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Setup

Consider a heteroskedastic linear IV model;

yi=x;p+z;,T +e;, Eleiz]=0

Researcher observes (y;, xi, z;)’ and is interested in testing Ho : B = o vs Hy : B # Po.

* Outcome y; € R;
° e.g income.
* Endogenous Regressor(s) x; € Rx;
° e.g years of education
* Instruments z; = (217, 22;)’ € R% x Rdzdc
° e.g demographic characteristics, quarter of birth.

° Potentially high-dimensional, d, > n, and weakly related to x;.
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Existing Weak IV Robust Tests

When weak instruments are suspected, want to use identification robust tests. Validity of

these tests rely on alternate assumptions about number of instruments.

* Low Dimensional: Staiger and Stock (1997), Kleibergen (2002), Moreira (2003).

° Analyses treat d as fixed or growing slowly with sample size. Tests control size under
heteroskedasticity when d3/n — 0 (Andrews and Stock, 2007).
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Existing Weak IV Robust Tests

When weak instruments are suspected, want to use identification robust tests. Validity of

these tests rely on alternate assumptions about number of instruments.

* Low Dimensional: Staiger and Stock (1997), Kleibergen (2002), Moreira (2003).

° Analyses treat d as fixed or growing slowly with sample size. Tests control size under
heteroskedasticity when d3/n — 0 (Andrews and Stock, 2007).

® Many Instruments: Mikusheva and Sun (2021), Matsushita and Otsu (2022).
° Allow d;/n — g € [0,1) but use Chao et al. (2012) CLT that requires d; — oo.

° If d, — oo slowly, finite sample size control can be poor Lim et al. (2024) .
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Existing Weak IV Robust Tests

When weak instruments are suspected, want to use identification robust tests. Validity of

these tests rely on alternate assumptions about number of instruments.

* Low Dimensional: Staiger and Stock (1997), Kleibergen (2002), Moreira (2003).

° Analyses treat d as fixed or growing slowly with sample size. Tests control size under
heteroskedasticity when d3/n — 0 (Andrews and Stock, 2007).

® Many Instruments: Mikusheva and Sun (2021), Matsushita and Otsu (2022).
° Allow d;/n — g € [0,1) but use Chao et al. (2012) CLT that requires d; — oo.

° If d, — oo slowly, finite sample size control can be poor Lim et al. (2024) .

* High Dimensional: Belloni et al. (2012), Mikusheva (2023).

° d, > n allowed under strong identification but limited work when identification is weak.

° Unclear how to pre-test for weak-IV when using Lasso/ML first stage.
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Motivation

Even when d, < 1, these assumptions can be difficult to interpret.

1. Bastos et al. (2018). Export Destinations and Input Prices, AER.

° d3 =1,000,000 > n = 45,659;
° d, =100 > co.

2. Gilchrist and Sands (2016). Something to Talk About, JPE.
° 3 ~ 140,000 > n =1,671;

o 4, =525 co.

3. Paravisini et al. (2014). Dissecting the Effect of Credit on Trade, ReStud.

° 43 =1,000 « 1 = 5,996;

° dz:10—?>oo.

4. Derenoncourt (2022). Can You Move to Opportunity? AER.
° % =729 >n =239

?
° d,=9 — oo.
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Contribution

1. Propose a new test that can be applied in any of settings mentioned above.

° Relies on a nuisance parameter that is easy to estimate using “out-of-the-box” methods.

° Incorporate first stage information using ridge regression.

2. Limiting x2(dy) distribution of test statistic is derived via direct gaussian approximation.

° Number of instruments can be larger than 7, existing CLTs cannot be applied;
° Limiting distribution of test statistic is pivotal and does not require d, — oo.

3. To improve power against certain alternatives, I propose a combination with sup-score
test of Belloni et al. (2012).

Navjeevan (Texas A&M) An Identification and Dimensionality Robust Test for Linear IV 4/22



Contribution

n d; 0 New Test And. Rubin J.AR ]J.LM
200 30 0.3 0.0498 0.0096 0.1090  0.0318
0.6 0.0562 0.0088 0.1104  0.0292

75 03 0.0488 0.0168 0.1144 0.0380

0.6 0.0516 0.0122 0.1166  0.0390

500 30 0.3 0.0554 0.0174 0.0940 0.0272
0.6 0.0570 0.0206 0.0984  0.0280

75 03 0.0500 0.0274 0.1028  0.0470

0.6 0.0522 0.0230 0.1002  0.0434

Average 0.0526 0.0169 0.1057  0.0354

Table 1: Simulated size of various tests with nominal level @ = 0.05 under
weak identification and heteroskedastic errors. Parameter g controls
degree of endogeneity
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Prior Literature

In addition to previously mentioned results, contribute to the following literatures:

* Weak Identification: Nelson and Startz (1990), Bound et al. (1995), Stock and Wright
(2000), Ahmad et al. (2001), Andrews et al. (2006), Hansen et al. (2008), Chaudari and
Zivot (2009), Andrews and Cheng (2012), Cheng (2008, 2015), Chaudari et al. (2014),
Andrews and Guggenberger (2019), Andrews and Mikusheva (2016, 2022, 2023).

