐷−1)𝑙𝑟(𝐷−1)𝑗𝑠
}
𝑁𝑗𝑁𝑘

Proof. The derivative of an element of the the inverse of a matrix X can be expressed (Petersen
and Pedersen, 2012)

𝜕(X−1)𝑘𝑙
𝜕X𝑖 𝑗

= −(X−1)𝑘𝑖(X−1)𝑗𝑙 (I.3)

repeated application of this identity as well as the expression of the quadratic form

𝑁 ′𝐷−1𝑁 =

𝑑∑
𝑗=1

𝑑∑
𝑘=1
(𝐷−1)𝑗𝑘𝑁𝑗𝑁𝑘

leads to the result, bearing in mind that the inverse of a symmetric matrix is symmetric. □

Lemma I.14. Let D be a symmetric positive definite matrix. Then, for any 𝑝 > 3, the derivatives of
(det(𝐷))𝑝 are given up to the third order by

𝜕 (det(𝐷))𝑝
𝜕𝐷𝑙𝑚

= 𝑝(det(𝐷))𝑝−1(𝐷−1)𝑙𝑚

𝜕2 (det(𝐷))𝑝
𝜕𝐷𝑙𝑚𝜕𝐷𝑝𝑞

=
𝑝!

(𝑝 − 2)! (det(𝐷))𝑝−2(𝐷−1)𝑝𝑞(𝐷−1)𝑙𝑚

+ 𝑝(det(𝐷))𝑝−1(𝐷−1)𝑙𝑝(𝐷−1)𝑚𝑞
𝜕3 (det(𝐷))𝑝

𝜕𝐷𝑙𝑚𝜕𝐷𝑝𝑞𝜕𝐷𝑟𝑠
=

𝑝!
(𝑝 − 3)! (det(𝐷))𝑝−3(𝐷−1)𝑟𝑠(𝐷−1)𝑝𝑞(𝐷−1)𝑙𝑚

+ 𝑝!
(𝑝 − 2)! (det(𝐷))𝑝−2

{
(𝐷−1)𝑝𝑞(𝐷−1)𝑙𝑟(𝐷−1)𝑝𝑠 + (𝐷−1)𝑝𝑟(𝐷−1)𝑞𝑠(𝐷−1)𝑙𝑚

+ (𝐷−1)𝑟𝑠(𝐷−1)𝑙𝑝(𝐷−1)𝑚𝑞
}

+ 𝑝(det(𝐷))𝑝−1
{
(𝐷−1)𝑙𝑟(𝐷−1)𝑞𝑠(𝐷−1)𝑚𝑞 + (𝐷−1)𝑙𝑝(𝐷−1)𝑚𝑟(𝐷−1)𝑞𝑠

}
Proof. We can express the derivative of the detrminant (Petersen and Pedersen, 2012),

𝜕, det(X)
𝜕X𝑖 𝑗

= det(X)(X−1)𝑖 𝑗 (I.4)

Repeated application of this and (I.3) yields the result. □
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Lemma I.15. For any 𝑝 > 4 define the function 𝛾(𝑁, vec(𝐷)) : R𝑑 × R𝑑2 by

𝛾(𝑁, vec(𝐷)) :=

(det(𝐷))𝑝(𝑁 ′𝐷−1𝑁 − 𝑐) if det(𝐷) ≠ 0

0 if det(𝐷) = 0

This function is thrice continously differentiable. Futher the 𝑘th moments of all partial derivatives of this
function up to the third order are bounded

E[(𝜕𝛼𝛾(𝑁, vec(𝐷))𝑘] ≤ 𝐶𝑘(max
𝜄≤𝑑

E[|𝐷𝜄𝜄|2𝑝𝑑𝑘] ∨max
𝜄≤𝑑

E[|𝑁𝜄𝜄|6𝑘)

where 𝐶𝑘 is a positive constant that only depends on 𝑘 and 𝑑.

