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Setup

Consider a heteroskedastic linear IV model;

yi = x′i𝛽 + z′1iΓ + 𝜖i , E[𝜖i |zi] = 0

Researcher observes (yi , xi , zi)′ and is interested in testing H0 : 𝛽 = 𝛽0 vs H1 : 𝛽 ≠ 𝛽0.

• Outcome yi ∈ R;
◦ e.g income.

• Endogenous Regressor(s) xi ∈ Rdx ;
◦ e.g years of education

• Instruments zi = (z1i , z2i)′ ∈ Rdc × Rdz−dc .
◦ e.g demographic characteristics, quarter of birth.
◦ Potentially high-dimensional, dz ≫ n, and weakly related to xi.
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Existing Weak IV Robust Tests

When weak instruments are suspected, want to use identification robust tests. Validity of
these tests rely on alternate assumptions about number of instruments.

• Low Dimensional: Staiger and Stock (1997), Kleibergen (2002), Moreira (2003).
◦ Analyses treat dz as fixed or growing slowly with sample size. Tests control size under

heteroskedasticity when d3
z/n → 0 (Andrews and Stock, 2007).

• Many Instruments: Mikusheva and Sun (2021), Matsushita and Otsu (2022).
◦ Allow dz/n → 𝜚 ∈ [0, 1) but use Chao et al. (2012) CLT that requires dz → ∞.
◦ If dz → ∞ slowly, finite sample size control can be poor Lim et al. (2024) .

• High Dimensional: Belloni et al. (2012), Mikusheva (2023).
◦ dz ≫ n allowed under strong identification but limited work when identification is weak.
◦ Unclear how to pre-test for weak-IV when using Lasso/ML first stage.
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Motivation

In practice, these assumptions can be difficult to interpret.

1. Bastos et al. (2018). Export Destinations and Input Prices, AER.
◦ d3

z = 1,000,000 ≫ n = 45,659
◦ dz = 100

?→ ∞

2. Gilchrist and Sands (2016). Something to Talk About, JPE.
◦ d3

z ≈ 140,000 ≫ n = 1,671;

◦ dz = 52
?→ ∞

3. Paravisini et al. (2014). Dissecting the Effect of Credit on Trade, ReStud.
◦ d3

z = 1,000 ∝ n = 5,996
◦ dz = 10

?→ ∞

4. Derenoncourt (2022). Can You Move to Opportunity? AER.
◦ d3

z = 729 > n = 239;

◦ dz = 9
?→ ∞.
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Contribution

1. Propose a new test that can be applied in any of settings mentioned above.
◦ Relies on a nuisance parameter that is easy to estimate using “out-of-the-box” methods.
◦ Incorporate first stage information using ridge regression.

2. Limiting 𝜒2(dx) distribution of test statistic is derived via direct gaussian approximation.
◦ Number of instruments can be larger than n, existing CLTs cannot be applied;
◦ Limiting distribution of test statistic is pivotal and does not require dz → ∞.

3. To improve power against certain alternatives, I propose a combination with sup-score
test of Belloni et al. (2012).
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Contribution

n dz 𝜚 New Test And. Rubin J. AR J. LM

200 30 0.3 0.0498 0.0096 0.1090 0.0318
0.6 0.0562 0.0088 0.1104 0.0292

75 0.3 0.0488 0.0168 0.1144 0.0380
0.6 0.0516 0.0122 0.1166 0.0390

500 30 0.3 0.0554 0.0174 0.0940 0.0272
0.6 0.0570 0.0206 0.0984 0.0280

75 0.3 0.0500 0.0274 0.1028 0.0470
0.6 0.0522 0.0230 0.1002 0.0434

Average 0.0526 0.0169 0.1057 0.0354

Table 1: Simulated size of various tests with nominal level 𝛼 = 0.05 under
weak identification and heteroskedastic errors. Parameter 𝜚 controls
degree of endogeneity

Details
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Prior Literature

In addition to previously mentioned results, contribute to the following literatures:

• Weak Identification: Nelson and Startz (1990), Bound et al. (1995), Stock and Wright
(2000), Ahmad et al. (2001), Andrews et al. (2006), Hansen et al. (2008), Chaudari and
Zivot (2009), Andrews and Cheng (2012), Cheng (2008, 2015), Chaudari et al. (2014),
Andrews and Guggenberger (2019), Andrews and Mikusheva (2016, 2022, 2023).