* Many/High-Dimensional Instruments: Bekker (1994), Hahn (2002), Chao and Swanson
(2005), Han and Phillips (2006), Anatolyev (2012), Adusumilli (2017), Gold et al. (2020),
Lim et al. (2022), Fan et al. (2023).

* Gaussian Approximation: Lindeberg (1922), Chatterjee (2006), Pouzo (2015),
Chernozhukov et al. (2013, 2017), Graham (2017).
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Model

Focus on the case where d, = 1. With first stage, can write model as

yi=xif +¢€
xi = Blx;| zi] +v; E[(e;,vi)'|zi] =0
————
I1;

* Controls z1; assumed to be partialled out of (y;, x;);

* Random variables {(z;, €;, v;)'}_; independent and identically distributed;

Additionally, define the null errors €;(Bo) := y; — xifo.
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Model

Focus on the case where d, = 1. With first stage, can write model as

yi=xif +¢€
xi = Blx;| zi] +v; E[(e;,vi)'|zi] =0
————
I1;

* Controls z1; assumed to be partialled out of (y;, x;);

* Random variables {(z;, €;, v;)'}_; independent and identically distributed;
Additionally, define the null errors €;(Bo) := y; — xifo.
Remark.

All results hold conditionally on a realization of the instruments. Having described basic

model, treat them as fixed moving forward.
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Ideal Test Statistic

Ideal test would use first stage to test null hypothesis (Chamberlain, 1987).

(Zle ei(ﬂo)l'lz‘)2

N T a2
g

Ideal(Bo) =

Unfortunately, plugging in a naive estimate of the first-stage is not viable when identification

is weak.

* Distribution of first-stage estimate becomes relevant to distribution of test statistic;

cannot approximate limiting behavior without knowledge of underlying DGP.
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Test Statistic

Instead, borrow an idea from Kleibergen (2002, 2005) and construct I:I,' to be uncorrelated

with structural errors.

1. First partial out null errors, €;(Bo), from the endogenous variable, x;, using a nuisance
function.

° Nuisance function is simple to estimate. Consistency achievable with standard methods when
d, < n or using ML methods when d, > n.

° If errors are homoskedastic, nuisance function is a constant.

Nuisance Parameter

2. ConstructI1; viaa jackknife-ridge regression of “partialled-out” endogenous variable on
instruments.
° Combining jackknife-and partialling out approaches leaves I independent of €;(Bp) and
uncorrelated with €;(Bo).
° First-stage estimate not required to be consistent so in principle other options are available.
Ridge allows d;, > n.
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Test Statistic

Test statistic is then constructed

(3, eio)i)?

i=1 ez(ﬁO)ﬁ?

1

JK(Bo) =

Key Idea: If all variables were normally distributed, could condition on {ﬁi}?:l and see that
JK(Bo) = x*(1) under Ho.
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Gaussian Approximation

Typically justify treating variables as if they were normally distributed through CLT(s) and

CMT. However, these standard tools are not applicable here:

* Main Issue. Allow d, > n so central limit theorems are not applicable.

° Evenif d; < n, denominator looks like a randomly weighted quadratic form, so unclear how to

proceed.

® Secondary. First-stage estimates may not be consistent, behavior of numerator and
denominator can both “jump around” in limit.

° Prevents application of CMT. Also an issue when controlling estimation error.
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Gaussian Approximation

Instead, apply modifications of Lindeberg’s interpolation argument (Lindeberg, 1922).

* Basic Idea: One-by-one replace terms in expression of JK(fo) with gaussian analogs and

bound resulting one-step distributional changes.

Interpolation argument needs to be modified to accomodate for a “divide-by-zero” problem.

* Standard argument require derivatives w.r.t individual observations to have bounded

moments.

¢ This will not be satisfied under weak identification since denominator of test statistic can

be arbitrarily close to zero.

* When dy = 1, problem can be simplified, but when d, > 1 more involved argument is

developed.
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Managing Estimation Error

Let JKc(Bo) be the version of the test statistic constructed with jointly Gaussian variables.

Suppose moment, balanced design, and consistency assumptions @ hold. Then, in local

neighborhoods & of Hy,
sup| Pr(JK(Bo) < a) - Pr(JKc(fo) < a)| = 0
aeR

In particular, under Ho, JK(Bo) ~ x2(1).
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Power Properties

Process of partialling out structural errors introduces bias into first stage estimates. Against

certain alternatives first stage signal is “erased”, E[TT;] = 0 Vi € [n], and test has trivial power.