Proof. The first statement is clear by examination of the derivatives in Lemmas I.13 and I.14 as
well as the inequality (I.5) below. For the moment bounds, we may extensive use of following
bounds on elements of 𝐷−1 for a positive-definite 𝐷−1:

|det(𝐷)(𝐷−1)𝑗𝑘| ≤ det(𝐷)trace(𝐷−1) ≤ 𝑑𝜆max(𝐷−1)
( 𝑑∏
𝑚=1

𝜆𝑚(𝐷)
)

= 𝑑

𝑑∏
𝑚=2

𝜆𝑚(𝐷)

≤ 𝑑
( 𝑑∑
𝑚=2

𝜆𝑚(𝐷)
)𝑑−1

≤ 𝑑(trace(𝐷))𝑑−1

(I.5)

where the first inequality uses the fact that the largest element of a positive semidefinite
matrix is on the diagonal and the fact that the diagonal elements of a positive semidefinite
matrix are weakly positive, the second inequality uses the fact that the trace is the sum of the
eigenvalues and the determinant is the product of the eigenvalues, the equality comes from

1
𝜆min(𝐷) = 𝜆max(𝐷−1), the third inequality uses the AM-GM inequality and the fourth again uses
that the trace is the sum of the (weakly positive) eigenvalues.

The moment bounds follow from (I.5) and the expressions in Lemmas I.13 and I.14. We give
an example of how this is done for the first order derivatives, higher order derivatives follow
from similar logic. For the following let 𝐴 be an arbitrary random variable. First Order.

E

����𝐴 𝜕𝛾

𝜕𝑁𝑙

����𝑘 ≲ 𝑑∑
𝑗=1

E|(trace(𝐷))𝑘𝑑𝑝𝑁 𝑘
𝑗 𝐴

𝑘|

≲
𝑑∑
𝑗=1

𝑑∑
𝜄=1

E[𝐷𝑘𝑑𝑝
𝜄𝜄 𝑁 𝑘

𝑗 𝐴
𝑘]

≤
𝑑∑
𝑗=1

𝑑∑
𝜄=1

𝛾2𝑘𝑑𝑝E[𝑁2𝑘
𝑗 𝐴

2𝑘]
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E

����𝐴 𝜕𝛾

𝜕𝐷𝑙𝑚

����𝑘 = 𝑝E

����𝐴det(𝐷)𝑝−1
𝑑∑
𝑗=1

𝑑∑
𝑗′=1
(𝐷−1)𝑙𝑚(𝐷−1)𝑗 𝑗′𝑁𝑗𝑁𝑗′

����𝑘
≲ 𝑝

𝑑∑
𝑗=1

𝑑∑
𝑗′=1

E[|(trace(𝐷))2𝑘(𝑑−1)+(𝑝−3)𝑘𝑑𝐴𝑘𝑁 𝑘
𝑗 𝑁

𝑘
𝑗′|

≤
𝑑∑
𝑗=1

𝑑∑
𝑗′=1

𝛾2𝑘𝑑(𝑝−1)E[𝐴2𝑘𝑁2𝑘
𝑗 𝑁

2𝑘
𝑗′ ]

□

J. Technical Lemmas

J.1. Probability Lemmas

Lemma J.1. Let 𝑋𝑛 be a sequence of random variables such that 𝑋𝑛 = 𝑜𝑝(1), that is for any 𝛿 > 0,
Pr(|𝑋𝑛| ≥ 𝛿) → 0. Then, there is a sequence 𝛿𝑛 → 0 such that Pr(|𝑋𝑛| ≥ 𝛿𝑛) → 0.

Proof. Take a preliminary sequence �̃�𝑛 → 0 and define

�̃� 𝑗 = inf{𝑛 : Pr(|𝑋𝑛| > �̃� 𝑗) < �̃� 𝑗}

Because Pr(|𝑋𝑛| > 𝛿) → 0 for any fixed 𝛿, we know that 𝑛 𝑗 is finite. Define a new sequence
𝛿𝑛 → 0 as below:

𝛿𝑛 =


1 if 0 ≤ 𝑛 < �̃�1

�̃�𝑖 if �̃�𝑖 ≤ 𝑛 < �̃�𝑖+1
(J.1)

