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Setup

Consider the linear IV model

yi = x′i𝛽 + z′1iΓ + 𝜖i , E[𝜖i |zi] = 0

Researcher observes (yi , xi , zi)′

• Outcome yi ∈ R;
◦ e.g income

• Endogenous Regressor(s) xi ∈ Rdx ;
◦ e.g years of education

• Instruments zi = (z1i , z2i)′ ∈ Rdc × Rdz−dc .
◦ e.g demographic characteristics, quarter of birth
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Research Question

I propose a new test for
H0 : 𝛽 = 𝛽0 vs. H1 : 𝛽 ≠ 𝛽0

when

• Identification is arbitrarily weak;

• Errors are heteroskedastic;

• The number of instruments is potentially large, dz ≫ n.
◦ Dimensionality of controls is fixed, dc ≪ n.
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Existing Weak IV Robust Tests

• Low Dimensional: Anderson and Rubin (1949), Staiger and Stock (1997), Wang and
Zivot (1998), Kleibergen (2002, 2005), Moreira (2003, 2009), Andrews (2016).

◦ Analyses treat dz as fixed or growing slowly with sample size. Tests control size under
heteroskedasticity when d3

z/n → 0 (Andrews and Stock, 2007).

• Many Instruments: Crudu et al. (2021), Mikusheva and Sun (2021), Matsushita and Otsu
(2022), Lim et al. (2022).

◦ Allow dz/n → 𝜚 ∈ [0, 1) but use Chao et al. (2012) CLT that requires dz → ∞.
◦ If dz → ∞ slowly, asymptotic approximation may be poor in finite samples.

• High Dimensional: Belloni et al. (2012), Gautier and Rose (2021), Mikusheva (2023).
◦ dz ≫ n allowed under strong identification but limited work when identification is weak.
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Motivation

Even when dz < n, it can be unclear which test, if any, is applicable

1. Bastos et al. (2018). Export Destinations and Input Prices, AER.

Interested in effect of Portugese firm export destinations on prices paid for inputs.
◦ Instrument for firm export destinations using interactions of exchange rate movements and

initial export destinations.

First-stage F-statistic on 100 instruments (≈ 2.5) indicates weak identification.
◦ Authors validate results using Anderson-Rubin test, arguments about direction of weak IV bias.

Which identification robust test to use?
◦ d3

z = 1, 000, 000 ≫ n = 45, 659;

◦ dz = 100
?→ ∞.
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Motivation

Even when dz < n, it can be unclear which test, if any, is applicable

2. Gilchrist and Sands (2016). Something to Talk About: Social Spillovers in Movie Consumption,
JPE.

Consider effect of strong opening weekend on ticket sales in later weeks. Instrument for
opening weekend sales using national weather conditions.

◦ Unusually poor weather conditions may lead people to choose to watch a movie instead of
“chilling” outside.

Start with 52 weather instruments, then use LASSO select up to three. F-statistic on
selected instruments ranges from 15-38, F-statistic on all instruments is ≈ 3.5.

◦ Unclear whether F-statistic on selected instruments is interpretable.

Which identification robust test to use?
◦ d3

z ≈ 140, 000 ≫ n = 1671;

◦ dz = 52
?→ ∞
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Motivation

Even when dz < n, it can be unclear which test, if any, is applicable

3. Derenoncourt (2022). Can You Move to Opportunity? Evidence from the Great Migration,
AER.

Considers effect of Black Americans migration rates from 1940 - 1970 on income mobility
gap in current day. Instrument for Black migration shares using “supply-side” variation.

◦ Focus on industry conditions for industries with historically higher than average Black
employment rates.

Initial instrument set consists of 9 instruments, then use post-LASSO to estimate
first-stage. F-statistic on selected variables is 14.78, on all variables is 11.68.

◦ Stock and Yogo (2005) cutoff for dz = 9 and no more than a 15% size distortion is 14.01.

Which identification robust test to use?
◦ d3

z = 729 > n = 239;

◦ dz = 9
?→ ∞.

Navjeevan (UCLA) An Identification and Dimensionality Robust Test for Linear IV 4 / 43



Contribution

1. Test can be applied in any of settings mentioned above.
◦ Relies on a nuisance parameter that is easy to estimate using “out-of-the-box” methods.
◦ Incorporate first stage information using ridge regression.