* In “low-dimensional” literature, this is dealt with by combining K-statistic with
Anderson-Rubin based on conditioning statistic.
° Moreira (2003), Kleibergen (2005), Andrews (2016).

* Will take a similar approach, but need to find conditioning and mixing statistics.
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Combination Test

Combine JK(Bo) test with sup-score test of Belloni et al. (2012). Level (1 — &) sup-score test

rejects if

% Z €i(Bo)zei

i=1

S(Bo) := sup

teldz]

S

is larger than a bootstrap critical value c;_ .
-

® Sup-score test does not inorporate first-stage information but does not face a power

decline against particular alternatives.

* Has correct asymptotic size even when d; > n.
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Combination Test

Conditioning statistic, C, attempts to detect whether first stage signal is erased.

C=sup

i€[n]

Combination test decides which test to run based on value of conditioning statistic.

Ty = 5B >} ifCs
1{JK(B0) > x2_, ()} otherwise

In practice, take 7 to be the 75t quantile of conditioning statistic under assumption that

first-stage signal is erased.

Conditioning Statistic Quantiles
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Combination Test

Suppose the conditions of Theorem 1 hold along with strengthened moment and balanced

design & conditions. Further, assume logM (dzn)/n — 0 for a defined constant M. Then,

the test T(Bo; 7) has asymptotic size « for any choice of cutoff 7.

Proof establishes joint Gaussian approximation of test and conditioning statistics. Then uses
that gaussian test statistics are marginally independent of conditioning statistic under Hp.

Navjeevan (Texas A&M) An Identification and Dimensionality Robust Test for Linear IV 17/22



Empirical Application: Setup

Iapply the proposed testing procedures to the data of Gilchrist and Sands (2016). The data
consists of 1,671 opening weekend days & from 2002 to 2012. For each weekend day, i, we

observe

* The total sales of wide-released @ movies 7w days after opening weekend day i, for
w=0,...,5.

* A vector of 52 weather related instrumental variables

* A vector of date controls to control for seasonality in movie viewership.
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Empirical Application: Setup

Interested in spillover effects on sales in later weeks from a strong opening weekend.

Formally, interested in parameters f, forw =1, ..., 6 from the linear model
Sales,; = BwSalesp; + €y 1)

where
* Salesy; represents the sales of newly-released movies on opening weekend day i
®* Forw=1,...,5, Sales;;i represents the sales of the same movies 7w days after opening
day i

® Salesg; = Zi}:l Salesy;.

To hand large d,, authors employ a post-Lasso estimate of the first stage. In paper, I point out

that the reported F-statistic can be misleading.
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Empirical Application: Results

Parameter B2 B3 Ba Bs Be B7
Estimate 0.475 0.269 0.164 0.121 0.093 1.222
(s.e) (0.024) (0.023) 0.017) (0.013) (0.010) (0.074)
Initial instrument set, d, = 52
—0.114— —0.114— «—0.074— —0.074—> «—0.046 — «—0.375—
JK(Bo) [0.441,0.555]  [0.234,0.348]  [0.127,0.201]  [0.936,0.167]  [0.0736,0.120]  [0.989,1.365]
«——0.033— 0561 —>
S(Bo) 0 [0.294,0.328] 0 0 0 [0.989,1.551]
0140 — —0.127— «—0.087 — —0.074— «—0.060 — —0.441—
JLM [0.428,0.569]  [0.221,0.348]  [0.134,0.221]  [0.100,0.174] [0.080, 0.140] [0.989,1.384]
Initial instruments plus all interactions with temp. instruments, d, = 524
—0.040 — «—0.033— —0.020— —0.013— —0.007 — «—0.120—
JK(Bo) [0.462,0.502]  [0.268,0.301]  [0.154,0.174]  [0.094,0.107]  [0.067,0.074]  [1.043,1.164]
0047 — 0207 — «—0.060 —
S(Bo) [0.415,0.462] 0 0 [0.040, 0.247] [0.161,0.221] 0
«——0.080— «—0.060 — «—0.040 — —0.027— «—0.013— —0.227—
LM [0.441,0.522]  [0.247,0.308]  [0.147,0.187]  [0.094,0.120]  [0.067,0.080]  [0.990,1.217]

Table 2: 95% Confidence Intervals and Interval Lengths in the data of Gilchrist and Sands (2016).
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Empirical Application: Results

Tighter CIs also seen in second application to data of Angrist and Krueger (1991).

Number of Instruments JAR JLM JK(Bo) S(Bo)

—0.193— —0.066— —0.034—>

Initial Instrurx)1€nt Set [0.008,0.201] [0.067,0.133]  [0.067,0.101] 0
=

—0249— —0.098 — «—0.034—

All Interactions [-0.047,0202]  [0.025,0.123]  [0.008,0.042]  ©
(d2=1,530)

Table 3: 95% Confidence Intervals and Interval Lengths in the data of Angrist and Krueger (1991).