• Many/High-Dimensional Instruments: Bekker (1994), Hahn (2002), Chao and Swanson
(2005), Han and Phillips (2006), Anatolyev (2012), Adusumilli (2017), Gold et al. (2020),
Lim et al. (2022), Fan et al. (2023).

• Gaussian Approximation: Lindeberg (1922), Chatterjee (2006), Pouzo (2015),
Chernozhukov et al. (2013, 2017), Graham (2017).
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Model

Focus on the case where dx = 1. With first stage, can write model as

yi = xi𝛽 + 𝜖i

xi = E[xi | zi]︸   ︷︷   ︸
Πi

+ vi E[(𝜖i , vi)′ |zi] = 0

• Controls z1i assumed to be partialled out of (yi , xi);

• Random variables {(zi , 𝜖i , vi)′}n
i=1 independent and identically distributed;

Additionally, define the null errors 𝜖i(𝛽0) B yi − xi𝛽0.

Remark.
All results hold conditionally on a realization of the instruments. Having described basic
model, treat them as fixed moving forward.
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Ideal Test Statistic

Ideal test would use first stage to test null hypothesis (Chamberlain, 1987).

Ideal(𝛽0) B

( ∑n
i=1 𝜖i(𝛽0)Πi

)2∑n
i=1 𝜖

2
i (𝛽0)Π2

i
⇝ 𝜒2(1)

Unfortunately, plugging in a naive estimate of the first-stage is not viable when identification
is weak.

• Distribution of first-stage estimate becomes relevant to distribution of test statistic;
cannot approximate limiting behavior without knowledge of underlying DGP.
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Test Statistic

Instead, borrow an idea from Kleibergen (2002, 2005) and construct Π̂i to be uncorrelated
with structural errors.

1. First partial out null errors, 𝜖i(𝛽0), from the endogenous variable, xi, using a nuisance
function.

◦ Nuisance function is simple to estimate. Consistency achievable with standard methods when
dz ≪ n or using ML methods when dz ≫ n.

◦ If errors are homoskedastic, nuisance function is a constant.

Nuisance Parameter

2. Construct Π̂i via a jackknife-ridge regression of “partialled-out” endogenous variable on
instruments.

◦ Combining jackknife-and partialling out approaches leaves Π̂i independent of 𝜖i(𝛽0) and
uncorrelated with 𝜖j(𝛽0).

◦ First-stage estimate not required to be consistent so in principle other options are available.
Ridge allows dz ≫ n.
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Test Statistic

Test statistic is then constructed

JK(𝛽0) B
( ∑n

i=1 𝜖i(𝛽0)Π̂i
)2∑n

i=1 𝜖
2
i (𝛽0)Π̂2

i

Key Idea: If all variables were normally distributed, could condition on {Π̂i}n
i=1 and see that

JK(𝛽0) ≈ 𝜒2(1) under H0.
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Gaussian Approximation

Typically justify treating variables as if they were normally distributed through CLT(s) and
CMT. However, these standard tools are not applicable here:

• Main Issue. Allow dz ≫ n so central limit theorems are not applicable.
◦ Even if dz ≪ n, denominator looks like a randomly weighted quadratic form, so unclear how to

proceed.

• Secondary. First-stage estimates may not be consistent, behavior of numerator and
denominator can both “jump around” in limit.

◦ Prevents application of CMT. Also an issue when controlling approximation error.

Navjeevan (UCLA) An Identification and Dimensionality Robust Test for Linear IV 11 / 21



Gaussian Approximation

Instead, apply modifications of Lindeberg’s interpolation argument (Lindeberg, 1922).

• Basic Idea: One-by-one replace terms in expression of JK(𝛽0) with gaussian analogs and
bound resulting one-step distributional changes.

Interpolation argument needs to be modified to accomodate for a “divide-by-zero” problem.

• Standard argument require derivatives w.r.t individual observations to have bounded
moments.

• This will not be satisfied under weak identification since denominator of test statistic can
be arbitrarily close to zero.

• When dx = 1, problem can be simplified, but when dx > 1 more involved argument is
developed.
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Managing Estimation Error

Let JKG(𝛽0) be the version of the test statistic constructed with jointly Gaussian variables.