2. Limiting 𝜒2(dx) distribution of test statistic is derived via direct gaussian approximation.
◦ Number of instruments can be larger than n, existing CLTs cannot be applied;
◦ Limiting distribution of test statistic is pivotal and does not require dz → ∞.

3. To improve power against certain alternatives, I propose a combination with sup-score
test of Belloni et al. (2012).
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Contribution

n dz 𝜚 New Test And. Rubin J. AR J. LM

200 30 0.3 0.0498 0.0096 0.1090 0.0318
0.6 0.0562 0.0088 0.1104 0.0292

75 0.3 0.0488 0.0168 0.1144 0.0380
0.6 0.0516 0.0122 0.1166 0.0390

500 30 0.3 0.0554 0.0174 0.0940 0.0272
0.6 0.0570 0.0206 0.0984 0.0280

75 0.3 0.0500 0.0274 0.1028 0.0470
0.6 0.0522 0.0230 0.1002 0.0434

Average 0.0526 0.0169 0.1057 0.0354

Table 1: Simulated size of various tests with nominal level 𝛼 = 0.05 under
weak identification and heteroskedastic errors. Parameter 𝜚 controls
degree of endogeneity

Details
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Prior Literature

In addition to previously mentioned results, contribute to the following literatures:

• Weak Identification: Nelson and Startz (1990), Bound et al. (1995), Stock and Wright
(2000), Ahmad et al. (2001), Andrews et al. (2006), Hansen et al. (2008), Chaudari and
Zivot (2009), Andrews and Cheng (2012), Fan and Park (2014), Cheng (2008, 2015),
Chaudari et al. (2014), Andrews and Guggenberger (2019), Andrews and Mikusheva
(2016, 2022, 2023).

• Many/High-Dimensional Instruments: Bekker (1994), Hahn (2002), Chao and Swanson
(2005), Han and Phillips (2006), Anatolyev (2012), Adusumilli (2017), Gold et al. (2020),
Fan et al. (2023).

• Gaussian Approximation: Lindeberg (1922), Chatterjee (2006), Pouzo (2015),
Chernozhukov et al. (2013, 2017), Graham (2017).

Navjeevan (UCLA) An Identification and Dimensionality Robust Test for Linear IV 7 / 43



Table of Contents

Test Statistic

Power Properties

Empirical Application



Model

Focus on the case where dx = 1. With first stage, can write model as

yi = xi𝛽 + 𝜖i

xi = E[xi | zi]︸   ︷︷   ︸
Πi

+ vi E[(𝜖i , vi)′ |zi] = 0

• Controls z1i assumed to be partialled out of (yi , xi);

• Random variables {(zi , 𝜖i , vi)′}n
i=1 independent and identically distributed;

Additionally, define the null errors 𝜖i(𝛽0) B yi − xi𝛽0.

Remark.
All results hold conditionally on a realization of the instruments. Having described basic
model, treat them as fixed moving forward.
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Testing Procedure

Proposed test statistic is similar in spirit to, but structurally distinct from, a jackknife version
of the K-statistic (Kleibergen, 2002, Kleibergen, 2005).

• Kleibergen K-statistic influential in “low-dimensional” literature.

• Adaptating Kleibergen idea for setting with large instruments requires significant
modification of test statistic.
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Ideal Test Statistic

Ideal test would use first stage to test null hypothesis.

Ideal(𝛽0) B

( ∑n
i=1 𝜖i(𝛽0)Πi

)2∑n
i=1 𝜖

2
i (𝛽0)Π2

i
⇝ 𝜒2(1)

• Use of first stage leads to an efficient test (Chamberlain, 1987);

• Limiting distribution is straightforward to derive.
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Ideal Test Statistic

Since true first stage is unknown, could try to instead estimate Π̂i using x1 , . . . , xn;

Ideal(𝛽0) B

( ∑n
i=1 𝜖i(𝛽0)Π̂i

)2∑n
i=1 𝜖

2
i (𝛽0)Π̂2

i

• Under weak identification, distribution of Π̂i is relevant to limiting distribution of test
statistic;

• Cannot approximate limiting behavior without knowledge of underling DGP.
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Kleibergen Idea

Partial out 𝜖i(𝛽0) from xi;

ri = xi −
Cov(𝜖i(𝛽0), xi)

Var(𝜖i(𝛽0))
𝜖i(𝛽0)

Then estimate Π̂i using OLS of ri on zi. Under homoskedasticity, resulting first-stage
estimates are uncorrelated with 𝜖i(𝛽0).
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Kleibergen K-Statistic

K-statistic is constructed using these first stage estimates

K(𝛽0) B

( ∑n
i=1 𝜖i(𝛽0)Π̂i

)2

V̂ar(𝜖(𝛽0))
∑n

i=1 Π̂
2
i

To analyze limiting behavior, apply CLT to numerators and denominators and treat variables
as if they are normally distributed.