By construction, this sequence satisfies Pr(𝑋𝑛 ≥ 𝛿𝑛) ≤ 𝛿𝑛 whenever 𝑛 ≥ 𝑛1. □

Lemma J.2. Suppose that 𝑋1 , . . . , 𝑋𝑛 are 𝛼-subexponential such that Pr(|𝑋𝑖| ≥ 𝑡) ≤ 2 exp(−𝑡𝛼/𝐾)
for all 𝑡 ≥ 0 and fixed constants 𝐾. For any 𝑝 ≥ 1 there is a constant 𝐶 that depends only on 𝑝, 𝐾 such
that:

E
[
max
𝑖≤𝑛

|𝑋𝑗|𝑝

(1 + log 𝑖)𝑝/𝛼

]
≤ 𝐶

As a consequence
E
[
max
𝑖≤𝑛
|𝑋𝑖|𝑝

]
≤ 𝐶(log 𝑛)𝑝/𝛼

Proof. Argument below is provided for 𝛼 = 1. This can be extended to 𝛼 ≠ 1 by noting that if
Pr(|𝑋𝑖| ≥ 𝑡) ≤ 2 exp(−𝑡𝛼/𝐾) for some 𝛼 > 0 then Pr(|𝑋𝑖|𝛼 ≥ 𝑡) ≤ 2 exp(−𝑡/𝐾).

Emax
𝑖≤𝑛

|𝑋𝑖|𝑝
(1 + log 𝑖)𝑝 =

∫ ∞

0
Pr

(
max
𝑖

|𝑋𝑖|𝑝
(1 + log 𝑖)𝑝 > 𝑡

)
𝑑𝑡

=

∫ 2𝑝/𝛼

0
Pr

(
max
𝑖

|𝑋𝑖|𝑝
(1 + log 𝑖)𝑝 > 𝑡

)
𝑑𝑡 +

∫ ∞

2𝑝/𝛼
Pr

(
max
𝑖

|𝑋𝑖|𝑝
(1 + log 𝑖)𝑝 > 𝑡

)
𝑑𝑡
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≤ 2𝑝 +
∫ ∞

2𝑝/𝛼

𝑛∑
𝑖=1

Pr
(
|𝑋𝑖|

1 + log 𝑖 > 𝑡1/𝑝
)
𝑑𝑡

≤ 2𝑝 +
∫ ∞

2𝑝

𝑛∑
𝑖=1

2 exp
(
−
𝑡1/𝑝(1 + log 𝑖)

𝐾

)
𝑑𝑡

= 2𝑝 + 2
𝑛∑
𝑖=1

∫ ∞

2𝑝
exp

(
− 𝑡

1/𝑝

𝐾

)
𝑖−𝑡

1/𝑝
𝑑𝑡

≤ 2𝑝 + 2
𝑛∑
𝑖=1

∫ ∞

2𝑝
exp(−𝑡−1/𝑝/𝐾)𝑖−2 𝑑𝑡

≤ 2𝑝 + 2
( 𝑛∑
𝑖=1

𝑖−2
) ( ∫ ∞

2𝑝
exp(−𝑡−1/𝑝/𝐾) 𝑑𝑡

)
Both the integral and the summation are bounded, which gives the result. □

J.2. Matrix Lemmas

Lemma J.3. Given a matrix 𝑀 and a matrix 𝑃 of full rank, the matrix 𝑀 and the matrix 𝑃−1𝑀𝑃 have
the same eigenvalues.

Proof. Suppose 𝜆 is a eigenvalue of 𝑃−1𝑀𝑃 with eigenvector 𝑝. Then

𝑃−1𝑀𝑃𝑣 = 𝜆𝑣 =⇒ 𝑀(𝑃𝑣) = 𝜆𝑃𝑣

Hence 𝑃𝑣 is an eigenvector of 𝑀 with eigenvalue 𝜆. Similarly, given an eigenvector 𝑣 of 𝑀, it
can be shown that 𝑃−1𝑣 is an eigenvector of 𝑃−1𝑀𝑃;

𝑃−1𝑀𝑃(𝑃−1𝑣) = 𝑃−1𝑀𝑣 = 𝜆𝑃−1𝑣

□

Lemma J.4. Let 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑛 be real symmetric positive semidefinite matrices. For an
arbitary square matrix 𝑀 let 𝜆𝑘(𝑀) denote the 𝑘 th largest eigenvalue of 𝑀. Then for any 𝑘 = 1, . . . , 𝑛:

𝜆𝑘(𝐴)𝜆𝑛(𝐵) ≤ 𝜆𝑘(𝐴𝐵) ≤ 𝜆𝑘(𝐴)𝜆1(𝐵)

Lemma J.5. Let 𝐷 ∈ R𝑛×𝑛 be a diagonal real matrix such that 𝑑𝑖𝑖 ∈ [𝑢,𝑈] for all 𝑖 = 1, . . . , 𝑛. Let
𝐴 ∈ R𝑛×𝑛 be a symmetric real matrix. For an arbitrary square matrix 𝑀, let 𝜆𝑘(𝑀) denote the 𝑘 th

largest eigenvalue of 𝑀. Then for any 𝑘 = 1, . . . , 𝑛:

𝑢𝜆𝑘(𝐴2) ≤ 𝜆𝑘(𝐴𝐷𝐴) ≤ 𝑈𝜆𝑘(𝐴2)

Proof. Consider any vector 𝑎 ∈ R𝑛 and define a = 𝑎′𝐻. Then

𝛼′𝐻𝐷𝐻𝛼 = a′𝐷a =

𝑛∑
𝑖=1

𝑑𝑖𝑖(a𝑖)2 ∈
[
𝑢

𝑛∑
𝑖=1
(a𝑖)2 , 𝑈

𝑛∑
𝑖=1
(a𝑖)2

]



Assorted Results from Literature Page 76

=

[
𝑢 × 𝑎′𝐻2𝑎, 𝑈 × 𝑎′𝐻2𝑎

]
The result then follows from an application of Courant-Fischer-Weyl min-max principle. □

Lemma J.6. Let𝑋1 , . . . , 𝑋𝑛 denote i.i.d standard normal random variables and 𝑎1 , . . . , 𝑎𝑛 denote weakly
positive constants. Then

Pr ©«
𝑛∑
𝑖=1

𝑎𝑖𝑋
2
𝑖 ≤ 𝜖

𝑛∑
𝑖=1

𝑎𝑖
ª®¬ ≤
√
𝑒𝜖

J.3. Miscellaneous Lemmas

Lemma J.7. Let 𝑎1 , . . . , 𝑎𝑛 and 𝑏1 , . . . , 𝑏𝑛 be two sequences of real numbers. If 𝑎𝑖 ≤ 𝑈𝑏𝑖 for some
𝑈 > 0, then

∑
𝑖 𝑎𝑖/

∑
𝑖 𝑏𝑖 ≤ 𝑈 . Conversely if 𝑎𝑖 ≥ 𝐿𝑏𝑖 for some 𝐿 > 0 then

∑
𝑖 𝑎𝑖/

∑
𝑖 𝑏𝑖 ≥ 𝐿.

Proof. Replace 𝑎𝑖 ≤ 𝑈𝑏𝑖 for the upper bound and 𝑎𝑖 ≥ 𝐿𝑏𝑖 for the lower bound. □

The following is a standard bound, but it is used a lot so it is restated here.

Lemma J.8. Let 𝑎1 , . . . , 𝑎𝑚 be constants and 𝑝 > 1. Then

|𝑎1 + . . . 𝑎𝑚|𝑝 ≤ 𝑚𝑝−1
𝑚∑
𝑖=1
|𝑎𝑖|𝑝

Proof. Apply Hölder’s inequality with 1
𝑝 +

𝑝−1
𝑝 = 1 to the vectors (𝑎1 , . . . , 𝑎𝑚) ∈ R𝑚 and

(1, . . . , 1) ∈ R𝑚 □

K. Assorted Results from Literature

K.1. Concentration Inequalities and Tail Bounds

Theorem K.1 (Gotze et al. (2021)*Theorem 1.2). Let 𝑋1 , . . . , 𝑋𝑛 be independent random variables
satisfying ∥𝑋𝑖∥Ψ𝑎 ≤ 𝑀 for some 𝑎 ∈ (0, 1] ∪ {2} and let 𝑓 : R𝑛 → R be a polynomial of total degree
𝐷 ∈ N. Then for all 𝑡 > 0;