Theorem 1

Suppose moment, balanced design, and consistency assumptions  hold. Then, in local
neighborhoods  of H0,

sup
a∈R

��Pr(JK(𝛽0) ≤ a) − Pr(JKG(𝛽0) ≤ a)
�� → 0

In particular, under H0, JK(𝛽0)⇝ 𝜒2(1).
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Power Properties

Process of partialling out structural errors introduces bias into first stage estimates. Against
certain alternatives first stage signal is “erased”, E[Π̂i] = 0 ∀i ∈ [n], and test has trivial power.

• In “low-dimensional” literature, this is dealt with by combining K-statistic with
Anderson-Rubin based on conditioning statistic.

◦ Moreira (2003), Kleibergen (2005), Andrews (2016).

• Will take a similar approach, but need to find conditioning and mixing statistics.
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Combination Test

Combine JK(𝛽0) test with sup-score test of Belloni et al. (2012). Level (1 − 𝛼) sup-score test
rejects if

S(𝛽0) B sup
ℓ∈[dz]

���� 1√
n

n∑
i=1

𝜖i(𝛽0)zℓ i

����
is larger than a bootstrap critical value cS

1−𝛼 .

• Sup-score test does not inorporate first-stage information but does not face a power
decline against particular alternatives.

• Has correct asymptotic size even when dz ≫ n.
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Combination Test

Conditioning statistic, C, attempts to detect whether first stage signal is erased.

C = sup
i∈[n]

���� 1√
n
Π̂i

����
Combination test decides which test to run based on value of conditioning statistic.

T(𝛽0; 𝜏) =


1
{
S(𝛽0) > cS

1−𝛼
}

if C ≤ 𝜏

1
{
JK(𝛽0) > 𝜒2

1−𝛼(1)
}

otherwise

In practice, take 𝜏 to be the 75th quantile of conditioning statistic under assumption that
first-stage signal is erased.

Conditioning Statistic Quantiles
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Combination Test

Theorem 2

Suppose the conditions of Theorem 1 hold along with strengthened moment and balanced
design  conditions. Further, assume logM(dzn)/n → 0 for a defined constant M. Then,
the test T(𝛽0; 𝜏) has asymptotic size 𝛼 for any choice of cutoff 𝜏.

Proof establishes joint Gaussian approximation of test and conditioning statistics. Then uses
that gaussian test statistics are marginally independent of conditioning statistic under H0.
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Simulation Study

I present simulated power curves following a DGP similar to that of Matsushita and Otsu
(2022). Main features:

1. Heteroskedastic laplacian errors (𝜖i , vi)
◦ Parameter 𝜚 controls degree of endogeneity, with 𝜚 = 0 indicating E[𝜖ivi] = 0.

2. Using interactions, quadratic, and cubic powers of 10 initial instruments generate total of
75 instruments.

◦ Initial instruments generated multivariate normal with toeplitz covariance structure.

3. Model intermediate identification by dividing first stage signal by n1/3, for n = 500.

I compare performance of Jackknife K-test, Combination test, Anderson-Rubin test, and
Jackknife LM test.

 Intro

Navjeevan (UCLA) An Identification and Dimensionality Robust Test for Linear IV 18 / 21



Simulation Study

Figure 1: Calibrated Power Curves under intermediate identification
strength with dz = 75, 𝜚 = 0.3, and n = 500
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Simulation Study

Figure 2: Calibrated Power Curves under intermediate identification
strength with dz = 75, 𝜚 = 0.5, and n = 500
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Conclusion

This paper proposes a new test for the structural parameter in a linear IV model. This
proposed test

1. Has exact asymptotic size so long as a nuisance parameter can be consistently estimated.
This is possible under approximate sparsity even when dz ≫ n but does not require
dz → ∞.

2. Can be combined with the sup-score test to improve power against certain alternatives.

3. Is shown to perform well in an empirical application and simulation study.

Thank you all very much
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Conditioning Statistic

Power decline occurs when E[Π̂i] = 0 for all i ∈ [n]. Conditioning statistic attempts to detect
this event

C = max
i∈[n]

�� 1√
n
Π̂i

��
Quantiles of C can be calculated under the assumption that E[Π̂i] = 0 via multiplier bootstrap
procedure.