• {Π̂i}i∈[n] ⊥ {𝜖i(𝛽0)}i∈[n] since uncorrelated jointly gaussian variables are independent.

• Conditional on {Π̂i}i∈[n], K(𝛽0) ∼ 𝜒2(1) under H0; unconditional distribution also 𝜒2(1).
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Extending Kleibergen

When dz is large and errors are heteroskedastic run into the following issues

1. Cannot apply CLTs to examine limiting behavior of test statistic,

2. OLS may be poorly behaved or not well defined if dz is large,

3. Kleibergen (2005) extension for heteroskedastic errors requires estimating a dz × dz
matrix

◦ Cannot be consistently estimated when dz large.
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Modified Endogenous Variable

I use versions of xi that are conditionally uncorrelated with 𝜖i(𝛽0);

ri B xi − 𝜌(zi)𝜖i(𝛽0), 𝜌(zi) :=
Cov(𝜖i(𝛽0), xi |zi)

Var(𝜖i(𝛽0)|zi)
.

Notice that Cov(𝜖i(𝛽0), ri |zi) = 0. Will use r1 , . . . , rn to construct first stage estimates and test
statistic.
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Estimating Nuisance Parameter

Parameter 𝜌(zi) is conditional slope parameter from OLS of xi on 𝜖i(𝛽0). Under H0 it solves
the population problem;

𝜌(zi) = arg min
𝜌̃(zi)

E
[ (

xi − 𝜖i(𝛽0)𝜌̃(zi)
)2]

If 𝜌(zi) = b(zi)′𝛾 + 𝜉i for a basis b(zi) ∈ Rdb then

𝛾 = arg min
𝛾̃
E
[ (

xi − 𝜖i(𝛽0)b(zi)′𝛾̃
)2]
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Estimation

Can estimate 𝛾 via

𝛾̂ = arg min
𝛾

1
n

n∑
i=1

(xi − 𝜖i(𝛽0)b(zi)′𝛾)2 + 𝜆∥𝛾∥1 (1)

• Eqn. (1) is a simple LASSO regression of xi on 𝜖i(𝛽0)b(zi).
• 𝛾̂ converges to 𝛾 under approximate sparsity �, even if db ≫ n.

◦ If errors are homoskedastic, 𝜌(zi) is sparse in any basis with a constant term.

For each i = 1, . . . , n define r̂i B xi − 𝜖i(𝛽0)b(zi)′𝛾̂.
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Test Statistic

Using r̂1 , . . . , r̂n construct a jackknife-linear estimate of the first stage.

Π̂i :=
∑
j≠i

hĳ r̂j

The weights hĳ derive from matrix H ∈ Rn×n which depends only on the instruments
z = (z′1 , . . . , z

′
n)′ ∈ Rn×dz . In paper, take H to be the ridge regression hat matrix.

H = z(z′z + 𝜆★Idz )−1z

However, any other form of H is permissible so long as a balanced design condition is met.
Ridge Penalty Alternate H
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Test Statistic

Using Π̂1 , . . . , Π̂n construct the test-statistic

JK(𝛽0) B
( ∑n

i=1 𝜖i(𝛽0)Π̂i
)2∑n

i=1 𝜖
2
i (𝛽0)Π̂2

i

The test statistic is similar in spirit to a jackknife version of the K-statistic, but the construction
is distinct.
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Balanced Design Condition

Balanced design condition requires that the average second moment of the first stage
estimators is on the same order as the maximum second moment

Balanced Design:
maxi E[(

∑
j≠i hĳrj)2]

1
n
∑n

i=1 E[(
∑

j≠i hĳrj)2]
is bounded from above

• Eliminates H matrices that are all zeroes or nearly all zeroes.

• Ensures that distribution of test statistic is not governed by a single observation.

Verifying Balanced Design
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Size Control

Theorem 1

Suppose that moment, balanced design, and estimation assumptions � hold. Then, under
H0, JK(𝛽0)⇝ 𝜒2(1).