Pr(| 𝑓 (𝑋) − E[ 𝑓 (𝑋)]| ≥ 𝑡) ≤ 2 exp
(
− 1
𝐶𝐷,𝑎

min
1≤𝑑≤𝐷

(
𝑡

𝑀𝑑∥E 𝑓 (𝑑)(𝑋)∥HS

) 𝑎/𝑑)
In particular, if ∥E 𝑓 (𝑑)(𝑋)∥HS ≤ 1 for 𝑑 = 1, . . . 𝐷, then

E exp
(
𝐶𝐷,𝑎

𝑀𝑎
| 𝑓 (𝑋)| 𝑎𝐷

)
≤ 2,

or equivalently
∥ 𝑓 (𝑋)∥Ψ 𝑎

𝐷
≤ 𝐶𝑑,𝑎𝑀𝐷
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Theorem K.2 (Hoeffding’s Inequality). Let 𝑋1 , . . . , 𝑋𝑛 be independent, mean-zero sub-gaussian
random variables, and let 𝑎 = (𝑎1 , . . . , 𝑎𝑛) ∈ R𝑛 . Then, for every 𝑡 ≥ 0, we have

Pr
{���� 𝑛∑

𝑖=1
𝑎𝑖𝑋𝑖

���� ≥ 𝑡} ≤ 2 exp
(
− 𝑐𝑡2

𝐾2∥𝑎∥22

)
where 𝐾 = max𝑖 ∥𝑋𝑖∥𝜓2 .

Theorem K.3 (Burkholder-Davis-Gurdy for Discrete Time Martingales). For any 1 ≤ 𝑘 < ∞
there exist positive constants 𝑐𝑘 and 𝐶𝑘 such that for all local martingales with 𝑋0 = 0 and stopping
times 𝜏

𝑐𝑘E
[ ( 𝜏∑

𝑡=1
(𝑋𝑡 − 𝑋𝑡−1)2

) 𝑘/2] ≤ E
[
(sup
𝑡≤𝜏

𝑋𝑡)𝑘
]
≤ 𝐶𝑘E

[ ( 𝜏∑
𝑡=1
(𝑋𝑡 − 𝑋𝑡−1)2

) 𝑘/2]
K.2. Anticoncentration Bounds

Let 𝜉 ∈ R𝑛 follow a normal distribution on R𝑛 with mean zero and covariance matrixΣ𝜉. Order
the eigenvalues of Σ𝜉 in non-increasing order 𝜆1𝜉 ≥ 𝜆2𝜉 ≥ ... ≥ 𝜆𝑛𝜉. Define the quantities

Λ2
𝑘𝜉 =

∞∑
𝑗=𝑘

𝜆2
𝑗𝜉 , 𝑘 = 1, 2

Theorem K.4 (Götze et al. (2019), Theorem 2.6). Let 𝜉 be a gaussian element with zero mean and
covariance Σ𝜉. Then it holds for any a ∈ R𝑛 that

sup
𝑥≥0

𝑝𝜉(𝑥,a) ≲ (Λ1𝜉Λ2𝜉)−1/2

where 𝑝𝜉(𝑥, 𝑎) denotes the p.df of ∥𝜉 − a∥2.

We use the following anticoncentration lemma from Nazarov (2003) noted in Chernozhukov
et al. (2017).

Lemma K.1. Let 𝑌 = (𝑌1 , . . . , 𝑌𝑝)′ be a centered Gaussian random vector in R𝑝 such that E[𝑌2
𝑗
] ≥ 𝑏

for all 𝑗 = 1, . . . , 𝑝 and some constant 𝑏 > 0. Then for every 𝑦 ∈ R𝑝 and 𝑎 > 0,

Pr(𝑌 ≤ 𝑦 + 𝑎) − Pr(𝑌 ≤ 𝑦) ≤ 𝐶𝑎
√

log(𝑝)

where 𝐶 is a constant only depending on 𝑏.