Paper provides explanations for improvements in power:
1. JK(Bo) statistic makes use of higher quality first stage estimators.

2. Individual scores in numerator of JK(fp) statistic are uncorrelated. Variance of score does

not need to account for covariance between terms.
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Conclusion

This paper proposes a new test for the structural parameter in a linear IV model. This

proposed test

1. Has exact asymptotic size so long as a nuisance parameter can be consistently estimated.
This is possible under approximate sparsity even when d, > n but does not require

d, — oo.
2. Can be combined with the sup-score test to improve power against certain alternatives.

3. Is shown to perform well in an empirical application and simulation study.
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Conclusion

This paper proposes a new test for the structural parameter in a linear IV model. This

proposed test

1. Has exact asymptotic size so long as a nuisance parameter can be consistently estimated.
This is possible under approximate sparsity even when d, > n but does not require

d, — oo.
2. Can be combined with the sup-score test to improve power against certain alternatives.

3. Is shown to perform well in an empirical application and simulation study.

Thank you all very much
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Conditioning Statistic

Power decline occurs when E[T1;] ~ 0. Conditioning statistic attempts to detect this event

C= max|—H|

i€[n]

Quantiles of C can be calculated under the assumption that E[[1;] = 0 via multiplier bootstrap

procedure.

1
(1 - 0) quantile =~ (1 - 0) quantile of max |% Z eih,-jr]-| conditional on data
j#i
whereey, ..., e, are iid N(0, 1) bootstrap weights, hij are the linear weights used to construct

IT;, and rq, . .., r, represent the “partialled-out” versions of x1, ..., x;.



Estimating Nuisance Parameter

Parameter p(z;) is conditional slope parameter from OLS of x; on €;(80). Under Hj it solves

the population problem;

plep = arg min B (x; - ilpo)p(z))’]
Pz

If p(z;) = b(z;)'y + &; for a basis b(z;) € R% then

y = argminE| v - (o)) 7))



Limiting Distribution Assumptions

For any v > 0 and random variable X, define the Orlicz quasi-norm
[IXlly, =inf{t >0:Eexp(|X|"/t") < 2}
1. Moment Assumptions There is a constant ¢ > 1 and v € (0, 1] U {2} such that || ;]| y,, < cand
c ' < E[|ei)|ri|¥] < cforanyi e [n]and 0 < I +k < 6.
2. Balanced Design Let l:I" = Z]-#,v hijrj. Assume that there is a constant ¢ > 1 such that
max (P
I ELR]

Plus a technical condition requiring that the hat matrix H is constructed using > 1 effective

instrument.

3. Consistency The function p(z;) has an approximately sparse representation in basis b(z;) and

researcher has access to an estimator ¥ that satisfies || 7 — 7|1 — 0.

< Theorem 1



Infeasible Local Power Assumptions

For any v > 0 and random variable X, define the Orlicz quasi-norm

IXlly, =inf{t > 0:Eexp(IX|"/t") < 2}

1. Moment Assumptions There is a constant ¢ > 1 such that E[lei)'|7i|¥] < ¢ for any i € [n]
and0<I+k<6.

2. Balanced Design Let ﬁf = Xj#i hijrj. Assume that there is a constant ¢ > 1 such that
max B(P]_
T 2L BIAT)2

Plus a technical condition requiring that the hat matrix H is constructed using > 1

effective instrument.



Local Neighborhoods

Local Neighborhoods are defined by

1. The local power index P is bounded, P < c.

2. A technical condition roughly requiring that |E[e;(B0)]| < |Elr;]| for alli € [n].



Strengthened Local Neighborhoods

Local Neighborhoods are defined by

1. The local power index P is bounded, P < c.

=255 2]

2. A technical condition roughly requiring that |E[b,(z;)ei(Bo)]| < |E[r;]| for alli € [n] and
{ € [dy).



Combination Test

In practice, I take 7 to be the 75t quantile of conditioning statistic under assumption that

E[ﬁl[] =0 for alli € [n]. Simulated;

Eji it

= h2)1/2 conditional on {y;, xi, zi}1.
j#i 1

7 = 40" quantile of sup
i€[n]

where ey, ..., e, areii.d standard normal generated independently of the data.



Combination Test Conditions

In addition to the conditions of Theorem 2, assume that there is a constant ¢ > 1 such that
1. Thereisav € (0,1] U {2} such that ||7il|y, < ¢;
2. The instruments and hat matrix are balanced in the sense that

Zgi hij

1 22)1/2‘+n}3‘x‘(1 n hg)l/Z

(ﬁ i=1%¢i n ~i=1"%

max
Gi

‘Sc

3. log7+4/v(dzn) — 0.
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