Proof Strategy.
Limiting distribution is derived in two main steps.

1. Show CDF of an infeasible statistic, constructed with the true 𝜌(zi), can be approximated
by CDF of a gaussian analog statistic.

◦ Approximation holds in local neighborhoods of null, allows for analysis of local power.

2. Show that the difference between feasible and infeasible statistics converges to zero.
◦ Simple statement, but not immediate as some standard tools are lost in first step of argument.
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Gaussian Approximation

For each i ∈ [n], let (𝜖̃i(𝛽0), r̃i)′ be generated

(a) independently of all other variables in the model and;

(b) with the same mean and covariance matrix as (𝜖i(𝛽0), ri)′.

Define Π̂I
i =

∑
j≠i hĳrj, Π̃i =

∑
j≠i hĳ r̃j, and

JKI(𝛽0) B
( ∑n

i=1 𝜖i(𝛽0)Π̂I
i
)2∑n

i=1 𝜖
2
i (𝛽0)(Π̂I

i )2
JKG(𝛽0) B

( ∑n
i=1 𝜖̃i(𝛽0)Π̃i

)2∑n
i=1 E[𝜖2

i (𝛽0)]Π̃2
i

Uncorrelated normal random variables are independent; under H0 distribution of JKG(𝛽0)
conditional on (r̃1 , . . . , r̃n) is 𝜒2(1) and so unconditional distribution is also 𝜒2(1).
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Gaussian Approximation

One-by-one replace each pair (𝜖i(𝛽0), ri) in the expression of JKI(𝛽0) with (𝜖̃i(𝛽0), r̃i)

JKI(𝛽0) =JK
(
(𝜖1(𝛽0), r1) , (𝜖2(𝛽0), r2), . . . , (𝜖n−1(𝛽0), rn−1) , (𝜖n(𝛽0), rn)

)
↓

JK
(
(𝜖̃1(𝛽0), r̃1) , (𝜖2(𝛽0), r2), . . . , (𝜖n−1(𝛽0), rn−1) , (𝜖n(𝛽0), rn)

)
.
.
.

JK
(
(𝜖̃1(𝛽0), r̃1) , (𝜖̃2(𝛽0), r̃2), . . . , (𝜖̃n−1(𝛽0), r̃n−1) , (𝜖n(𝛽0), rn)

)
↓

JK
(
(𝜖̃1(𝛽0), r̃1) , (𝜖̃2(𝛽0), r̃2), . . . , (𝜖̃n−1(𝛽0), r̃n−1) , (𝜖̃n(𝛽0), r̃n)

)
= JKG(𝛽0)

And show that sum of one step distributional changes is negligible as n → ∞.
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Gaussian Approximation

Lemma 1

Assume moment and balanced design assumptions � hold. Then, in local neighborhoods
of H0;

sup
a∈R

��Pr (JKI(𝛽0) ≤ a) − Pr (JKG(𝛽0) ≤ a)
�� → 0 (2)

Local Neighborhoods and Infeasible Consistency
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Managing Estimation Error

Final step is to show that the difference between feasible JK(𝛽0) and infeasible JKI(𝛽0) is
negligible. Define

ΔN = Scaled Numerator of JK(𝛽0) − Scaled Numerator of JKI(𝛽0)︸                                ︷︷                                ︸
NI

ΔD = Scaled Denominator of JK(𝛽0) − Scaled Denominator of JKI(𝛽0)︸                                   ︷︷                                   ︸
DI

To argue that |JK(𝛽0) − JKI(𝛽0)| →p 0 need to argue

1. (ΔN ,ΔD)′ →p 0;

2. 1/DI is bounded in probability.
◦ Difficult since DI does not have a limiting distribution.
◦ Instead directly show Pr(DI ≤ 𝛿n) → 0 for any 𝛿n ↘ 0.
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Managing Estimation Error

Lemma 2

Suppose Lemma 1 conditions hold and (ΔN ,ΔD)′ →p 0. Then |JK(𝛽0) − JKI(𝛽0)| →p 0.