K.3. Gaussian Comparasions and Approximations

We also use the following gaussian approximation results from Belloni et al. (2018), Cher-
nozhukov et al. (2017). Let 𝑋1 , . . . , 𝑋𝑛 ∈ R𝑝 be independent, mean zero, random vectors and
let 𝑌1 , . . . , 𝑌𝑛 ∈ R𝑝 be independent random vectors such that 𝑌𝑖 ∼ 𝑁(0,E[𝑋𝑖𝑋′𝑖 ]). Suppose
that the researcher does not directly observe 𝑋1 , . . . , 𝑋𝑛 but instead observes noisy estimates
𝑋1 , . . . , 𝑋𝑛 ∈ R𝑝 .
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Define the sums

𝑆𝑋𝑛 =
1√
𝑛

𝑛∑
𝑖=1

𝑋𝑖 𝑆𝑌𝑛 =
1√
𝑛

𝑛∑
𝑖=1

𝑌𝑖

Let𝒜re be the class of all hyperrectangles in R𝑝 ; that is,𝒜re consists of all sets 𝐴 of the form

𝐴 = {𝑤 ∈ R𝑝 : 𝑎 𝑗 ≤ 𝑤 𝑗 ≤ 𝑏 𝑗 for all 𝑗 = 1, . . . , 𝑝}

for some −∞ ≤ 𝑎 𝑗 ≤ 𝑏 𝑗 ≤ ∞, 𝑗 = 1, . . . , 𝑝. Define

𝜌𝑛(𝒜re) B sup
𝐴∈𝒜re

��Pr(𝑆𝑋𝑛 ∈ 𝐴) − Pr(𝑆𝑌𝑛 ∈ 𝐴)
��

Bounding 𝜌𝑛(𝒜re) relies on the following moment conditions:

Assumption K.1. Suppose there are constants 𝐵𝑛 ≥ 1, 𝑏 > 0, 𝑞 > 0 such that

(i) 𝑛−1 ∑𝑛
𝑖=1 E[𝑋2

𝑖 𝑗
] ≥ 𝑏 for all 𝑗 = 1, . . . , 𝑝

(ii) 𝑛−1 ∑𝑛
𝑖=1 E[|𝑋𝑖 𝑗|2+𝑘] ≤ 𝐵𝑘𝑛 for all 𝑗 = 1, . . . , 𝑝 and 𝑘 = 1, 2.

(iii) E[(max1≤ 𝑗≤𝑝 |𝑋𝑖 𝑗|/𝐵𝑛)4] ≤ 1 for all 𝑖 = 1, . . . , 𝑛 and
(
𝐵4
𝑛 ln7(𝑝𝑛)
𝑛

)1/6
≤ 𝛿𝑛 .

as well as the following bounds on the estimation error

Assumption K.2. The estimates �̂�1 , . . . , �̂�𝑛 satisfy

Pr

(
max
1≤ 𝑗≤𝑝

E𝑛[(𝑋𝑖 𝑗 − 𝑋𝑖 𝑗)2] > 𝛿2
𝑛/log2(𝑝𝑛)

)
≤ 𝛽𝑛

Theorem K.5 (Belloni et al. (2018), Theorem 2.1). Suppose that Assumptions K.1 and K.2 hold.
Then there is a constant 𝐶 which depends only on 𝑏 such that

𝜌𝑛(𝒜re) ≤ 𝐶{𝛿𝑛 + 𝛽𝑛}

Let 𝑒1 , . . . , 𝑒𝑛
iid∼ 𝑁(0, 1) be generated independently of the data. A gaussian bootstrap draw is

defined

𝑆𝑋,★𝑛 B
1√
𝑛

𝑛∑
𝑖=1

𝑒𝑖𝑋𝑖

Theorem K.6 (Belloni et al. (2018), Theorem 2.2). Suppose that Assumptions K.1 and K.2 hold.
Then there is a constant 𝐶 which depends only on 𝑏 such that

sup
𝐴∈𝒜re

��Pr𝑒(𝑆𝑋,★𝑛 ∈ 𝐴) − Pr(𝑆𝑌𝑛 ∈ 𝐴)
�� ≤ 𝐶𝛿𝑛

with probability at least 1− 𝛽𝑛 − (log 𝑛)−2 where Pr𝑒(·) denotes the probability measure only taken with
respect to the variables 𝑒1 , . . . , 𝑒𝑛 conditional on the data used to estimate 𝑋.