(1 − 𝜃) quantile ≈ (1 − 𝜃) quantile of max
i∈n

�� 1√
n

∑
j≠i

eihĳrj
�� conditional on data

where e1 , . . . , en are iid N(0, 1) bootstrap weights, hĳ are the linear weights used to construct
Π̂i, and r1 , . . . , rn represent the “partialled-out” versions of x1 , . . . , xn.
 Back



Estimating Nuisance Parameter

Parameter 𝜌(zi) is conditional slope parameter from OLS of xi on 𝜖i(𝛽0). Under H0 it solves
the population problem;

𝜌(zi) = arg min
�̃�(zi)

E
[ (

xi − 𝜖i(𝛽0)�̃�(zi)
)2]

If 𝜌(zi) = b(zi)′𝛾 + 𝜉i for a basis b(zi) ∈ Rdb then

𝛾 = arg min
�̃�
E
[ (

xi − 𝜖i(𝛽0)b(zi)′�̃�
)2]

 Back



Limiting Distribution Assumptions

For any 𝜈 > 0 and random variable X, define the Orlicz quasi-norm

∥X∥𝜓𝜈 = inf{t > 0 : E exp(|X|𝜈/t𝜈) ≤ 2}

1. Moment Assumptions There is a constant c > 1 and 𝜈 ∈ (0, 1] ∪ {2} such that ∥𝜖i∥𝜓𝜈 ≤ c and
c−1 ≤ E[|𝜖i |l |ri |k] ≤ c for any i ∈ [n] and 0 ≤ l + k ≤ 6.

2. Balanced Design Let Π̂I
i B

∑
j≠i hĳrj. Assume that there is a constant c > 1 such that

maxi E[(Π̂I
i )

2]
1
n
∑n

i=1 E[(Π̂I
i )2]

≤ c

Plus a technical condition requiring that the hat matrix H is constructed using > 1 effective
instrument.

3. Consistency The function 𝜌(zi) has an approximately sparse representation in basis b(zi) and
researcher has access to an estimator �̂� that satisfies ∥�̂� − 𝛾∥1 →p 0.

 Theorem 1



Infeasible Local Power Assumptions

For any 𝜈 > 0 and random variable X, define the Orlicz quasi-norm

∥X∥𝜓𝜈 = inf{t > 0 : E exp(|X|𝜈/t𝜈) ≤ 2}

1. Moment Assumptions There is a constant c > 1 such that E[|𝜖i |l |ri |k] ≤ c for any i ∈ [n]
and 0 ≤ l + k ≤ 6.

2. Balanced Design Let Π̂I
i B

∑
j≠i hĳrj. Assume that there is a constant c > 1 such that

maxi E[(Π̂I
i )

2]
1
n
∑n

i=1 E[(Π̂I
i )2]

≤ c

Plus a technical condition requiring that the hat matrix H is constructed using > 1
effective instrument.

 Back



Local Neighborhoods

Local Neighborhoods are defined by

1. The local power index P is bounded, P ≤ c.

P B E
[(

sn√
n

n∑
i=1

ΠiΠ̂
I
i

)2]
2. A technical condition roughly requiring that |E[𝜖i(𝛽0)]| ≲ |E[ri]| for all i ∈ [n].
 Back



Strengthened Local Neighborhoods

Local Neighborhoods are defined by

1. The local power index P is bounded, P ≤ c.

P B E
[(

sn√
n

n∑
i=1

ΠiΠ̂
I
i

)2]
2. A technical condition roughly requiring that |E[bℓ (zi)𝜖i(𝛽0)]| ≲ |E[ri]| for all i ∈ [n] and

ℓ ∈ [db].
 Back



Combination Test

In practice, I take 𝜏 to be the 75th quantile of conditioning statistic under assumption that
E[Π̂I

i ] = 0 for all i ∈ [n]. Simulated;

𝜏 = 40th quantile of sup
i∈[n]

���� ∑
j≠i ejhĳ r̂j( ∑
j≠i h2

ĳ
)1/2

���� conditional on {yi , xi , zi}n
i=1

where e1 , . . . , en are i.i.d standard normal generated independently of the data.
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Combination Test Conditions

In addition to the conditions of Theorem 2, assume that there is a constant c > 1 such that

1. There is a 𝜈 ∈ (0, 1] ∪ {2} such that ∥ri∥𝜓𝜈 ≤ c;

2. The instruments and hat matrix are balanced in the sense that

max
ℓ ,i

��� zℓ i( 1
n
∑n

i=1 z2
ℓ i
)1/2

��� + max
i,j

��� hĳ( 1
n
∑n

i=1 h2
ĳ
)1/2

��� ≤ c

3. log7+4/𝜈(dzn) → 0.

 Back
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