Theorem 2

Suppose moment, balanced design, and consistency assumptions � hold. Then, in
strengthened local neighborhoods � of H0,

sup
a∈R

��Pr(JK(𝛽0) ≤ a) − Pr(JKG(𝛽0) ≤ a)
�� → 0

In particular, under H0, JK(𝛽0)⇝ 𝜒2(1).
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Power Properties

Conditional on Π̃ B (Π̃1 , . . . , Π̃n), the gaussian analog JKG(𝛽0) ≊ 𝜒2(1;𝜇∞(Π̃)) where

𝜇2
∞(Π̃) = (𝛽 − 𝛽0)2

( ∑n
i=1 ΠiΠ̃i

)2∑n
i=1 Var(𝜖i(𝛽0))Π̃2

i

Two main insights:

1. Numerator of 𝜇̃2
∞(Π̃) suggests that power is maximized when the first stage estimate, Π̃i,

is close to the true first stage, Πi.
◦ Reflects efficiency bound of Chamberlain (1987).

2. Denominator of 𝜇̃2
∞(Π̃) suggests having estimates, Π̃i, with smaller second moments

may increase power.
◦ Guides recommendation of ridge regression to construct Π̂i.
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Power Properties

Unfortunately, estimates of Πi based on r = (r1 , . . . , rn) may be biased as mean of ri differs
from that of xi under H1;

E[ri] = Πi + 𝜌(zi)Πi(𝛽 − 𝛽0)

Bias is particularly adverse when (𝛽 − 𝛽0) = −1/𝜌(zi) in which case E[ri] = 0.

• In “low-dimensional” literature, this is dealt with by combining K-statistic with
Anderson-Rubin based on conditioning statistic;

◦ Moreira (2003), Kleibergen (2005), Andrews (2016).

• Will take a similar approach, but need to find correct conditioning and mixing statistics.
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Combination Test

Combine JK(𝛽0) test with sup-score test of Belloni et al. (2012). Level (1 − 𝛼) sup-score test
rejects if

S(𝛽0) B sup
ℓ∈[dz]

����∑n
i=1 𝜖i(𝛽0)zℓ i( ∑n

i=1 z2
ℓ i
)1/2

����
is larger than the bootstrap critical value;

cS
1−𝛼 B (1 − 𝛼) quantile of sup

ℓ∈[dz]

����∑n
i=1 ei𝜖i(𝛽0)zℓ i( ∑n

i=1 z2
ℓ i
)1/2

���� conditional on {(yi , xi , zi)}n
i=1

where e1 , . . . , en are i.i.d standard normals generated independently of the data.

Navjeevan (UCLA) An Identification and Dimensionality Robust Test for Linear IV 29 / 43



Combination Test

Combination test decides whether to run sup-score or jackknife K based on conditioning
statistic.

C = sup
i∈[n]

���� ∑
j≠i hĳ r̂j( ∑
j≠i h2

ĳ
)1/2

����.
Conditioning statistic attempts to detect whether E[Π̂I

i ] = 0 for all i ∈ [n];
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Combination Test

Combination test can be summarized by threshold 𝜏;

T(𝛽0; 𝜏) =


1
{
S(𝛽0) > cS

1−𝛼
}

if C ≤ 𝜏

1
{
JK(𝛽0) > 𝜒2

1−𝛼(1)
}

otherwise

where 𝜒2
1−𝛼(1) is the (1 − 𝛼) quantile of the 𝜒2(1) distribution. In practice, take 𝜏 to be the 75th

quantile of conditioning statistic under assumption that E[Π̂I
i ] = 0 for all i ∈ [n].

Theorem 3

Suppose the conditions of Theorem 2 hold along with strengthened moment and balanced
design � conditions. Further, assume logM(dzn)/n → 0 for a defined constant M. Then,
the test T(𝛽0; 𝜏) has asymptotic size 𝛼 for any choice of cutoff 𝜏.

Simulating Quantile Proof Structure
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Simulation Study

I present simulated power curves following a DGP similar to that of Matsushita and Otsu
(2022). Main features:

1. Heteroskedastic laplacian errors (𝜖i , vi)
◦ Parameter 𝜚 controls degree of endogeneity, with 𝜚 = 0 indicating E[𝜖ivi] = 0.

2. Using interactions, quadratic, and cubic powers of 10 initial instruments generate total of
75 instruments.

◦ Initial instruments generated multivariate normal with toeplitz covariance structure.

3. Model intermediate identification by dividing first stage signal by n1/3, for n = 500.

I compare performance of Jackknife K-test, Combination test, Anderson-Rubin test, and
Jackknife LM test.

� Intro
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Simulation Study

Figure 1: Calibrated Power Curves under intermediate identification
strength with dz = 75, 𝜚 = 0.3, and n = 500
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Simulation Study

Figure 2: Calibrated Power Curves under intermediate identification
strength with dz = 75, 𝜚 = 0.5, and n = 500
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Setting

I apply the proposed testing procedures to the data of Gilchrist and Sands (2016). The data
consists of 1671 opening weekend days � from 2002 to 2012. For each weekend day, i, we
observe

• The total sales of wide-released � movies 7w days after opening weekend day i, for
w = 0, . . . , 5.

• A vector of 52 weather related instrumental variables consisting of, for each Saturday
and Sunday of the corresponding opening weekend:

◦ The proportion of national movie theaters experiencing a maximum temperature in one of
sixteen 5◦ temperature bins from [10◦ , 100◦].

◦ The proportion of national movie theaters experiencing maximal hourly precipitation in one of
six 0.25′′ precipitation bins from [0′′ , 1.5′′].

◦ The proportion of national movie theaters experiencing any sort of rainfall.
◦ The proportion of national movie theaters experiencing any sort of snowfall.

• A vector of date controls to control for seasonality in movie viewership.
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Setting

Interested in spillover effects on sales in later weeks from a strong opening weekend.
Formally, interested in parameters 𝛽w for w = 1, . . . , 6 from the linear model

Sales⊥wi = 𝛽wSales⊥0i + 𝜖wi (3)

where

• Sales⊥0i represents the sales of newly-released movies on opening weekend day i, after
partialling out date controls and a constant.

• For w = 1, . . . , 5, Sales⊥wi represents the sales of the same movies 7w days after opening
day i, after partialling out date controls and a constant.

• Sales⊥6i =
∑5

w=1 Sales⊥wi.
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Initial Instrument Selection

In their main analysis, the authors set LASSO penalty to select either one, two, or three
instruments. Then run two stage least square on selected instruments.

Instruments Selected First Stage F-stat.
One Instrument 38.30
Two Instruments 25.86

Three Instruments 20.95
All Instruments 3.804

Identification seems strong when using selected instruments, but weak when using all
instruments.

F-statistic by Number of Selected Variables
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Initial Instrument Selection

It is unclear whether F-statistic on selected instruments is interpretable. To demonstrate, I
show results from a simple simulated exercise.

• Start with 10 independent weakly relevant instruments

• Generate additional 55 irrelevant instruments by taking all square terms and interactions.

• Set LASSO penalty to select only a certain number of instruments.

Run this simulation 1000 times with n = 1000 and report results from using 2SLS on selected
vs. relevant instruments.
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Initial Instrument Selection

Compare average F-statistic and 95% Confidence Interval coverage probability from using
selected instruments to using oracle estimator which already knows the relevant instruments.

Selected Instruments Oracle Estimator
Number of Instruments F-stat. Coverage Prob. F-stat. Coverage Prob.

One Instrument 12.539 0.302 4.911 0.904
Two Instruments 11.185 0.150 5.040 0.830

Three Instruments 10.060 0.070 4.820 0.810

Coverage with LASSO selected instruments is much worse despite F-statistics being
significantly higher.
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Identification Robust Results

Given lack of clarity on identification strength, I revisit the analysis of Gilchrist and Sands
(2016) using the identification robust tests proposed above.
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Identification Robust Results

95% Confidence Interval
Param. Estimate Original JK(𝛽0) S(𝛽0)

𝛽1 0.475 [0.428, 0.522] [0.436, 0.557] ∅
𝛽2 0.269 [0.223, 0.314] [0.227, 0.334] [0.294, 0.334]
𝛽3 0.164 [0.131, 0.197] [0.134, 0.214] [0.087, 0.094]
𝛽4 0.121 [0.096, 0.146] [0.100, 0.167] ∅
𝛽5 0.093 [0.073, 0.113] [0.080, 0.134] ∅
𝛽6 1.222 [1.077, 1.367] [1.003, 1.391] [0.990, 1.518]

Table 2: Confidence Intervals Using 48 Linearly Independent Instruments

In main specification, difference between size of S(𝛽0) CI and JK(𝛽0) CI is almost 1.5x
difference between length of JK(𝛽0) CI and original.
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Identification Robust Results

Repeat analysis including interactions between temperature instruments and all other
instruments. Resulting confidence intervals are wider than before.

95% Confidence Interval
Param. Estimate Original JK(𝛽0) S(𝛽0)

𝛽1 0.475 [0.428, 0.522] [0.443, 0.604] [0.416, 0.477]
𝛽2 0.269 [0.223, 0.314] [0.215, 0.342] ∅
𝛽3 0.164 [0.131, 0.197] [0.094, 0.228] ∅
𝛽4 0.121 [0.096, 0.146] [0.087, 0.154] [0.034, 0.121]
𝛽5 0.093 [0.073, 0.113] [0.054, 0.121] [0.121, 0.208]
𝛽6 1.222 [1.077, 1.367] [0.916, 1.435] [0.918, 1.562]

Table 3: Confidence Intervals Using 524 Instruments
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Conclusion

This paper proposes a new test for the structural parameter in a linear IV model. This
proposed test

1. Has exact asymptotic size so long as a nuisance parameter can be consistently estimated.
This is possible under approximate sparsity even when dz ≫ n but does not require
dz → ∞.

2. Can be combined with the sup-score test to improve power against certain alternatives.

3. Is shown to perform well in an empirical application and simulation study.

Thank you all very much
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Ridge Penalty

Following recommendations in Harrell (2015), Wieringen (2023), set ridge penalty parameter
so effective degrees if freedom is no more than a fraction of sample size:

𝜆★ B inf{𝜆 ≥ 0 : trace(z(z′z + 𝜆Idz )−1z′ ≤ n/5}

� Back



Alternate Hat Matrices

Alternate choices of hat matrix could include

1. A “true” jackknife OLS / Ridge,
Π̂i = z′i𝜙(−i)

where 𝜙(−i) is the OLS / Ridge regression parameter from regressing r(−i) on z(−i)

2. The deleted diagonal projection matrix of Chao et al. (2012) used in Crudu et al. (2021),
Mikusheva and Sun (2021), Matsushita and Otsu (2022);

[H]ĳ = [z(z′z)−1z]ĳ1{i ≠ j}

3. Any hat matrix resulting from a preliminary unsupervised learning to reduce the
dimensionality of z, such as PCA.
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Verifying Balanced Design

A sufficient condition for the balanced design requirement is that there is a fixed quantile
q ∈ (0, 100) such that

qth quantile of E[(∑j≠i hĳrj)2]
maxi E[(

∑
j≠i hĳrj)2]

is bounded away from zero



Definitions

1. Approximate Sparsity Function 𝜌(zi) has an approximate sparse representation in basis
b(zi) ∈ Rdb ; there exists a 𝛾 ∈ Rdb such that 𝜌(zi) = b(zi)′𝛾 + 𝜉i and

(a) s = {j : 𝛾j ≠ 0} satisfies s2 logM(dbn)n → 0
(b) ( 1

n
∑n

i=1 𝜉
2
i )

1/2 = o(n−1/2)
� Back

2. Balanced Design Let Π̂I
i B

∑
j≠i hĳrj. Assume that there is a constant c > 1 such that

maxi E[(Π̂I
i )

2]
1
n
∑n

i=1 E[(Π̂I
i )2]

≤ c

Plus a technical condition requiring that the hat matrix H is contracted using > 1
effective instrument.
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Limiting Distribution Assumptions

For any 𝜈 > 0 and random variable X, define the Orlicz quasi-norm

∥X∥𝜓𝜈 = inf{t > 0 : E exp(|X|𝜈/t𝜈) ≤ 2}

1. Moment Assumptions There is a constant c > 1 and 𝜈 ∈ (0, 1] ∪ {2} such that ∥𝜖i∥𝜓𝜈 ≤ c and
c−1 ≤ E[|𝜖i |l |ri |k] ≤ c for any i ∈ [n] and 0 ≤ l + k ≤ 6.

2. Balanced Design Let Π̂I
i B

∑
j≠i hĳrj. Assume that there is a constant c > 1 such that

maxi E[(Π̂I
i )

2]
1
n
∑n

i=1 E[(Π̂I
i )2]

≤ c

Plus a technical condition requiring that the hat matrix H is constructed using > 1 effective
instrument.

3. Consistency The function 𝜌(zi) has an approximately sparse representation in basis b(zi) and
researcher has access to an estimator 𝛾̂ that satisfies ∥𝛾̂ − 𝛾∥1 →p 0.
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Infeasible Local Power Assumptions

For any 𝜈 > 0 and random variable X, define the Orlicz quasi-norm

∥X∥𝜓𝜈 = inf{t > 0 : E exp(|X|𝜈/t𝜈) ≤ 2}

1. Moment Assumptions There is a constant c > 1 such that E[|𝜖i |l |ri |k] ≤ c for any i ∈ [n]
and 0 ≤ l + k ≤ 6.

2. Balanced Design Let Π̂I
i B

∑
j≠i hĳrj. Assume that there is a constant c > 1 such that

maxi E[(Π̂I
i )

2]
1
n
∑n

i=1 E[(Π̂I
i )2]

≤ c

Plus a technical condition requiring that the hat matrix H is constructed using > 1
effective instrument.
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Local Neighborhoods and Consistency

Define sn := maxi E[(Π̂I
i )

2] and the local power index P

P B E
[(

sn√
n

n∑
i=1

ΠiΠ̂
I
i

)2]
Local neighborhoods are characterized by (i) P being bounded and (ii) a technical condition
roughly requiring that |E[𝜖i(𝛽0)]| ≲ |E[ri]|.

Proposition 1

If the second condition is satisfied and P → ∞, then the test based on JKI(𝛽0) is
consistent.
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Consistency Sketch

The consistency result relies on showing that Pr(N2
I − aDI ≤ 0) → 0 for any a ∈ R+, where NI

is the scaled numerator of JKI(𝛽0) and DI is the scaled denominator of JKI(𝛽0).

1. Scaled denominator is bounded in probability, suffices to show that Pr(|NI | ≤ M) → 0 for
any fixed M.

2. Statement Pr(|NI | ≤ M) → 0 for any fixed M follows if Var(NI) = O(1) and E[N2
I ] → ∞,

since Var(|NI |) = E[N2
I ] − (E[|NI |])2 ≤ Var(NI).

3. The power index P represents the second moment of the scaled numerator, NI . Under
additional regularity condition, can show that Var(NI) = O(1).
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Local Neighborhoods

Local Neighborhoods are defined by

1. The local power index P is bounded, P ≤ c.

P B E
[(

sn√
n

n∑
i=1

ΠiΠ̂
I
i

)2]
2. A technical condition roughly requiring that |E[𝜖i(𝛽0)]| ≲ |E[ri]| for all i ∈ [n].
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Strengthened Local Neighborhoods

Local Neighborhoods are defined by

1. The local power index P is bounded, P ≤ c.

P B E
[(

sn√
n

n∑
i=1

ΠiΠ̂
I
i

)2]
2. A technical condition roughly requiring that |E[bℓ (zi)𝜖i(𝛽0)]| ≲ |E[ri]| for all i ∈ [n] and

ℓ ∈ [db].
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Combination Test

In practice, I take 𝜏 to be the 40th quantile of conditioning statistic under assumption that
E[Π̂I

i ] = 0 for all i ∈ [n]. Simulated;

𝜏 = 40th quantile of sup
i∈[n]

���� ∑
j≠i ejhĳ r̂j( ∑
j≠i h2

ĳ
)1/2

���� conditional on {yi , xi , zi}n
i=1

where e1 , . . . , en are i.i.d standard normal generated independently of the data.
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Combination Test Conditions

In addition to the conditions of Theorem 2, assume that there is a constant c > 1 such that

1. There is a 𝜈 ∈ (0, 1] ∪ {2} such that ∥ri∥𝜓𝜈 ≤ c;

2. The instruments and hat matrix are balanced in the sense that

max
ℓ ,i

��� zℓ i( 1
n
∑n

i=1 z2
ℓ i
)1/2

��� + max
i,j

��� hĳ( 1
n
∑n

i=1 h2
ĳ
)1/2

��� ≤ c

3. log7+4/𝜈(dzn) → 0.
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Empirical Details

• Wide Released Displayed in over 600 theaters nationally during its run.

• Opening Weekend Day A Friday, Saturday, or Sunday of opening weekend.
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Combination Test

Proof of Theorem 3 follows the basic structure;

1. Establish that quantiles of (JK(𝛽0), S(𝛽0),C) can be jointly uniformly approximated by
quantiles of gaussian analogs (JKG(𝛽0), SG(𝛽0),CG).

2. Under H0, JKG(𝛽0) ⊥ CG and SG(𝛽0) ⊥ CG.

3. Using independence, does not matter if we look at C before deciding to run JK(𝛽0) or
S(𝛽0) test.

◦ Only use marginal independence for thresholding test. More sophisticated combinations would
require joint independence; (JKG(𝛽0), SG) ⊥ CG.
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